Mohn WW, Westerberg K, Cullen WR, Reimer KJ. Aerobic biodegradation of biphenyl and polychlorinated biphenyls by Arctic soil microorganisms. Appl Environ Microbiol. 1997;63:3378–84.
PubMed Central
CAS
PubMed
Google Scholar
National Toxicological Program (NTP). Tenth report on carcinogens, Report of the NTP on carcinogens. Washington: National Academy Press; 2002.
Google Scholar
McElroy AE, Farrington JW, Teal JM. Bioavailability of polycyclic aromatic hydrocarbons in the aquatic environment. In: Varanasi U, editor. Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. Boca Raton: CRC Press Inc; 1989. p. 1–39.
Google Scholar
Kweon O, Kim SJ, Holland RD, Chen H, Kim DW, Gao Y, et al. Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1. J Bacteriol. 2001;193:4326–37.
Article
Google Scholar
Rodríguez-Blanco A, Vetion G, Escande M-L, Delille D, Ghiglione J-F. Gallaecimonas pentaromativorans gen. nov., sp. nov., a bacterium carrying 16S rRNA gene heterogeneity and able to degrade high-molecular-mass polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol. 2010;60:504–9.
Article
PubMed
Google Scholar
Kim S-J, Kwon KK, Hyun J-H, Svetashev VI. Bioremediation of PAHs in marine sediment. J Ocean Sci Tech. 2004;1:7–13.
Google Scholar
Sohn JH, Kwon KK, Kang J-H, Jung H-B, Kim S-J. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol. 2004;54:1483–7.
Article
CAS
PubMed
Google Scholar
Luo YR, Kang SG, Kim S-J, Kim M-R, Li N, Lee J-H, et al. Genome sequence of Benzo(a)pyrene-degrading bacterium Novosphingobium pentaromativorans US6-1. J Bacteriol. 2011;194:907.
Article
Google Scholar
Yun SH, Choi C-W, Lee S-Y, Lee YG, Kwon J, Leem SH, et al. Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1. PLoS One. 2014;9:e90812.
Article
PubMed Central
PubMed
Google Scholar
D’Argenio V, Notomista E, Petrillo M, Cantiello P, Cafaro P, Izzo V, et al. Complete sequencing of Novosphingobium sp. PP1Y reveals a biotechnologically meaningful metabolic pattern. BMC Genomics. 2013;15:384.
Article
Google Scholar
Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008;26:541–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiati on site identification. BMC Bioinformatics. 2010;11:119.
Article
PubMed Central
PubMed
Google Scholar
Mavromatis K, Ivanova NN, Chen IM, Szeto E, Markowitz VM, Kyrpides NC. The DOE-JGI Standard operating procedure for the annotations of microbial genomes. Stand Genomic Sci. 2009;1:63–7.
Article
PubMed Central
PubMed
Google Scholar
Chen IM, Markowitz VM, Chu K, Anderson I, Mavromatis K, Kyrpides NC, et al. Improving microbial genome annotations in an integrated database context. PLoS One. 2013;8:e54859.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, et al. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods. 2010;7:455–7.
Article
CAS
PubMed
Google Scholar
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.
Article
PubMed Central
CAS
PubMed
Google Scholar
Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14:755–63.
Article
CAS
PubMed
Google Scholar
Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M, Na H, et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol. 2012;62:716–21.
Article
CAS
PubMed
Google Scholar
Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005;33:5691–702.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pruitt KD, Tatusova T, Klimke W, Maglott DR. NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Res. 2009;37:32–6.
Article
Google Scholar
Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yu C, Zavaljevski N, Desai V, Reifman J. Genome-wide enzyme annotation with precision control: catalytic families (CatFam) databases. Proteins. 2009;74:449–60.
Article
CAS
PubMed
Google Scholar
Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics. 2009;25:2271–8.
Article
CAS
PubMed
Google Scholar
Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:346–51.
Article
CAS
PubMed
Google Scholar
Gan HM, Hudson AO, Rahman AYA, Chan KG, Savka MA. Comparative genomic analysis of six bacteria belonging to the genus Novosphingobium: insights into marine adaptation, cell-cell signaling and bioremediation. BMC Genomics. 2014;14:431.
Article
Google Scholar
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.
CAS
PubMed
Google Scholar
Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.
Article
CAS
PubMed
Google Scholar
Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool. 1969;18:1–32.
Article
Google Scholar
Felsenstein J. Confidence limits on phylogenies: an approach using bootstrap. Evolution. 1985;39:783–91.
Article
Google Scholar
Jukes T, Cantor CR. Evolution of protein molecules. Mamm Protein Metab. 1969;3:21–132.
Article
CAS
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A. 2009;106:19126–31.
Article
PubMed Central
CAS
PubMed
Google Scholar
Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87:4576–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Garrity GM, Bell JA, Lilbum T. Phylum XIV. Proteobacteria phyl. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s manual of systematic bacteriology, vol. 2. 2nd ed. New York: Springer; 2005. p. 1.
Chapter
Google Scholar
Garrity GM, Bell JA, Lilburn T. Class I. Alphaproteobacteria class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s manual of systematic bacteriology, vol. 2. 2nd ed. New York: Springer; 2005. p. 1.
Chapter
Google Scholar
Validation List No. 107: List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol. 2006; 56:1-6.
Yabuuchi E, Kosako Y. Order IV. Sphingomonadales ord. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s manual of systematic bacteriology, vol. 2. 2nd ed. New York: Springer; 2005. p. 230–3.
Google Scholar
Kosako Y, Yabuuchi E, Naka T, Fujiwara N, Kobayashi K. Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol Immunol. 2000;44:563–75.
Article
CAS
PubMed
Google Scholar
Validation List no. 77: Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microbiol. 2000; 50:1953.
Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol. 2001;51:1405–17.
Article
CAS
PubMed
Google Scholar
Gomila M, Gascó J, Busquets A, Gil J, Bernabeu R, Buades JM, et al. Identification of culturable bacteria present in haemodialysis water and fluid. FEMS Microbiol Ecol. 2005;52:101–14.
Article
CAS
PubMed
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Gene Ontol Consortium Nat Genet. 2000;25:25–9.
CAS
Google Scholar