Bechtel DB, Bulla LA, Kramer KJ, Bechtel DB, David- LI. Electron microscope study of Sporulation and Parasporal crystal formation in Bacillus thuringiensis. J Bacteriol. 1976;127:1472–81.
CAS
PubMed
PubMed Central
Google Scholar
Ibrahim MA, Griko N, Junker M, Bulla LA. Bacillus thuringiensis: a genomics and proteomics perspective. Bioeng Bugs. 2010;1:31–50.
Article
PubMed
PubMed Central
Google Scholar
Carozzi NB, Kramer VC, Warren G, Evola S, Koziel MG. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl Environ Microbiol. 1991;57:3057–61.
CAS
PubMed
PubMed Central
Google Scholar
Iriarte J, Porcar M, Lecadet M-M, Caballero P. Isolation and characterization of Bacillus thuringiensis strains from aquatic environments in Spain. Curr Microbiol. 2000;40:402–8.
Article
CAS
PubMed
Google Scholar
Smith RA, Couche GA. The phylloplane as a source of Bacillus thuringiensis variants. Appl Environ Microbiol. 1991;57:311–5.
CAS
PubMed
PubMed Central
Google Scholar
Burges D, Hurst JA. Ecology of Bacillus thuringiensis in storage moths. J Invertebr Pathol. 1977;30:131–9.
Article
Google Scholar
Schnepf E, Crickmore N, Van RJ, Lereclus D, Baum J, Feitelson J, et al. Bacillus thuringiensis and its Pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998;62:775–806.
CAS
PubMed
PubMed Central
Google Scholar
Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J. 2011;9:283–300.
Article
CAS
PubMed
Google Scholar
Vidal-Quist JC, Castañera P, González-Cabrera J. Diversity of Bacillus thuringiensis strains isolated from citrus orchards in Spain and evaluation of their insecticidal activity against Ceratitis Capitata. J Microbiol Biotechnol. 2009;19:749–59.
CAS
PubMed
Google Scholar
Feitelson J. The Bacillus thuringiensis family tree. In: Kim L, editor. Advanced engineered pesticides. 1st ed. New York: CRC Press; 1993. p. 63–71.
Google Scholar
De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, et al. Bergey’s manual of systematic bacteriology. In: Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman W, editors. Volume 3: the Firmicutes. 2nd ed. New York: Springer; 2009. p. 1–1317.
Google Scholar
Sabha ME-S, Adayel SA, El-Masry SA, Alazazy H. Bacillus thuringiensis (Bt) toxin for the control of citrus trees snails. Researcher. 2013;5:26–32.
Google Scholar
Palma L, Muñoz D, Berry C, Murillo J, Caballero P. Bacillus thuringiensis toxins: an overview of their Biocidal activity. Toxins (Basel). 2014;6:3296–325. doi:10.3390/toxins6123296.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crickmore N. Bacillus thuringiensis Toxin nomenclature. http://www.btnomenclature.info/. Accessed 12 Oct 2016.
Aronson AI. The two faces of Bacillus thuringiensis: insecticidal proteins and post-exponential survival. Mol Microbiol. 1993;7:489–96.
Article
CAS
PubMed
Google Scholar
Sanchis V, Bourguet D. Bacillus thuringiensis: applications in agriculture and insect resistance management. A review Agron Sustain Dev. 2008;28:11–20.
Article
Google Scholar
Cohn F. Untersuchungen über Bakterien. Beiträge zur Biologie der Pflanzen. 1872;1:127–224.
Google Scholar
Skerman V, McGowan V, Sneath P. Approved lists of bacterial names. Int J Syst Bacteriol. 1980;30:225–420.
Article
Google Scholar
Scott E, Dyer DW. Divergence of the SigB regulon and pathogenesis of the Bacillus cereus Sensu Lato group. BMC Genomics. 2012;13:564. doi:10.1186/1471-2164-13-564.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frankland GC, Frankland PF. Studies on some New Micro-Organisms obtained from Air. Philosophical Transactions of the Royal Society of London. 1887. p. 257–87.
Ernst B. Ueber die Schlaffsucht der Mehlmottenraupe (Ephestia kuhniella) und ihren Erreger Bacillus thuringiensis n. sp. Zeitschrift für Angew Entomol. 1915;2:21–56.
Google Scholar
Flügge C. Die Mikroorganismen. 2.Auflage. Leipzig, Germany: F.C.W. Vogel; 1886.
Google Scholar
Nakamura LK. Bacillus pseudomycoides sp. nov. Int J Syst Bacteriol. 1998;48:1031–5. doi:10.1099/00207713-48-3-1031.
Article
CAS
PubMed
Google Scholar
Lechner S, Mayr R, Francis KP, Prüss BM, Kaplan T, Wießner-Gunkel E, et al. Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. Int J Syst Bacteriol. 1998;48:1373–82. doi:10.1099/00207713-48-4-1373.
Article
CAS
PubMed
Google Scholar
Guinebretière MH, Auger S, Galleron N, Contzen M, de Sarrau B, de Buyser ML, et al. Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int J Syst Evol Microbiol. 2013;63:31–40.
Article
PubMed
Google Scholar
Jiménez G, Urdiain M, Cifuentes A, López-López A, Blanch AR, Tamames J, et al. Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Syst Appl Microbiol. 2013;36:383–91. doi:10.1016/j.syapm.2013.04.008.
Article
PubMed
Google Scholar
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol. 2014;64:1–5. doi:10.1099/ijsem.0.000737.
Article
Google Scholar
Jung MY, Paek WK, Park IS, Han JR, Sin Y, Paek J, et al. Bacillus gaemokensis sp. nov., isolated from foreshore tidal flat sediment from the Yellow Sea. J Microbiol. 2010;48:867–71.
Article
PubMed
Google Scholar
Jung MY, Kim JS, Paek WK, Lim J, Lee H, Kim PI, et al. Bacillus manliponensis sp. nov., a new member of the Bacillus cereus group isolated from foreshore tidal flat sediment. J Microbiol. 2011;49:1027–32.
Article
PubMed
Google Scholar
Liu B, Liu GH, Hu GP, Cetin S, Lin NQ, Tang JY, et al. Bacillus bingmayongensis sp. nov., isolated from the pit soil of emperor Qin’s Terra-cotta warriors in China. Antonie Van Leeuwenhoek. 2014;105:501–10.
Article
PubMed
Google Scholar
NL; Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 65. Int J Syst Bacteriol. 1998;48(Pt 2):627.
Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, et al. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis--one species on the basis of genetic evidence. Appl Environ Microbiol. 2000;66:2627–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okinaka TR, Keim P, Okinaka RT, Keim P. The Phylogeny of Bacillus cereus sensu lato. Microbiol Spectr. 2016;4 doi:10.1128/microbiolspec.
Rasko DA, Altherr MR, Han CS, Ravel J. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev. 2005;29:303–29.
CAS
PubMed
Google Scholar
Schmidt TR, Scott EJ II, Dyer DW. Whole-genome phylogenies of the family Bacillaceae and expansion of the sigma factor gene family in the Bacillus cereus species-group. BMC Genomics. 2011;12:430. doi:10.1186/1471-2164-12-430.
Article
CAS
PubMed
PubMed Central
Google Scholar
Priest FG, Barker M, Baillie LWJ, Holmes EC, Maiden MCJ. Population structure and evolution of the Bacillus cereus group. Society. 2004;186:7959–70.
CAS
Google Scholar
Yu H, Zhang J, Huang D, Gao J, Song F. Characterization of Bacillus thuringiensis strain Bt185 toxic to the Asian cockchafer: Holotrichia parallela. Curr Microbiol. 2006;53:13–7.
Article
CAS
PubMed
Google Scholar
Ackermann H-WW, Azizbekyan RR, Bernier RL, Barjac H, Saindoux S, Valero JR, et al. Phage typing of Bacillus subtilis and B. thuringiensis. Res Microbiol. 1995;146:643–57.
Article
CAS
PubMed
Google Scholar
Mahillon J, Rezsöhazy R, Hallet B, Delcour J. IS231 and other Bacillus thuringiensis transposable elements: a review. Genetica. 1994;93:13–26.
Article
CAS
PubMed
Google Scholar
Kronstad JW, Whiteley HR. Inverted repeat sequences flank a Bacillus thuringiensis crystal protein gene. J Bacteriol. 1984;160:95–102.
CAS
PubMed
PubMed Central
Google Scholar
Masri L, Branca A, Sheppard AE, Papkou A, Laehnemann D, Guenther PS, et al. Host–pathogen Coevolution: the selective advantage of Bacillus thuringiensis virulence and its cry toxin genes. PLoS Biol. 2015;13:e1002169. doi:10.1371/journal.pbio.1002169.
Article
PubMed
PubMed Central
Google Scholar
Schulte RD, Makus C, Hasert B, Michiels NK, Schulenburg H. Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc Natl Acad Sci U S A. 2010;107:7359–64. doi:10.1073/pnas.1003113107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Payne J. Isolates of Bacillus thuringiensis that are active against nematodes. 1992.
Payne J, Cannon R, Bagley A. Bacillus thuringiensis isolates for controlling acarides. 1993.
Schnepf H, Schwab G, Payne J, Narva K, Foncerrada L. Nematicidal proteins. 2001.
Barjac H, Frachon E. Classification of Bacillus thuringiensis strains. Entomophaga. 1990;35:233–40. doi:10.1007/BF02374798.
Article
Google Scholar
Gibbons NE, Murray RGE. Proposals concerning the higher Taxa of bacteria. Int J Syst Bacteriol. 1978;28:1–6. doi:10.1099/00207713-28-1-1.
Article
Google Scholar
West AW, Burges HD, Dixon TJ, Wyborn CH. Survival of Bacillus thuringiensis and Bacillus cereus spore inocula in soil: effects of pH, moisture, nutrient availability and indigenous microorganisms. Soil Biol Biochem. 1985;17:657–65.
Article
Google Scholar
Ash C, Farrow JA, Dorsch M, Stackebrandt E, Collins MD. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol. 1991;41(3):343–6.
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing Phylogenetic trees. Mol Biol Evol. 1987;4:406–25.
CAS
PubMed
Google Scholar
Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A. 2004;101:11030–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;7:1870–4. doi:10.1093/molbev/msw054.
Article
Google Scholar
Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 2012;40:115–22.
Article
Google Scholar
Field D, Garrity G, Gray T, Morrison N, Selengut J, Tatusova T, et al. The minimum information about a genome sequences (MIGS) specification. Nat Biotechnol. 2008;26:541–7. doi:10.1038/1360.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilles A, Meglécz E, Pech N, Ferreira S, Malausa T, Martin J-F. Accuracy and quality assessment of 454 GS-FLX titanium pyrosequencing. BMC Genomics. 2011;12:245. doi:10.1186/1471-2164-12-245.
Article
PubMed
PubMed Central
Google Scholar
Rhoads A, Au KF. PacBio sequencing and its applications. Genomics, Proteomics Bioinforma. 2015;13:278–89. doi:10.1016/j.gpb.2015.08.002.
Article
Google Scholar
Staden R, Beal KF, Bonfield JK. The Staden package, 1998. In: Misener S, Krawtz AS, editors. Methods in molecular biology. New York: Humana Press; 1999. p. 115–30.
Google Scholar
Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10:563–9. doi:10.1038/nmeth.2474.
Article
CAS
PubMed
Google Scholar
PacBio Software Downloads. 2016. http://www.pacb.com/support/software-downloads/. Accessed 12 Apr 2016.
Gao F, Luo H, Zhang C-T. DoriC 5.0: an updated database of oriC regions in both bacterial and archaeal genomes. Nucleic Acids Res. 2013;41 Database issue:D90–3. doi:10.1093/nar/gks990.
DoriC: an updated database of bacterial and archaeal replication origins. http://tubic.tju.edu.cn/doric/. Accessed 15 Dec 2016.
Gao F, Zhang C-T. Ori-finder: a web-based system for finding oriCs in unannotated bacterial genomes. BMC Bioinformatics. 2008;9:79.
Article
PubMed
PubMed Central
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
Article
CAS
PubMed
Google Scholar
Sheppard AE, Poehlein A, Rosenstiel P, Liesegang H, Schulenburg H. Complete genome sequence of Bacillus thuringiensis strain 407 cry. Genome Announc. 2013;1:158–12.
Article
Google Scholar
Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. doi:10.1186/1471-2105-11-119.
Article
PubMed
PubMed Central
Google Scholar
Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32:11–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6. doi:10.1038/nmeth.1701.
Article
CAS
PubMed
Google Scholar
Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. Nucleic Acids Res. 2003;31:439–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev. 1998;62:807–13.
CAS
PubMed
PubMed Central
Google Scholar
Bateman A, Martin MJ, O’Donovan C, Magrane M, Apweiler R, Alpi E, et al. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–12.
Article
Google Scholar
Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank. Nucleic Acids Res. 2013;41:36–42.
Article
Google Scholar
Carlson CR, Kolstø A-BB. A complete physical map of a Bacillus thuringiensis chromosome. J Bacteriol. 1993;175:1053–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang A, Pattemore J, Ash G, Williams A, Hane J. Draft genome sequence of Bacillus thuringiensis strain DAR 81934, which Exhibits Molluscicidal Activity. Genome Announc. 2013;1:e0017512. doi:10.1128/genomeA.00175-12.
PubMed
Google Scholar
Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 2015;43:D213–21.
Article
PubMed
Google Scholar
Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res. 2011;39(SUPPL. 2):347–52.
Article
Google Scholar
Fortier L-C, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013;4:354–65. doi:10.4161/viru.24498.
Article
PubMed
PubMed Central
Google Scholar
Brüssow H, Canchaya C, Hardt W-D, Bru H. Phages and the evolution of bacterial pathogens: from genomic rearrangements to Lysogenic conversion. Microbiol Mol Biol Rev. 2004;68:560–602.
Article
PubMed
PubMed Central
Google Scholar
Barksdale L, Arden SB. Persisting bacteriophage infections, lysogeny, and phage conversions. Annu Rev Microbiol. 1974;28:265–99.
Article
CAS
PubMed
Google Scholar
Freeman VJ. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacteriol. 1951;61:675–88.
CAS
PubMed
PubMed Central
Google Scholar
De Maagd RA, Bravo A, Crickmore N. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 2001;17:193–9.
Article
PubMed
Google Scholar
Agaisse H, Lereclus D. How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol. 1995;177:6027–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ben-Dov E. Bacillus thuringiensis subsp. israelensis and its Dipteran-specific toxins. Toxins (Basel). 2014;6:1222–43.
Article
Google Scholar
Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics. 2011;12:124. doi:10.1186/1471-2105-12-124.
Article
PubMed
PubMed Central
Google Scholar
Leimbach A. bac-genomics-scripts: Bovine E. coli mastitis comparative genomics editio. 2016. https://github.com/aleimba/bac-genomics-scripts/tree/master/cds_extractor ,Accessed 14 Mar 2016.
Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87:4576–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Euzéby J. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol. 2010;60:469–72.
Article
Google Scholar
Ludwig W, Schleifer K-H, Whitman WB. Class I. Bacillis class nov. Bergey’s Man Syst Bacteriol. 2009;3:19–20.
Google Scholar
Prévot AR. Dictionnaire des Bactéries Pathogènes In: Hauderoy P, Ehringer G, Guillot G, Magrou. J., Prévot AR, Rosset D, Urbain A (eds), Dictionnaire des Bactéries Pathogènes, Second Edition, Masson et Cie, Paris, 1953, p. 1–692.
Fischer A. Untersuchungen über bakterien. Jahrbücher für Wissenschaftliche Botanik. 1895;27:1–163.
Google Scholar
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek. 64:253–60. http://www.ncbi.nlm.nih.gov/pubmed/8085788. Accessed 6 Jun 2017.
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41. doi:10.1186/1471-2105-4-41.
Article
PubMed
PubMed Central
Google Scholar
Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics. 2009;25:119–20.
Article
CAS
PubMed
Google Scholar