Banerjee S, van der Heijden MGA. Soil microbiomes and one health. Nat Rev Microbiol. 2022. https://doi.org/10.1038/s41579-022-00779-w.
Article
PubMed
Google Scholar
Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T. Disease suppressive soils: new insights from the soil microbiome. Phytopathology. 2017;107:1284–97.
Article
PubMed
Google Scholar
Udayashankar CAC, Chandra-Nayaka S, Reddy MS, Srinivas C. Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biol Control. 2011;59:114–22.
Article
Google Scholar
Tiwari P, Bose SK, Bae H. Plant growth-promoting soil microbiomes: beneficial attributes and potential applications. In: Yadav AN, editor. Soil microbiomes for sustainable agriculture: functional annotation. Cham: Springer; 2021. p. 1–30.
Google Scholar
Jing J, Cong W-F, Bezemer TM. Legacies at work: plant–soil–microbiome interactions underpinning agricultural sustainability. Trends Plant Sci. 2022;27:781–92.
Article
PubMed
CAS
Google Scholar
Hartmann M, Frey B, Mayer J, Mäder P, Widmer F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015;9:1177–94.
Article
PubMed
Google Scholar
Soman C, Li D, Wander MM, Kent AD. Long-term fertilizer and crop-rotation treatments differentially affect soil bacterial community structure. Plant Soil. 2017;413:145–59.
Article
CAS
Google Scholar
Srour AY, Ammar HA, Subedi A, Pimentel M, Cook RL, Bond J, et al. Microbial communities associated with long-term tillage and fertility treatments in a corn-soybean cropping system. Front Microbiol. 2020;11:1363.
Article
PubMed
PubMed Central
Google Scholar
Sharma SK, Ramesh A, Sharma MP, Joshi OP, Govaerts B, Steenwerth KL, Karlen DL. Microbial community structure and diversity as indicators for evaluating soil quality. In: Lichtfouse E, editor. Biodiversity, biofuels, agroforestry and conservation agriculture. Dordrecht: Springer; 2011. p. 317–58.
Google Scholar
Kennedy AC, Smith KL. Soil microbial diversity and the sustainability of agricultural soils. Plant Soil. 1995;170:75–86.
Article
CAS
Google Scholar
Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, et al. Maintenance of soil functioning following erosion of microbial diversity. Environ Microbiol. 2006;8:2162–9.
Article
PubMed
CAS
Google Scholar
Collins HP, Alva A, Boydston RA, Cochran RL, Hamm PB, McGuire A, et al. Soil microbial, fungal, and nematode responses to soil fumigation and cover crops under potato production. Biol Fertil Soils. 2006;42:247–57.
Article
CAS
Google Scholar
Shen Z, Xue C, Taylor PWJ, Ou Y, Wang B, Zhao Y, et al. Soil pre-fumigation could effectively improve the disease suppressiveness of biofertilizer to banana Fusarium wilt disease by reshaping the soil microbiome. Biol Fertil Soils. 2018;54:793–806.
Article
CAS
Google Scholar
Ibekwe AM, Papiernik SK, Gan J, Yates SR, Yang C-H, Crowley DE. Impact of fumigants on soil microbial communities. Appl Environ Microbiol. 2001;67:3245–57.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jenkinson D. Residual effects of soil fumigation on soil respiration and mineralization. Soil Biol Biochem. 1970;2:99–108.
Article
CAS
Google Scholar
Macalady JL, Fuller ME, Scow KM. Effects of metam sodium fumigation on soil microbial activity and community structure. J Environ Qual. 1998;27:54–63.
Article
CAS
Google Scholar
Zhang S, Liu X, Jiang Q, Shen G, Ding W. Legacy effects of continuous chloropicrin-fumigation for 3-years on soil microbial community composition and metabolic activity. AMB Express. 2017;7:178.
Article
PubMed
PubMed Central
Google Scholar
Dangi SR, Tirado-Corbalá R, Gerik J, Hanson BD. Effect of long-term continuous fumigation on soil microbial communities. Agronomy. 2017;7:37.
Article
Google Scholar
Balbín-Suárez A, Jacquiod S, Rohr A-D, Liu B, Flachowsky H, Winkelmann T, et al. Root exposure to apple replant disease soil triggers local defense response and rhizoplane microbiome dysbiosis. FEMS Microbiol Ecol. 2021;97:1–14.
Article
Google Scholar
Dungan R. Effect of propargyl bromide and 1,3-dichloropropene on microbial communities in an organically amended soil. FEMS Microbiol Ecol. 2003;43:75–87.
Article
PubMed
CAS
Google Scholar
Yakabe LE, Parker SR, Kluepfel DA. Effect of pre-plant soil fumigants on Agrobacterium tumefaciens, pythiaceous species, and subsequent soil recolonization by A. tumefaciens. Crop Protect. 2010;29:583–90.
Article
CAS
Google Scholar
Schloter M, Nannipieri P, Sørensen SJ, van Elsas JD. Microbial indicators for soil quality. Biol Fertil Soils. 2018;54:1–10.
Article
CAS
Google Scholar
Crecchio C, Mimmo T, Bulgarelli D, Pertot I, Pii Y, Perazzolli M, Scagliola M, Cesco S. Beneficial soil microbiome for sustainable agriculture production. In: Lichtfouse E, editor. Sustainable agriculture reviews 31: biocontrol. Cham: Springer; 2018. p. 443–81.
Chapter
Google Scholar
Carlock LL, Dotson TA. Metam-Sodium. In: Krieger R, editor. Hayes’ handbook of pesticide toxicology. Massachusetts: Academic Press; 2010. p. 2293–306.
Chapter
Google Scholar
Lloyd GA. The elimination of methyl isothiocyanate from soil after treatment with metham-sodium. J Sci Food Agric. 1962;13:309–15.
Article
CAS
Google Scholar
Hamm PB, Ingham RE, Jaeger JR, Swanson WH, Volker KC. Soil fumigant effects on three genera of potential soilborne pathogenic fungi and their effect on potato yield in the columbia basin of oregon. Plant Dis. 2003;87:1449–56.
Article
PubMed
Google Scholar
Triky-Dotan S, Austerweil M, Steiner B, Peretz-Alon Y, Katan J, Gamliel A. Generation and dissipation of methyl isothiocyanate in soils following metam sodium fumigation: impact on Verticillium control and potato yield. Plant Dis. 2007;91:497–503.
Article
PubMed
CAS
Google Scholar
di Primo P, Gamliel A, Austerweil M, Steiner B, Beniches M, Peretz-Alon I, et al. Accelerated degradation of metam-sodium and dazomet in soil: characterization and consequences for pathogen control. Crop Prot. 2003;22:635–46.
Article
Google Scholar
Eshel D, Gamliel A, Grinstein A, di Primo P, Katan J. Combined soil treatments and sequence of application in improving the control of soilborne pathogens. Phytopathology. 2000;90:751–7.
Article
PubMed
CAS
Google Scholar
Toyota K, Ritz K, Kuninaga S, Kimura M. Impact of fumigation with metam sodium upon soil microbial community structure in two Japanese soils. Soil Sci Plant Nutr. 1999;45:207–23.
Article
CAS
Google Scholar
Corden ME, Young RA. Changes in the soil microflora following fungicide treatments. Soil Sci. 1965;99:272–7.
Article
CAS
Google Scholar
Dejong FMW, Vandervoet E, Canters KJ. Possible side effects of airborne pesticides on fungi and vascular plants in the Netherlands. Ecotoxicol Environ Saf. 1995;30:77–84.
Article
CAS
Google Scholar
Davis RM, Nunez JJ, Vargas RN, Weir BL, Wright SD, Munier DJ. Metam-sodium kills beneficial soil fungi as well as cotton pests. Calif Agric. 1996;50:42–4.
Article
Google Scholar
Sederholm MR, Schmitz BW, Barberán A, Pepper IL. Effects of metam sodium fumigation on the abundance, activity, and diversity of soil bacterial communities. Appl Soil Ecol. 2018;124:27–33.
Article
Google Scholar
Li J, Huang B, Wang Q, Li Y, Fang W, Han D, et al. Effects of fumigation with metam-sodium on soil microbial biomass, respiration, nitrogen transformation, bacterial community diversity and genes encoding key enzymes involved in nitrogen cycling. Sci Total Environ. 2017;598:1027–36.
Article
PubMed
CAS
Google Scholar
Fang W, Yan D, Wang X, Huang B, Wang X, Liu J, et al. Responses of nitrogen-cycling microorganisms to dazomet fumigation. Front Microbiol. 2018;9:2529.
Article
PubMed
PubMed Central
Google Scholar
Huang B, Yan D, Wang Q, Fang W, Song Z, Cheng H, et al. Effects of dazomet fumigation on soil phosphorus and the composition of phoD-harboring microbial communities. J Agric Food Chem. 2020;68:5049–58.
Article
PubMed
CAS
Google Scholar
Beaudette DE, Roudier P, O’Geen AT. Algorithms for quantitative pedology: a toolkit for soil scientists. Comput Geosci. 2013;52:258–68.
Article
Google Scholar
Beaudette D, Skovlin J, Roecker S. soilDB: Soil database interface. 2020. https://cran.r-project.org/web/packages/soilDB/index.html. Accessed 26 May 2020.
Hijmans RJ. Raster: Geographic data analysis and modeling. 2020. https://cran.r-project.org/web/packages/raster/index.html. Accessed 26 May 2020.
Pebesma EJ, Bivand RS. Classes and methods for spatial data in R. R News. 2005; 5. https://cran.r-project.org/web/packages/sp/index.html. Accessed 26 May 2020.
Bivand RS, Pebesma E, Gomez-Rubio V. Applied spatial data analysis with R. 2nd ed. New York: Springer; 2013. https://doi.org/10.1007/978-1-4614-7618-4.
Book
Google Scholar
Bivand R, Rundel C. rgeos: interface to geometry engine: open source ('GEOS’). 2020. https://cran.r-project.org/web/packages/rgeos/index.html. Accessed 26 May 2020.
United States Department of Agriculture. Web site for official soil series descriptions and series classification. 2022. https://soilseries.sc.egov.usda.gov/. Accessed 4 Oct 2022.
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.
Article
PubMed
CAS
Google Scholar
Vancov T, Keen B. Amplification of soil fungal community DNA using the ITS86F and ITS4 primers. FEMS Microbiol Lett. 2009;296:91–6.
Article
PubMed
CAS
Google Scholar
Li X. The R codes used in this manuscript. Github. 2022. https://github.com/lixiaopi1985/Soil_microbial_communities_responding_to_metam_sodium.git. Accessed 2 Nov 2022.
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. 2019. https://cran.r-project.org/web/packages/vegan/index.html. Assessed 8 May 2022.
McMurdie PJ, Holmes S. phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
Article
PubMed
PubMed Central
CAS
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.
Article
PubMed
PubMed Central
Google Scholar
Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8.
Article
PubMed
CAS
Google Scholar
Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2018;47:D259–64.
Article
PubMed Central
Google Scholar
UNITE Community. UNITE QIIME release for fungi. UNITE Community. 2019. https://doi.org/10.15156/BIO/786334. Assessed 2 Oct 2020.
McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, Wendel D, et al. The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. Gigascience. 2012;1:7.
Article
PubMed
PubMed Central
Google Scholar
R core team. R: a language and environment for statistical computing. R Foundation for Statistical. 2021. https://www.R-project.org/. Assessed 17 Oct 2022.
Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47:583–621.
Article
Google Scholar
Dunn OJ. Multiple comparisons among means. J Am Stat Assoc. 1961;56:52–64.
Article
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.
Google Scholar
Kassambara A. rstatix: Pipe-friendly framework for basic statistical tests. 2021. https://cran.r-project.org/web/packages/rstatix/index.html. Assessed 17 Oct 2022.
McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol Evol. 2019;10:389–400.
Article
Google Scholar
Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr. 1957;27:325–49.
Article
Google Scholar
Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84:511–25.
Article
Google Scholar
Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA). In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL, editors. Wiley StatsRef: statistics reference online. Wiley; 2017. https://doi.org/10.1002/9781118445112.stat07841.
Chapter
Google Scholar
Cao Y, Dong Q, Wang D, Zhang P, Liu Y, Niu C. microbiomeMarker: microbiome biomarker analysis toolkit. Bioinformatics. 2022;38:4027–9.
Article
PubMed
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011. https://doi.org/10.1186/gb-2011-12-6-r60.
Article
PubMed
PubMed Central
Google Scholar
Martin BD, Witten D, Willis AD. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann Appl Stat. 2020;14:94–115.
Article
PubMed
PubMed Central
Google Scholar
Kolde R. pheatmap: Pretty Heatmaps. 2019. https://cran.r-project.org/web/packages/pheatmap/index.html. Assessed 8 May 2022.
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016. https://doi.org/10.1007/978-0-387-98141-3.
Book
Google Scholar
Peschel S, Müller CL, von Mutius E, Boulesteix A-L, Depner M. NetCoMi: network construction and comparison for microbiome data in R. Brief Bioinform. 2021;22:bbaa290.
Article
PubMed
Google Scholar
Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.
Article
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educ Behav Stat. 2000;25:60–83.
Article
Google Scholar
Hubert L, Arabie P. Comparing partitions. J Classif. 1985;2:193–218.
Article
Google Scholar
Chaparro JM, Sheflin AM, Manter DK, Vivanco JM. Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils. 2012;48:489–99.
Article
Google Scholar
Saleem M, Hu J, Jousset A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst. 2019;50:145–68.
Article
Google Scholar
Custódio V, Gonin M, Stabl G, Bakhoum N, Oliveira MM, Gutjahr C, et al. Sculpting the soil microbiota. Plant J. 2022;109:508–22.
Article
PubMed
Google Scholar
Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019;13:1722–36.
Article
PubMed
PubMed Central
Google Scholar
Fang W, Yan D, Wang X, Huang B, Wang X, Liu J, et al. Responses of nitrogen-cycling microorganisms to dazomet fumigation. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.02529.
Article
PubMed
PubMed Central
Google Scholar
Chen R, Jiang W, Xu S, Fan H, Chen X, Shen X, et al. An emerging chemical fumigant: two-sided effects of dazomet on soil microbial environment and plant response. Environ Sci Pollut Res. 2022;29:3022–36.
Article
CAS
Google Scholar
Li Q, Zhang D, Cheng H, Ren L, Jin X, Fang W, et al. Organic fertilizers activate soil enzyme activities and promote the recovery of soil beneficial microorganisms after dazomet fumigation. J Environ Manag. 2022;309:114666.
Article
CAS
Google Scholar
Cheng H, Zhang D, Huang B, Song Z, Ren L, Hao B, et al. Organic fertilizer improves soil fertility and restores the bacterial community after 1,3-dichloropropene fumigation. Sci Total Environ. 2020;738:140345.
Article
PubMed
CAS
Google Scholar
Fang W, Song Z, Tao S, Zhang D, Huang B, Ren L, et al. Biochar mitigates the negative effect of chloropicrin fumigation on beneficial soil microorganisms. Sci Total Environ. 2020;738:139880.
Article
PubMed
CAS
Google Scholar
de Boer W, Folman LB, Summerbell RC, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005;29:795–811.
Article
PubMed
Google Scholar
Plaszkó T, Szűcs Z, Vasas G, Gonda S. Effects of glucosinolate-derived isothiocyanates on fungi: a comprehensive review on direct effects, mechanisms, structure-activity relationship data and possible agricultural applications. J Fungi. 2021;7:539.
Article
Google Scholar
Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol. 2003;69:1800–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340–51.
Article
PubMed
Google Scholar
Kracmarova M, Uhlik O, Strejcek M, Szakova J, Cerny J, Balik J, et al. Soil microbial communities following 20 years of fertilization and crop rotation practices in the Czech Republic. Environ Microbiome. 2022;17:13.
Article
PubMed
PubMed Central
Google Scholar
Nicola L, Turco E, Albanese D, Donati C, Thalheimer M, Pindo M, et al. Fumigation with dazomet modifies soil microbiota in apple orchards affected by replant disease. Appl Soil Ecol. 2017;113:71–9.
Article
Google Scholar
Zhu J, Ren Z, Huang B, Cao A, Wang Q, Yan D, et al. Effects of fumigation with allyl isothiocyanate on soil microbial diversity and community structure of tomato. J Agric Food Chem. 2020;68:1226–36.
Article
PubMed
CAS
Google Scholar
Dangi SR, Tirado-Corbalá R, Gerik J, Hanson BD. Effect of long-term continuous fumigation on soil microbial communities. Agronomy. 2017;7:1–15.
Article
Google Scholar
Peixoto S, Henriques I, Loureiro S. Long-term effects of Cu(OH)2 nanopesticide exposure on soil microbial communities. Environ Pollut. 2021;269:116113.
Article
PubMed
CAS
Google Scholar
Seghers D, Verthé K, Reheul D, Bulcke R, Siciliano SD, Verstraete W, et al. Effect of long-term herbicide applications on the bacterial community structure and function in an agricultural soil. FEMS Microbiol Ecol. 2003;46:139–46.
Article
PubMed
CAS
Google Scholar
Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
Article
PubMed
CAS
Google Scholar
Schreiter S, Ding G-C, Heuer H, Neumann G, Sandmann M, Grosch R, et al. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front Microbiol. 2014;5:144.
Article
PubMed
PubMed Central
Google Scholar
Xue D, Christenson R, Genger R, Gevens A, Lankau RA. Soil microbial communities reflect both inherent soil properties and management practices in Wisconsin potato fields. Am J Potato Res. 2018;95:696–708.
Article
Google Scholar
Bullock DG. Crop rotation. Crit Rev Plant Sci. 1992;11:309–26.
Article
Google Scholar
Peralta AL, Sun Y, McDaniel MD, Lennon JT. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere. 2018. https://doi.org/10.1002/ecs2.2235.
Article
Google Scholar
Luo Y, Wang F, Huang Y, Zhou M, Gao J, Yan T, et al. Sphingomonas sp. cra20 increases plant growth rate and alters rhizosphere microbial community structure of Arabidopsis thaliana under drought stress. Front Microbiol. 2019;10:1221.
Article
PubMed
PubMed Central
Google Scholar
Guzmán-Guzmán P, Santoyo G. Action mechanisms, biodiversity, and omics approaches in biocontrol and plant growth-promoting Pseudomonas: an updated review. Biocontrol Sci Technol. 2022;32:527–50.
Article
Google Scholar
Markakis EA, Tjamos SE, Antoniou PP, Paplomatas EJ, Tjamos EC. Biological control of Verticillium wilt of olive by Paenibacillus alvei, strain K165. Biocontrol. 2016;61:293–303.
Article
Google Scholar
Fitzgerald CM, Camejo P, Oshlag JZ, Noguera DR. Ammonia-oxidizing microbial communities in reactors with efficient nitrification at low-dissolved oxygen. Water Res. 2015;70:38–51.
Article
PubMed
CAS
Google Scholar
Hu P, Hollister EB, Somenahally AC, Hons FM, Gentry TJ. Soil bacterial and fungal communities respond differently to various isothiocyanates added for biofumigation. Front Microbiol. 2015;5:729.
Article
PubMed
PubMed Central
Google Scholar
Violi HA, Menge JA, Beaver RJ. Chaetomium elatum (Kunze: Chaetomiaceae) as a root-colonizing fungus in avocado: is it a mutualist, cheater, commensalistic associate, or pathogen? Am J Bot. 2007;94:690–700.
Article
PubMed
Google Scholar
Wang XW, Han PJ, Bai FY, Luo A, Bensch K, Meijer M, et al. Taxonomy, phylogeny and identification of Chaetomiaceae with emphasis on thermophilic species. Stud Mycol. 2022;101:121–243.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dang Q, Wang Y, Xiong S, Yu H, Zhao X, Tan W, et al. Untangling the response of fungal community structure, composition and function in soil aggregate fractions to food waste compost addition. Sci Total Environ. 2021;769:145248.
Article
PubMed
CAS
Google Scholar
Noel ZA, Longley R, Benucci GMN, Trail F, Chilvers MI, Bonito G. Non-target impacts of fungicide disturbance on phyllosphere yeasts in conventional and no-till management. ISME Commun. 2022;2:19.
Article
PubMed
PubMed Central
Google Scholar
Sláviková E, Vadkertiová R. Effects of pesticides on yeasts isolated from agricultural soil. Z Naturforsch C J Biosci. 2003;58:855–9. https://doi.org/10.1515/znc-2003-11-1220.
Article
PubMed
Google Scholar
Vadkertiová R, Dudášová H, Balaščáková M. Yeasts in agricultural and managed soils. In: Buzzini P, Lachance MA, Yurkov A, editors. Yeasts in natural ecosystems: diversity. Springer: Cham; 2017. p. 117–44.
Chapter
Google Scholar
Yurkov AM. Yeasts of the soil: obscure but precious. Yeast. 2018;35:369–78.
Article
PubMed
CAS
Google Scholar
Botha A. The importance and ecology of yeasts in soil. Soil Biol Biochem. 2011;43:1–8.
Article
CAS
Google Scholar
Jiao S, Lu Y, Wei G. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob Chang Biol. 2022;28:140–53.
Article
PubMed
CAS
Google Scholar
Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun. 2019;10:4841.
Article
PubMed
PubMed Central
Google Scholar
van der Heijden MGA, Hartmann M. Networking in the plant microbiome. PLoS Biol. 2016;14:e1002378.
Article
PubMed
PubMed Central
Google Scholar
Proulx SR, Promislow DEL, Phillips PC. Network thinking in ecology and evolution. Trends Ecol Evol. 2005;20:345–53.
Article
PubMed
Google Scholar
Ge A-H, Liang Z-H, Xiao J-L, Zhang Y, Zeng Q, Xiong C, et al. Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control. Agric Ecosyst Environ. 2021;312:107336.
Article
CAS
Google Scholar
Zhang X, Xue C, Fang D, He X, Wei M, Zhuo C, et al. Manipulating the soil microbiomes during a community recovery process with plant beneficial species for the suppression of Fusarium wilt of watermelon. AMB Express. 2021;11:87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang H, Song J, Zhang Z, Zhang Q, Chen S, Mei J, et al. Exposure to fungicide difenoconazole reduces the soil bacterial community diversity and the co-occurrence network complexity. J Hazard Mater. 2021;405:124208.
Article
PubMed
CAS
Google Scholar
Han L, Kong X, Xu M, Nie J. Repeated exposure to fungicide tebuconazole alters the degradation characteristics, soil microbial community and functional profiles. Environ Pollut. 2021;287:117660.
Article
PubMed
CAS
Google Scholar
Han L, Xu M, Kong X, Liu X, Wang Q, Chen G, et al. Deciphering the diversity, composition, function, and network complexity of the soil microbial community after repeated exposure to a fungicide boscalid. Environ Pollut. 2022;312:120060.
Article
PubMed
CAS
Google Scholar
Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem. 2016;97:188–98.
Article
CAS
Google Scholar
Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA. 2006;103:8577–82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goberna M, Verdú M. Cautionary notes on the use of co-occurrence networks in soil ecology. Soil Biol Biochem. 2022;166:108534.
Article
CAS
Google Scholar
Sennett LB, Goyer C, Burton DL, Zebarth BJ, Whitney S. Chemical fumigation and biofumigation alter soil bacterial community diversity and composition. FEMS Microbiol Ecol. 2022;98:fiac026.
Article
Google Scholar
Sinha AP, Agnihotri VP, Singh K. Effect of soil fumigation with vapam on the dynamics of soil microflora and their related biochemical activity. Plant Soil. 1979;53:89–98.
Article
CAS
Google Scholar
Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008. https://doi.org/10.1073/pnas.0801925105.
Article
PubMed
PubMed Central
Google Scholar
Ajwa HA, Trout T, Mueller J, Wilhelm S, Nelson SD, Soppe R, et al. Application of alternative fumigants through drip irrigation systems. Phytopathology. 2002;92:1349–55.
Article
PubMed
CAS
Google Scholar
Roncero MIG, Hera C, Ruiz-Rubio M, García Maceira FI, Madrid MP, Caracuel Z, et al. Fusarium as a model for studying virulence in soilborne plant pathogens. Physiol Mol Plant Pathol. 2003;62:87–98.
Article
Google Scholar
Thomma BPHJ. Alternaria spp: from general saprophyte to specific parasite. Mol Plant Pathol. 2003;4:225–36.
Article
PubMed
CAS
Google Scholar