- Open access
- Published:
Complete genome sequence of Arcanobacterium haemolyticum type strain (11018T)
Standards in Genomic Sciences volume 3, pages 126–135 (2010)
Abstract
Arcanobacterium haemolyticum (ex MacLean et al. 1946) Collins et al. 1983 is the type species of the genus Arcanobacterium, which belongs to the family Actinomycetaceae. The strain is of interest because it is an obligate parasite of the pharynx of humans and farm animal; occasionally, it causes pharyngeal or skin lesions. It is a Gram-positive, nonmotile and non-sporulating bacterium. The strain described in this study was isolated from infections amongst American soldiers of certain islands of the North and West Pacific. This is the first completed sequence of a member of the genus Arcanobacterium and the ninth type strain genome from the family Actinomycetaceae. The 1,986,154 bp long genome with its 1,821 protein-coding and 64 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Introduction
Strain 11018T (= DSM 20595 = CCM 5947 = ATCC 9345 = NBRC 15585) is the type strain of the species A. haemolyticum, which is the type species of its genus Arcanobacterium [1]. Arcanobacterium is one of six genera in the family Actinomycetaceae [2–4]. The genus currently consists of nine validly described species. The strain was first described in 1946 by MacLean as ‘Corynebacterium haemolyticum’ [5]. Based on chemical features and the presence of unique phenotypic characteristics, the strain was subsequently transferred to the new genus Arcanobacterium as A. haemolyticum [1] and emended by Lehnen et al. in 2006 [6]. The generic name drives from the Latin word ‘arcanus’, meaning ‘secretive’ and the Latin word ‘bacterium’, a small rod, meaning ‘secretive bacterium’ [1]. The species epithet is derived from the Latin word ‘haema’ meaning ‘blood’ and the Neo-Latin word ‘lyticus’ meaning ‘able to loose or able to dissolve’ referring to blood-dissolving or hemolytic when the cells grow on blood agar [1]. There are many medical case reports that A. haemolyticum is occasionally isolated in patients with brain abscess [7–9], cellulitis [10,11], endocarditis [12], meningitis [13], peritonitis [14], post-traumatic ankle joint infection [15], septic arthritis [16], septicemia [17], sinusitis [11], soft tissue infections [18], venous ulcer infection [19], vertebral osteomyelitis [20] and wound infection [21,22]. Only rarely are cases reported in animals, where pathogenicity of A. haemolyticum has not been well documented [23–25]. Here we present a summary classification and a set of features for A. haemolyticum strain 11018T, together with the description of the complete genomic sequencing and annotation.
Classification and features
Strain 11018T is an obligate parasite of the pharynx of human and farm animals; occasionally it causes pharyngeal or skin lesions [26]. The strain was isolated from infections in American soldiers [5]. The 16S rRNA gene sequence of strain 11018T (AJ234059) is 99% identical to six culturable strains that were reported in GenBank (status July 2010). Five strains were isolated from infected horses [23]. Another culturable strain, Tr2-2X-1 (FJ477385), was isolated from gasoline contaminated soil. The 16S rRNA gene of strain 11018T shares 93.3-97.9% sequence identity with the sequences of the type strains from the other members of the genus Arcanobacterium [27]. The next closest relative outside of the genus Arcanobacterium is Dermacoccus barathri MT2.1T (92.3% sequence similarity) [27]. No phylotypes from environmental screening or metagenomic surveys could be linked to A. haemolyticum or even the genus Arcanobacterium, indicating a rare occurrence of these species in the habitats screened thus far (as of July 2010). A representative genomic 16S rRNA sequence of A. haemolyticum 11018T was compared using BLAST with the most resent release of the Greengenes database [28] and the relative frequencies of taxa and keywords, weighted by BLAST scores, were determined. The five most frequent genera were Arcanobacterium (42.4%), Dermacoccus (12.6%), Actinomyces (10.8%), Terrabacter (9.9%) and Sanguibacter (5.7%). The five most frequent keywords within the labels of environmental samples were ‘skin’ (6.6%), ‘human’ (5.0%), ‘feedlot’ (4.6%), ‘elbow’ (3.4%) and ‘microbiota’ (3.3%). The BLAST keywords analysis supports the biological insights into A. haemolyticum strain 11018T as described above.
Figure 1 shows the phylogenetic neighborhood of A. haemolyticum strain 11018T in a 16S rRNA based tree. The sequences of the four 16S rRNA gene copies in the genome differ from each other by up to two nucleotides, and differ by up to five nucleotides from the previously published sequence generated from CIP 103370 (AJ234059) which contains one ambiguous base call.
The cells of strain 11018T are slender or irregular rods (0.3–0.8 × 1.0–5.0 µm) [Table 1 and Figure 2]. The cells are Gram-positive, nonmotile, not acid-fast and without endospores [1]. In young cultures, cells may show clubbed ends sometimes arranged in V formation, but there are no filaments. In older cultures, cells segment into short, irregular rods and cocci [1]. Strain 11018T is facultatively anaerobic. The cells grow slowly on nutrient agar, but grow better on horse blood agar, giving small, convex, translucent colonies surrounded by a zone of complete hemolysis after two days at 37°C [1]. The selective medium for this strain was developed by Coman [39] and contains 5% sheep blood and 3.5% of NaCl. Cell growth is enhanced by the addition of CO2 [1]. The optimum growth temperature is 37°C [1,26]. Cells do not withstand heating at 60°C for 15 min [1,5]. Strain 11018T is chemoorganotrophic and requires nutritionally rich media for growth [1,26]. The fermentative metabolism of this strain produces acid but does not produce gas from glucose and several other carbohydrates on which growth occurs [1,26]. Acid production is mainly acetic, lactic and succinic acids [1,26]. Catalase, nitrate reduction and gelatine hydrolysis reactions are negative [6]. Strain 11018T produces N-acetyl-β-galactosidase, alkaline phosphatase, extracellular DNase, β-galactosidase, α-glucosidase and pyrazinamidase. It does not produce acid phosphatase, α-chymotrypsin, cystine arylamidase, esterase (C4), esterase lipase (C8), α-fucosidase, α-galactosidase, β-glucosidase, β-glucuronidase, leucine arylamidase, lipase (C14), α-mannosidase, naphthol-AS-BI-phosphohydrolase, trypsin, valine arylamidase and urease [1,6]. Strain 11018T is not able to ferment adonitol, L-arabitol, erythritol, D-fructose, glycerol, glycogen, D-mannitol and D-xylose. It is resistant to oxytetracycline (30µg per disc) but susceptible to nalidixic acid (30µg per disc), sulfamethoxazole trimethoprim (25µg per disc), amikacin (10µg per disc) or cefoxitin (30µg per disc) [1,42].
Chemotaxonomy
Strain 11018T possesses peptidoglycan type A5α based on L-Lys-L-Lys-D-Glu (unpublished, Norbert Weiss [43]). The predominant menaquinone is MK-9(H4) (85%) complemented by 15% MK-8(H4) [6]. The major cellular fatty acids when grown on blood agar at 35°C are straight-chain unsaturated acids C18:1 ω9c (37.0%), and saturated acids C18:0 (24.7%), C16:0 (22.5%) [6], which is similar to the cellular fatty acids spectrum reported from cells grown on sheep blood agar [31]: C18:1 cis9 (29%), C16:0 (23%), C18:2 (18%), C18:0 (17%), C10:0 (3%) and C14:0 (2%).
Genome sequencing and annotation
Genome project history
This organism was selected for sequencing on the basis of its phylogenetic position [44], and is part of the Genomic Encyclopedia of Bacteria and Archaea project [45]. The genome project is deposited in the Genome OnLine Database [33] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI). A summary of the project information is shown in Table 2.
Growth conditions and DNA isolation
A. haemolyticum strain 11018T, DSM 20595, was grown anaerobically in DSMZ medium 104 (PYG modified medium) [46] at 37°C. DNA was isolated from 1–1.5 g of cell paste using MasterPure Gram Positive DNA Purification Kit (Epicentre MGP04100), with a modified protocol for cell lysis, st/LALM, as described in Wu et al. [45].
Genome sequencing and assembly
The genome was sequenced using a combination of Illumina and 454 sequencing platforms. All general aspects of library construction and sequencing can be found at the JGI website. Pyrosequencing reads were assembled using the Newbler assembler version 2.0.0-PostRelease-11/04/2008 (Roche). The initial Newbler assembly consisted of 116 contigs in 28 scaffolds and was converted into a phrap assembly by making fake reads from the consensus, collecting the read pairs in the 454 paired end library. Illumina GAii sequencing data was assembled with Velvet [47] and the consensus sequences were shredded into 1.5 kb overlapped fake reads and assembled together with the 454 data. Draft assemblies were based on 166.4 Mb 454 draft and all of the 454 paired end data. Newbler parameters are -consed -a 50 -l 350 -g -m -ml 20.
The Phred/Phrap/Consed software package was used for sequence assembly and quality assessment in the following finishing process. After the shotgun stage, reads were assembled with parallel phrap (High Performance Software, LLC). Possible mis-assemblies were corrected with gapResolution, Dupfinisher [48], or sequencing cloned bridging PCR fragments with subcloning or transposon bombing (Epicentre Biotechnologies, Madison, WI) [49]. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks (J.-F. Chang, unpublished). A total of 140 additional reactions were necessary to close gaps and to raise the quality of the finished sequence. Illumina reads were also used to improve the final consensus quality using an in-house developed tool - the Polisher [50]. The error rate of the completed genome sequence is less than 1 in 100,000. Together, the combination of the Illumina and 454 sequencing platforms provided 120.6 ×coverage of the genome. The final assembly contains 2.03 million Illumina reads and 0.52 million pyrosequencing reads.
Genome annotation
Genes were identified using Prodigal [51] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [52]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [53].
Genome properties
The genome consists of a 1,986,154 bp long chromosome with a 53.1% GC content (Table 3 and Figure 3). Of the 1,885 genes predicted, 1,821 were protein-coding genes, and 64 RNAs; 90 pseudogenes were also identified. The majority of the protein-coding genes (68.5%) were assigned with a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.
References
Collins MD, Jones D, Schofield GM. Reclassification of ‘Corynebacterium haemolyticum’ (Mac-Lean, Liebow & Rosenberg) in the genus Arcanobacterium gen.nov. as Arcanobacterium haemolyticum nom.rev., comb.nov. J Gen Microbiol 1982; 128:1279–1281. PubMed
Buchanan RE. Studies in the Nomenclature and Classification of the Bacteria: VIII. The Subgroups and Genera of the Actinomycetales. J Bacteriol 1918; 3:403–406. PubMed
Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491. doi:10.1099/00207713-47-2-479
Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009; 59:589–608. PubMed doi:10.1099/ijs.0.65780-0
MacLean PD, Liebow AA, Rosenberg AA. A hemolytic Corynebacterium resembling Corynebacterium ovis and Corynebacterium pyrogenes in man. J Infect Dis 1946; 79:69–90.
Lehnen A, Busse H-J, Frölich K, Krasinska M, Kämpfer P, Speck S. Arcanobacterium bialowiezense sp. nov. and Arcanobacterium bonasi sp. nov., isolated from the prepuce of European bison bulls (Bison bonasus) suffering from balanoposthitis, and emended description of the genus Arcanobacterium Collins et al. 1983. Int J Syst Evol Microbiol 2006; 56:861–866. PubMed doi:10.1099/ijs.0.63923-0
Altmann G, Bogokovsky B. Brain abscess due to Corynebacterium haemolyticum. Lancet 1973; 301:378–379. doi:10.1016/S0140-6736(73)90177-3
Vargas J, Hernandez M, Silvestri C, Jimenez O, Guevara N, Carballo M, Rojas N, Riera J, Alayo E, Fernandez M, et al. Brain abscess due to Arcanobacterium haemolyticum after dental extraction. Clin Infect Dis 2006; 42:1810–1811. PubMed doi:10.1086/504436
Washington JA, Martin WJ, Spiekerman RE. Brain abscess with Corynebacterium hemolyticum: report of a case. Am J Clin Pathol 1971; 56:212–215. PubMed
Dobinsky S, Noesselt T, Rucker A, Maerker J, Mack D. Three cases of Arcanobacterium haemolyticum associated with abscess formation and cellulitis. Eur J Clin Microbiol Infect Dis 1999; 18:804–806. PubMed doi:10.1007/s100960050404
Limjoco-Antonio AD, Janda WM, Schreckenberger PC. Arcanobacterium haemolyticum sinusitis and orbital cellulitis. Pediatr Infect Dis J 2003; 22:465–467. PubMed doi:10.1097/00006454-200305000-00018
Worthington MG, Daly BD, Smith FE. Corynebacterium hemolyticum endocarditis on a native valve. South Med J 1985; 78:1261–1262. PubMed
Minárik T, Sufliarsky J, Trupl J, Krcmery V, Jr. Arcanobacterium haemolyticum invasive infections, including meningitis in cancer patients. BMC. J Infect 1997; 34:91. PubMed doi:10.1016/S0163-4453(97)80023-0
Farmer AD, Bruckner Holt CE, Le Roux G, Butterworth JR. Spontaneous bacterial peritonitis due to Arcanobacterium haemolyticum. BMC. J Infect 2007; 54:516. PubMed doi:10.1016/j.jinf.2006.09.013
Hoosen AA, Rasool MN, Roux L. Posttraumatic ankle joint infection with Arcanobacterium haemolyticum: a case report. J Infect Dis 1990; 162:780–781. PubMed
Goyal R, Singh NP, Mathur M. Septic arthritis due to Arcanobacterium haemolyticum. Indian J Med Microbiol 2005; 23:63–65. PubMed doi:10.4103/0255-0857.13879
Ben-Yaacob D, Waron M, Boldur I, Gil I, Sompolinsky D. Septicemia due to Corynebacterium haemolyticum. Isr J Med Sci 1984; 20:431–433. PubMed
Tan TY, Ng SY, Thomas H, Chan BK. Arcanobacterium haemolyticum bacteraemia and soft-tissue infections: case report and review of the literature. J Infect 2006; 53:e69–e74. PubMed doi:10.1016/j.jinf.2005.10.008
Pânzaru C, Taranu T. Venous ulcer infection caused by Arcanobacterium haemolyticum. Roum Arch Microbiol Immunol 2001; 60:323–327. PubMed
Ceilley RI. Foot ulceration and vertebral osteomyelitis with Corynebacterium haemolyticum. Arch Dermatol 1977; 113:646–647. PubMed doi:10.1001/archderm.113.5.646
Barker KF, Renton NE, Lee PY, James DH. Arcanobacterium haemolyticum wound infection. J Infect 1992; 24:214–215. PubMed doi:10.1016/0163-4453(92)93110-C
Ritter E, Kaschner A, Becker C, Becker-Boost E, Wirsing von Konig CH, Finger H. Isolation of Arcanobacterium haemolyticum from an infected foot wound. Eur J Clin Microbiol Infect Dis 1993; 12:473–474. PubMed doi:10.1007/BF01967447
Hassan AA, Ulbegi-Mohyla H, Kanbar T, Alber J, Lammler C, Abdulmawjood A, Zschock M, Weiss R. Phenotypic and genotypic characterization of Arcanobacterium haemolyticum isolates from infections of horses. J Clin Microbiol 2009; 47:124–128. PubMed doi:10.1128/JCM.01933-08
Richardson A, Smith PJ. Herd fertility and Corynebacterium haemolyticum in bovine semen. Vet Rec 1968; 83:156–157. PubMed
Roberts RJ. Isolation of Corynebacterium haemolyticum from a case of ovine pneumonia. Vet Rec 1969; 84:490. PubMed
Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. 1994. Bergey’s manual of determinative bacteriology, 9th ed. Williams & Wilkins, Baltimore.
Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007; 57:2259–2261. PubMed doi:10.1099/ijs.0.64915-0
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA Gene database and workbench compatible with ARB. Appl Environ Microbiol 2006; 72:5069–5072. PubMed doi:10.1128/AEM.03006-05
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552. PubMed
Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics 2002; 18:452–464. PubMed doi:10.1093/bioinformatics/18.3.452
Stamatakis A, Hoover P, Rougemont J. A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 2008; 57:758–771. PubMed doi:10.1080/10635150802429642
Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary? Lect Notes Comput Sci 2009; 5541:184–200. doi:10.1007/978-3-642-02008-713
Liolios K, Chen IM, Mavromatis K, Tavernarakis N, Hugenholtz P, Markowitz VM, Kyrpides NC. The Genomes On Line Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2010; 38:D346–D354. PubMed doi:10.1093/nar/gkp848
Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 2008; 26:541–547. PubMed doi:10.1038/nbt1360
Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 1990; 87:4576–4579. PubMed doi:10.1073/pnas.87.12.4576
Garrity GM, Holt JG. The Road Map to the Manual. In: Garrity GM, Boone DR, Castenholz RW (eds), Bergey’s Manual of Systematic Bacteriology, Second Edition, Volume 1, Springer, New York, 2001, p. 119–169.
Skerman VBD, McGowan V, Sneath PHA. Approved Lists of Bacterial Names. Int J Syst Bacteriol 1980; 30:225–420. doi:10.1099/00207713-30-1-225
Validation List no. 10. Validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int J Syst Bacteriol 1983; 33:438–440. doi:10.1099/00207713-33-2-438
Coman G, Panzaru C, Dahorea C. The isolation of Arcanobacterium haemolyticum from the pharyngeal exudate of children. Bacteriol Virusol Parazitol Epidemiol 1996; 41:141–144. PubMed
Classification of bacteria and archaea in risk groups. TRBA 466.
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. Nat Genet 2000; 25:25–29. PubMed doi:10.1038/75556
Schofield GM, Schaal KP. A numerical taxonomic study of members of the Actinomycetaceae and related taxa. J Gen Microbiol 1981; 127:237–259. PubMed
DSMZ. 2001. Catalogue of Strains, 7th ed. German Collection of Microorganisms and Cell Cultures, Braunschweig.
Klenk H-P, Göker M. En route to a genome-based classification of Archaea and Bacteria? Syst Appl Microbiol 2010; 33:175–182. PubMed doi:10.1016/j.syapm.2010.03.003
Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 2009; 462:1056–1060. PubMed doi:10.1038/nature08656
List of growth media used at DSMZ: http://www.dsmz.de/microorganisms/media_list.php.
Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829. PubMed doi:10.1101/gr.074492.107
Cliff S. Han, Patrick Chain. 2006. Finishing repeat regions automatically with Dupfinisher. In: Proceeding of the 2006 international conference on bioinformatics & computational biology. Hamid R Arabnia & Homayoun Valafar (eds), CSREA Press. June 26–29, 2006: 141–146.
Sims D, Brettin T, Detter JC, Han C, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, Chen F, Lucas S, et al. Complete genome sequence of Kytococcus sedentarius type strain (541T). Stand Genomic Sci 2009; 1:12–20. doi:10.4056/sigs.761
Lapidus A, LaButti K, Foster B, Lowry S, Trong S, Goltsman E. POLISHER: An effective tool for using ultra short reads in microbial genome assembly and finishing. AGBT, Marco Island, FL, 2008.
Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119. PubMed doi:10.1186/1471-2105-11-119
Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods 2010; 7:455–457. PubMed doi:10.1038/nmeth.1457
Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 2009; 25:2271–2278. PubMed doi:10.1093/bioinformatics/btp393
Acknowledgements
We would like to gratefully acknowledge the help of Gabriele Gehrich-Schröter for growing A. haemolyticum cultures and Susanne Schneider for DNA extraction and quality analysis (both at DSMZ). This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, UT-Battelle and Oak Ridge National Laboratory under contract DE-AC05-00OR22725, as well as German Research Foundation (DFG) INST 599/1-1 and SI 1352/1-2 and Thailand Research Fund Royal Golden Jubilee Ph.D. Program No. PHD/0019/2548 for MY.
Author information
Authors and Affiliations
Rights and permissions
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
About this article
Cite this article
Yasawong, M., Teshima, H., Lapidus, A. et al. Complete genome sequence of Arcanobacterium haemolyticum type strain (11018T). Stand in Genomic Sci 3, 126–135 (2010). https://doi.org/10.4056/sigs.1123072
Published:
Issue Date:
DOI: https://doi.org/10.4056/sigs.1123072