Kaeppel EC, Gärdes A, Seebah S, Grossart HP, Ullrich MS. Marinobacter adhaerens sp. nov., prominent in aggregate formation with the diatom Thalassiosira weissflogii. Int J Syst Evol Microbiol 2010; (Submitted).
Grossart HP, Schlingloff A, Bernhard M, Simon M, Brinkhoff T. Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea. FEMS Microbiol Ecol 2004; 47:387–396. PubMed doi:10.1016/S0168-6496(03)00305-2
Article
CAS
PubMed
Google Scholar
Gärdes A, Iversen M, Grossart H, Passow U, Ullrich MS. Diatom-associated bacteria are required for Thalassiosira weissflogii aggregation. ISME J 2010; (In press). PubMed doi:10.1038/ismej.2010.145
Fowler SW, Knauer GA. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog Oceanogr 1986; 16:147–194. doi:10.1016/0079-6611(86)90032-7
Article
Google Scholar
Alldredge AL, Silver MW. Characteristics, dynamics and significance of marine snow. Prog Oceanogr 1988; 20:41–82. doi:10.1016/0079-6611(88)90053-5
Article
Google Scholar
Passow U. Transparent exopolymer particles (TEP) in aquatic environments. Prog Oceanogr 2002; 55:287–333. doi:10.1016/S0079-6611(02)00138-6
Article
Google Scholar
Simon M, Grossart HP, Schweitzer B, Ploug H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 2002; 28:175–211. doi:10.3354/ame028175
Article
Google Scholar
Verdugo P, Alldredge AL, Azam F, Kirchman DL, Passow U, Santschi PH. The oceanic gel phase: a bridge in the DOM-POM continuum, p. 67–85. Symposium on New Approaches in Marine Organic Biogeochemistry held in Honor of the Life and Science of John I Hedges. 2003; Elsevier Science Bv.
Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV. Towards a richer description of our complete collection of genomes and metagenomes: the “Minimum Information about a Genome Sequence” (MIGS) specification. Nat Biotechnol 2008; 26:541–547. PubMed doi:10.1038/nbt1360
Article
PubMed Central
CAS
PubMed
Google Scholar
Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576–4579. PubMed doi:10.1073/pnas.87.12.4576
Article
PubMed Central
CAS
PubMed
Google Scholar
Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 119–169.
Chapter
Google Scholar
List Editor. Validation of publication of new names and new combinations previously effectively published outside the IJSEM. List no. 106. Int J Syst Evol Microbiol 2005; 55:2235–2238. doi:10.1099/ijs.0.64108-0
Garrity GM, Bell JA, Lilburn T. Class III. Gammaproteobacteria class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part B, Springer, New York, 2005, p. 1.
Chapter
Google Scholar
Bowman JP, McMeekin TA. Order X. Alteromonadales ord. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 2, Part B, Springer, New York, 2005, p. 443.
Chapter
Google Scholar
List Editor. Validation List no. 81. Validation of publication of new names and new combinations previously effectively published outside the IJ-SEM. Int J Syst Evol Microbiol 2001; 51:1229. PubMed
Ivanova EP, Mikhailov VV. A new family, Alteromonadaceae fam. nov., including marine proteobacteria of the genera Alteromonas, Pseudoalteromonas, Idiomarina, and Colwellia. Microbiology 2001; 70:10–17. doi:10.1023/A:1004876301036
Article
CAS
Google Scholar
Ivanova EP, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 2004; 54:1773–1788. PubMed doi:10.1099/ijs.0.02997-0
Article
CAS
PubMed
Google Scholar
Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 1992; 42:568–576. PubMed doi:10.1099/00207713-42-4-568
Article
CAS
PubMed
Google Scholar
Liolios K, Mavromatis K, Tavernarakis N, Kyrpides NC. The Genome On Line Database (GOLD) in 2007: Status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2008; 36:D475–D479. PubMed doi:10.1093/nar/gkm884
Article
PubMed Central
CAS
PubMed
Google Scholar
Green DH, Bowman JP, Smith EA, Gutierrez T, Bolch CJS. Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 2006; 56:523–527. PubMed doi:10.1099/ijs.0.63447-0
Article
CAS
PubMed
Google Scholar
Romanenko LA, Schumann P, Rohde M, Zhukova NV, Mikhailov VV, Stackebrandt E. Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 2005; 55:143–148. PubMed doi:10.1099/ijs.0.63258-0
Article
CAS
PubMed
Google Scholar
Yarza P, Richter M, Peplies J, Euzéby J, Amann R, Schleifer KH, Ludwig W, Glöckner FO, Rosselló-Móra R. The All-Species Living Tree Project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250. PubMed doi:10.1016/j.syapm.2008.07.001
Article
CAS
PubMed
Google Scholar
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, Buchner T, Lai S, Steppi G, Jobb W, et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371. PubMed doi:10.1093/nar/gkh293
Article
PubMed Central
CAS
PubMed
Google Scholar
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688. PubMed doi:10.1093/bioinformatics/btl446
Article
CAS
PubMed
Google Scholar
Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463.
Article
Google Scholar
Zobell CE. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 1941; 4:42–75.
Google Scholar
Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673–679. PubMed doi:10.1093/bioinformatics/btm009
Article
PubMed Central
CAS
PubMed
Google Scholar
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964. PubMed doi:10.1093/nar/25.5.955
Article
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410. PubMed
Article
CAS
PubMed
Google Scholar
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, Kalinowski J, Linke B, Rupp O, Giegerich R, Puhler A. GenDB—an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 2003; 31:2187–2195. PubMed doi:10.1093/nar/gkg312
Article
PubMed Central
CAS
PubMed
Google Scholar
Emanuelsson O, Brunak S, Von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2007; 2:953–971. PubMed doi:10.1038/nprot.2007.131
Article
CAS
PubMed
Google Scholar
Nielsen H, Brunak S, Von Heijne G. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng 1999; 12:3–9. PubMed doi:10.1093/protein/12.1.3
Article
CAS
PubMed
Google Scholar
Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001; 305:567–580. PubMed doi:10.1006/jmbi.2000.4315
Article
CAS
PubMed
Google Scholar
Quast C. MicHanThi — design and implementation of a system for the prediction of gene functions in genome annotation projects. Master Thesis 2006 (Available on request).
Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B. Artemis: sequence visualization and annotation. Bioinformatics 2000; 16:944–945. PubMed doi:10.1093/bioinformatics/16.10.944
Article
CAS
PubMed
Google Scholar
O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998; 30:295–304. PubMed doi:10.1046/j.1365-2958.1998.01062.x
Article
PubMed
Google Scholar
Pallen MJ, Matzke NJ. From The Origin of Species to the origin of bacterial flagella. Nat Rev Microbiol 2006; 4:784–790. PubMed doi:10.1038/nrmicro1493
Article
CAS
PubMed
Google Scholar