Skip to content


  • Short genome report
  • Open Access

High-quality-draft genome sequence of the multiple heavy metal resistant bacterium Pseudaminobacter manganicus JH-7T

  • 1,
  • 1,
  • 1,
  • 1,
  • 1 and
  • 1Email author
Contributed equally
Standards in Genomic Sciences201813:29

  • Received: 10 January 2018
  • Accepted: 28 September 2018
  • Published:


Pseudaminobacter manganicus JH-7T (= KCTC 52258T = CCTCC AB 2016107T) is a Gram-staining-negative, aerobic and non-motile strain that was isolated from a manganese mine. The strain JH-7T shows multiple heavy metal resistance and can effectively remove Mn2+ and Cd2+. In addition, it is able to produce exopolysaccharides (EPS), which may contribute to metal remove/adsorption. Thus, strain JH-7T shows a great potential in bioremediation of heavy metal-contaminated environment. In this study, we report the draft genomic sequence of P. manganicus JH-7T and compare it to related genomes. Strain JH-7T has a 4,842,937 bp genome size with a G + C content of 61.2%, containing 4504 protein-coding genes and 71 RNA genes. A large number of putative genes associated with heavy metal resistance and EPS synthesis are found in the genome.


  • Cadmium
  • Exopolysaccharides
  • Heavy metal resistance and adsorption
  • Manganese,Pseudaminobacter


Genus Pseudaminobacter was established by Kämpfer et al. in 1999 and contains three species represented by Pseudaminobacter salicylatoxidans BN12T (type species) [1], Pseudaminobacter defluvii THI 051T [1] and Pseudaminobacter manganicus JH-7T [2]. The common characteristics of Pseudaminobacter strains are Gram-staining-negative, rod-shaped and aerobic [1, 2]. P. salicylatoxidans BN12T contains a peculiar ring-fission dioxygenase with the ability to cleave salicylate in 1, 2-position to 2-oxohepta-3, 5-dienedioic acid [3].

P. manganicus JH-7T was isolated from a sludge sample of a wastewater ditch in Dalong manganese mine in 2015 [2]. It shows multiple heavy metal resistance and can effectively remove Mn2+ and Cd2+. In addition, the strain produces EPS, which may facilitate heavy metal resistance and adsorption [46]. These features show great interests because of its potential applications in bioremediation of heavy metal contaminated environments. So far, only the genome of an atypical Pseudaminobacter strain Pseudaminobacter salicylatoxidans KCT001 has been sequenced [7]. Strain KCT001 can utilize tetrathionate as the substrate for sulfur-oxidizing chemolithotrophic growth [8]. For better understanding the mechanism of bacterial resistance and removal of heavy metals, here we analyze the genome of P. manganicus JH-7T.

Organism information

Classification and features

The phylogenetic relationship of P. manganicus JH-7T to the related members is shown in a 16S rRNA gene based neighbor-joining tree. Strain JH-7T is closely related to P. salicylatoxidans BN12T, P. defluvii THI 051T and P. salicylatoxidans KCT001 (Fig. 1). Strain JH-7T is Gram-staining-negative, aerobic, non-motile and rod-shaped (0.3–0.8 × 1–2 μm) (Fig. 2). The colonies are white, circular, entire, slightly raised and smooth on LB agar plates. It is positive for oxidase and catalase activities and hydrolysis of casein [2]. The major fatty acids are C18:1 ω7c, C19:0 cyclo ω8c and C16:0 and the G + C content is 61.2 mol% [2]. The major polyamine is sym-homospermidine and the respiratory quinone is ubiquinone-10. The polar lipids are phosphatidylmonomethylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, two aminolipids and two lipids [2]. Table 1 shows the general features of P. manganicus JH-7T.
Fig. 1
Fig. 1

Phylogenetic tree highlighting the phylogenetic position of Pseudaminobacter manganicus JH-7T. The phylogenetic tree was constructed based on the 16S rRNA gene sequences. The analysis was inferred by MEGA 6.0 [41] with neighbor-joining algorithm and 1000 bootstrap repetitions were computed to estimate the reliability of the tree. Bar, 0.005 substitutions per nucleotide position

Fig. 2
Fig. 2

Transmission electron micrograph image of strain JH-7T. Bar, 0.5 μm

Table 1

Classification and general features of P. manganicus JH-7T [42]




Evidence codea



Domain Bacteria

TAS [43]


Phylum Proteobacteria

TAS [44, 45]


Class Alphaproteobacteria

TAS [46]


Order Rhizobiales

TAS [46, 47]


Family Phyllobacteriaceae

TAS [46, 47]


Genus Pseudaminobacter

TAS [1, 2]


Species manganicus

TAS [2]


Type strain JH-7T (= KCTC 52258T = CCTCC AB 2016107T)

TAS [2]


Gram stain


TAS [2]


Cell shape


TAS [2]




TAS [2]




TAS [2]


Temperature range

15–40 °C

TAS [2]


Optimum temperature

28 °C

TAS [2]


pH range; Optimum

5–9; 7

TAS [2]


Carbon source

D-glucose, L-arabinose, D-fructose and D-mannose

TAS [2]



Mine sludge

TAS [2]



0–6% NaCl (w/v)

TAS [2]


Oxygen requirement


TAS [2]


Biotic relationship


TAS [2]






Geographic location

Tongren city, Guizhou province, P. R. China

TAS [2]


Sample collection


TAS [2]



N27° 43′ 8"

TAS [2]



E108° 31′ 42"

TAS [2]



not reported


These evidence codes are from the Gene Ontology project [48]

IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence)

aEvidence codes

The resistant levels of P. manganicus JH-7T to multiple metal(loid)s were tested with the MIC on LB agar plates incubated at 28 °C for 7 days. The MICs for MnCl2, CdCl2, PbCl2, CuCl2, ZnSO4 and NiSO4 are100, 2, 10, 5, 5 and 5 mmol/L respectively. The MICs for K2CrO4 and Na3AsO3 are both 0.1 mmol/L that are lower than the above six metals. Specifically, strain JH-7T could remove nearly 60% of 5 mmol/L Mn2+ and nearly 80% of 0.1 mmol/L Cd2+ (Fig. 3), respectively. In addition, strain JH-7T could produce EPS based on the aniline blue reaction incubated on LB agar in 3–7 days [9] (data not shown). This phenomenon is consistent with the cell image observed by TEM (Fig. 2). A lay of shadow around the strain was similar to the EPS observed in strain Bifidobacterium longum 35,624 [10].
Fig. 3
Fig. 3

Mn2+ and Cd2+ removed by P. manganicus JH-7T. Control stands for null LB medium. Strain JH-7T was incubated until OD600 reach 1.0, and then amended with 5000 μmol/L MnCl2 (a) and 100 μmol/L CdCl2 (b), respectively. The cultures were removed at 24 h intervals. After centrifuging at 12,000 rpm for 10 min, the supernatant was used to determine the residual concentration of Mn2+ and Cd2+ by the atomic absorption spectrometry AAS (AAS; 986A, Beijing Puxi General Instrument 197 Co., Beijing, China). Bars represent the mean ± SD of three biological replicates

Genome sequencing information

Genome project history

This organism was selected for sequencing particularly due to its multiple heavy metals resistance and heavy metal removal ability. Genome sequencing was performed by Wuhan Bio-Broad Co., Ltd., Wuhan, China in 2016. The draft genome sequence of strain P. manganicus JH-7T has been deposited at DDBJ/EMBL/GenBank under accession number MDET00000000. The project information is summarized in Table 2.
Table 2

Project information





Finishing quality

High-quality draft


Libraries used

Illumina Paired-End library (300 bp insert size)


Sequencing platforms

Illumina Miseq 2000


Fold coverage




SOAPdenovo v2.04


Gene calling method


Locus TAG


Genbank ID


Genbank Date of Release

31, March, 2017






Source material identifier

CCTCC AB 2016107T

Project relevance


Growth conditions and genomic DNA preparation

P. manganicus JH-7T was grown under aerobic conditions in LB medium at 28 °C for 40 h. DNA extraction was performed using the QiAamp kit (Qiagen, Germany) as the manufacturer’s instructions. A NanoDrop Spectrophotometer 2000 was used to determine the quality and quantity of the DNA. Seven microgram of DNA was sent to Bio-broad Technogoly Co., Ltd., Wuhan, China for sequencing.

Genome sequencing and assembly

The genome of strain JH-7T was sequenced on Illumina Hiseq2000 [11] and assembled by Bio-broad Technogoly Co., Ltd., Wuhan using SOAPdenovo v2.04 [12]. An Illumina standard shotgun library was constructed and sequenced, which generated 19,404,755 reads totaling 2,885,684,230 bp and average of 625 times genome coverage. The total size of the genome is 4,842,937 bp and a total of 60 scaffolds were obtained after arranging 68 contigs together. The part gaps of assembly were filled and the error bases were revised using GapCloser v1.12 [13].

Genome annotation

The draft genome was annotated through the NCBI Prokaryotic Genome Annotation Pipeline (PGAP), and genes were identified using the gene caller GeneMarkS+ with the similarity-based gene detection approach [14]. The predicted CDSs were translated and were submitted to the Pfam protein family database [15] and KEGG database [16]. The genes in internal clusters were performed by OrthoMCL [17, 18]. The protein function classification, transmembrane helices and signal peptides were predicted by WebMGA [19], TMHMM v. 2.0 [20] and SignalP 4.1 [21], respectively. In addition, the CRISPRfinder program [22] was used to predict CRISPRs in the genome.

Genome properties

The draft genome size of strain JH-7T is 4,842,937 bp with 61.2 mol% G + C content and contains 60 scaffolds. The genome properties and statistics are shown in Table 3. From a total of 4685 genes, 4504 (96.2%) are protein coding genes, 110 (2.3%) are pseudo genes and the rest are 71 predicted RNA genes, including 54 tRNA, 12 rRNAs and 5 ncRNA. In addition, 3729 (82.8%) protein coding genes are distributed into COG functional categories (Table 4).
Table 3

Genome statistics



% of totala

Genome size (bp)



DNA coding (bp)



DNA G + C (bp)



DNA scaffolds



Total genesb



Protein-coding genes



RNA genes



Pseudo genes



Genes in internal clusters



Genes with function prediction



Genes assigned to COGs



Genes with Pfam domains



Genes with signal peptides



Genes with transmembrane helices



CRISPR repeats



aThe total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome

bAlso includes 110 pseudogenes, 54 tRNA genes, 12 rRNAs and 5 ncRNA

Table 4

Number of genes associated with the 25 general COG functional categories



% of totala









RNA processing and modification








Replication, recombination and repair




Chromatin structure and dynamics




Cell cycle control, mitosis and meiosis




Nuclear structure




Defense mechanisms




Signal transduction mechanisms




Cell wall/membrane biogenesis




Cell motility








Extracellular structures




Intracellular trafficking and secretion




Posttranslational modification, protein turnover, chaperones




Energy production and conversion




Carbohydrate transport and metabolism




Amino acid transport and metabolism




Nucleotide transport and metabolism




Coenzyme transport and metabolism




Lipid transport and metabolism




Inorganic ion transport and metabolism




Secondary metabolites biosynthesis, transport and catabolism




General function prediction only




Function unknown



Not in COGs

aThe total is based on the total number of protein coding genes in the annotated genome

Insights from the genome sequence

Strain JH-7T could tolerant multiple heavy metals (Mn2+, Cd2+, Pb2+, Cu2+, Zn2+ and Ni2+) and remove Mn2+ and Cd2+, suggesting that it has developed a number of evolutionary strategies to adapt the mine environment. According to the genome annotation results, strain JH-7T harbors various putative proteins related to heavy metal(loid)s resistance including transporters, resistance proteins and metal reductases (Additional file 1: Table S1). MntH [23] and metal ABC transport system [24] are involved in cation uptake. Heavy metal-transporting ATPase is responsible for the efflux of Pb2+, Zn2+, Cd2+ and Ni2+ [2528]. The genome contains Cu2+ efflux system CopABC [29], mercuric reductase MerA and regulator MerR [30]. Athough the MICs for Cr6+ and As3+ are not high, the Cr6+ efflux protein ChrA [27, 31] and As3+ resistant proteins (ArsRHC and ACR3) [3234] are present.

EPS are long-chain polysaccharides consisting of branched, repeating units of sugars or sugar derivatives [35]. Stain JH-7T could produce EPS and all essential proteins for EPS production are found in the genome. Four complete nucleotide sugar synthesis (EPS precursor) pathways are identified based on KEGG analysis (Additional file 1: Table S2) including the syntheses of UDP-glucose, UDP-galactose, UDP-GlcNAc and GDP-D-mannose (Fig. 4a). EPS assembly gene clusters were also found in the genome of strain JH-7T [36] (Additional file 1: Table S3, Fig. 4b). Based on gene analysis, it is suggested that the EPS assembly in strain JH-7T might belong to Wzx/Wzy-dependent pathway [37], e.g., repeat units are assembled by glycosyltransferases (EpsI) and translocated across the cytoplasmic membrane to periplasm by flippase (Wzx) [37] and WbaP [38]. Next, Wzy (RfaL), polysaccharide co-polymerase (GumC) and the outer membrane polysaccharide exporter (GumB) transports the polymerized repeat units to cell surface [37, 39]. EPS has been reported to contribute to heavy metal removal/adsorption in bacteria [36]. Hence, the ability of EPS may contribute to Mn2+ and Cd2+ removal.
Fig. 4
Fig. 4

Putative nucleotide sugars biosynthesis pathway and EPS synthesis gens in P. manganicus JH-7T. a The predicted nucleotide sugars biosynthesis pathway. The numbers refer to the enzymes involved: 1, Glucokinase; 2, α-D-glucose phosphate-specific phosphoglucomutase; 3, UTP--glucose-1-phosphate uridylyltransferase; 4, UDP-glucose 4-epimerase GalE; 5, Glucose-6-phosphate isomerase; 6, Fructokinase; 7, Glutamine--fructose-6-phosphate aminotransferase; 8, Phosphoglucosamine mutase; 9, UDP-N-acetylglucosamine; 10, Glucose-6-phosphate isomerase; 11, Mannose-6-phosphate isomerase; 12, PTS-Man-EIIA, ManX; 13, Phosphoglucomutase; 14, Mannose-1-phosphate guanylyltransferase. b The EPS synthesis gene cluster in strain JH-7T

To gain more insight, the genomic features of strain JH-7T is compared with the available genome P. salicylatoxidans KCT001 [7]. Strain JH-7T has similar genome size (4.84 Mbp) and G + C content (61.2 mol%) compared to strain KCT001 (4.61 Mbp; 62.8 mol%). A total of 2408 core proteins are shared between the two strains. Strain JH-7T has 1724 strain-specific CDSs. Figure 5 shows the genome comparison results of strain JH-7T and strain KCT001 using CGview comparison tool [40]. Comparing to P. salicylatoxidans KCT001, strain JH-7T was unable to utilize tetrathionate for chemolithoautotrophy (data not shown). However, it harbors high quantitative and diverse heavy metal resistance genes.
Fig. 5
Fig. 5

A graphical circular map of the comparison between strain P. manganicus JH-7T and P. salicylatoxidans KCT001. From outside to center, rings 1, 4 show protein-coding genes colored by COG categories on forward/reverse strand; rings 2, 3 denote genes on forward/reverse strand; rings 5 show the CDS vs CDS BLAST results of strain JH-7T with strain KCT001; ring 6 shows G + C % content plot and the innermost ring shows GC skew


To the best of our knowledge, this study provides the first typical strain genomic information of the genus Pseudaminobacter and revealed a consistency of important characters between genotypes and phenotypes. Strain JH-7T is resistant to multiple heavy metals and capable of removal Mn2+/Cd2+. Genome analysis reveal various genes responsible for multiple heavy metal resistance, which provides the genomic basis for this strain to adapt the harmful environment.






Minimal inhibition concentration



This study was supported by National key research and development program of China (2016YFD0800702).

Authors’ contributions

XX and JL performed the sequence annotation and genomic analysis and prepared the draft manuscript. ZZ, DW and JH performed the heavy metals resistance and removal tests. GW designed the study and revised the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People’s Republic of China


  1. Kämpfer P, Müller C, Mau M, Neef A, Auling G, Busse HJ, et al. Description of Pseudaminobacter gen. Nov. with two new species, Pseudaminobacter salicylatoxidans sp. nov. and Pseudaminobacter defluvii sp. nov. Intl J Syst Bacteriol. 1999;149:887–97.View ArticleGoogle Scholar
  2. Li J, Huang J, Liao S, Wang G. Pseudaminobacter manganicus sp. nov., isolated from sludge of a manganese mine. Int J Syst Evol Microbiol. 2017;67(5):1589–94.View ArticleGoogle Scholar
  3. Hintner JP, Lechner C, Riegert U, Kuhm AE, Storm T, Reemtsma T, et al. Direct ring fission of salicylate by a salicylate 1,2-dioxygenase activity from Pseudaminobacter salicylatoxidans. J Bacteriol. 2001;183(23):6936–42.View ArticleGoogle Scholar
  4. Natalia N, Bogino PC, Banchio E, Giordano W. Roles of extracellular polysaccharides and biofilm formation in heavy metal resistance of rhizobia. Materials. 2016;9(6):418.View ArticleGoogle Scholar
  5. Bhunia B, Prasad Uday US, Oinam G, Mondal A, Bandyopadhyay TK, Tiwari ON. Characterization, genetic regulation and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal. Carbohydr Polym. 2018;179:228–43.View ArticleGoogle Scholar
  6. Nouha K, Kumar RS, Tyagi RD. Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods. Bioresour Technol. 2016;212:120–9.View ArticleGoogle Scholar
  7. Alam M, Roy C, Pyne P, Agarwal A, George A, Ghosh W. Whole-genome shotgun sequence of the sulfur-oxidizing chemoautotroph Pseudaminobacter salicylatoxidans KCT001. J Bacteriol. 2012;194(17):4743–4.View ArticleGoogle Scholar
  8. Deb C, Stackebrandt E, Pradella S, Saha A, Roy P. Phylogenetically diverse new sulfur chemolithotrophs of α-proteobacteria isolated from Indian soils. Curr Microbiol. 2004;48(6):452–8.View ArticleGoogle Scholar
  9. Nagaraj K, Rekha PD, Arun AB. Exopolysaccharide produced by Enterobacter sp. YG4 reduces uranium induced nephrotoxicity. Int J Biol Macromol. 2016;82:557–61.View ArticleGoogle Scholar
  10. Altmann F, Kosma P, O’Callaghan A, Leahy S, Bottacini F, Molloy E, et al. Genome analysis and characterisation of the exopolysaccharide produced by Bifidobacterium longum subsp. longum 35624™. PLoS One. 2016;11(9):e0162983.View ArticleGoogle Scholar
  11. Bennett S. Solexa Ltd. Pharmacogenomics. 2004;5:433–8.View ArticleGoogle Scholar
  12. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1(1):18.View ArticleGoogle Scholar
  13. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010;20(2):265–72.View ArticleGoogle Scholar
  14. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–18.View ArticleGoogle Scholar
  15. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44(1):279–85.View ArticleGoogle Scholar
  16. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32:277–80.View ArticleGoogle Scholar
  17. Li L, Stoeckert CJ Jr, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13(9):2178.View ArticleGoogle Scholar
  18. Fischer S, Brunk BP, Chen F, Gao X, Harb OS, Iodice JB, et al. Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Curr Protoc Bioinformatics. 2011;36(1).Google Scholar
  19. Wu S, Zhu Z, Fu L, Niu B, Li W. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics. 2011;12:444.View ArticleGoogle Scholar
  20. Krogh A, Larsson BÈ, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.View ArticleGoogle Scholar
  21. Petersen TN, Brunak S, Von HG, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6.View ArticleGoogle Scholar
  22. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007;35:52–7.View ArticleGoogle Scholar
  23. Kehres DG, Zaharik ML, Finlay BB, Maguire ME. The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol. 2000;36(5):1085–100.View ArticleGoogle Scholar
  24. Gabbianelli R, Scotti R, Ammendola S, Petrarca P, Nicolini L, Battistoni A. Role of ZnuABC and ZinT in Escherichia coli O157: H7 zinc acquisition and interaction with epithelial cells. BMC Microbiol. 2011;11(1):36.View ArticleGoogle Scholar
  25. Sharma R, Rensing C, Rosen BP, Mitra B. The ATP hydrolytic activity of purified ZntA, a Pb (II)/cd (II)/Zn (II)-translocating ATPase from Escherichia coli. J Biol Chem. 2000;275(6):3873–8.View ArticleGoogle Scholar
  26. Nies DH, Silver S. Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol. 1995;14(2):186–99.View ArticleGoogle Scholar
  27. Xia X, Li J, Liao S, Zhou G, Wang H, Li L, et al. Draft genomic sequence of a chromate-and sulfate-reducing Alishewanella strain with the ability to bioremediate Cr and cd contamination. Stand Genomic Sci. 2016;11(1):48.Google Scholar
  28. Xiong J, Li D, Li H, He M, Miller S, Yu L, et al. Genome analysis and characterization of zinc efflux systems of a highly zinc-resistant bacterium, Comamonas testosteroni S44. Res Microbiol. 2011;162(7):671–9.View ArticleGoogle Scholar
  29. Adaikkalam V, Swarup S. Characterization of copABCD operon from a copper-sensitive Pseudomonas putida strain. Can J Microbiol. 2005;51(3):209–16.View ArticleGoogle Scholar
  30. Nascimento AM, Chartone-Souza E. Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet Mol Res. 2003;2(1):92–101.PubMedGoogle Scholar
  31. Viti C, Marchi E, Decorosi F, Giovannetti L. Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS Microbiol Rev. 2014;38(4):633–59.View ArticleGoogle Scholar
  32. Li X, Zhang L, Wang G. Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. PLoS One. 2014;9(3):e92236.View ArticleGoogle Scholar
  33. Kang YS, Shi Z, Bothner B, Wang G, McDermott TR. Involvement of the Acr3 and DctA anti-porters in arsenite oxidation in Agrobacterium tumefaciens 5A. Environ Microbiol. 2015;17(6):1950–62.View ArticleGoogle Scholar
  34. Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F. Bacterial metabolism of environmental arsenic–mechanisms and biotechnological applications. Appl Microbiol Biotechnol. 2013;97(9):3827–41.View ArticleGoogle Scholar
  35. Cui Y, Xu T, Qu X, Hu T, Jiang X, Zhao C. New insights into various production characteristics of Streptococcus thermophilus strains. Int J Mol Sci. 2016;17(10):1701.View ArticleGoogle Scholar
  36. Wu Q, Tun HM, Leung FC, Shah NP. Genomic insights into high exopolysaccharide-producing dairy starter bacterium Streptococcus thermophilus ASCC 1275. Sci Rep. 2014;4:4974.View ArticleGoogle Scholar
  37. Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol. 2015;6:496.View ArticleGoogle Scholar
  38. Schäffer C, Wugeditsch T, Messner P, Whitfield C. Functional expression of enterobacterial O-polysaccharide biosynthesis enzymes in Bacillus subtilis. Appl Environ Microbiol. 2002;68(10):4722–30.View ArticleGoogle Scholar
  39. Klena JD, Pradel E, Schnaitman CA. Comparison of lipopolysaccharide biosynthesis genes rfaK, rfaL, rfaY, and rfaZ of Escherichia coli K-12 and Salmonella typhimurium. J Bacteriol. 1992;174(14):4746–52.View ArticleGoogle Scholar
  40. Grant JR, Arantes AS, Stothard P. Comparing thousands of circular genomes using the CGView comparison tool. BMC Genomics. 2012;13:202.View ArticleGoogle Scholar
  41. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.View ArticleGoogle Scholar
  42. Field D, Garrity GM, Gray T, Morrison N, Selengut J, Sterk P, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008;26:541–7. PMID: 18464787.View ArticlePubMedPubMed CentralGoogle Scholar
  43. Woese CR, Kandler O, Weelis ML. Towards a natural system of organisms: proposal for the domains archaea, bacteria and eucarya. Proc Natl Acad Sci U S A. 1990;87:4576–9.View ArticleGoogle Scholar
  44. Garrity GM, Bell JA, Phylum Lilburn T. XIV. Proteobacteria phyl nov. In: Brenner DJ, Krieg NR, Stanley JT, Garrity GM, editors. Bergey’s manual of Sytematic bacteriology, second edition. Vol. 2 (the Proteobacteria), part B the Gammaproteobacteria. New York: Springer; 2005. p. 1.Google Scholar
  45. Stackebrandt E, Murray RGE, Trüper HG. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int J Syst Evol Microbiol. 1988;38(3):321–5.Google Scholar
  46. Garrity GM, Bell JA, Phylum Lilburn T. XIV. Proteobacteria phyl nov. In: Brenner DJ, Krieg NR, Stanley JT, Garrity GM, editors. Bergey’s manual of Sytematic bacteriology, second edition. Vol. 2 (the Proteobacteria), part C (the Alpha-, Beta-, Delta-, and Epsilonproteobacteria). New York: Springer; 2005. p. 1.Google Scholar
  47. List of new names and new combinations previously effectively, but not validly, published. List no. 106. Int J Syst Evol Microbiol. 2006;56:677.Google Scholar
  48. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25:25–9 PMID: 10802651.View ArticleGoogle Scholar


© The Author(s). 2018