Renwick WH, Sleezer RO, Buddemeier RW, Smith SV. Small artificial ponds in the United States: impacts on sedimentation and carbon budget. In: Proceedings of the eighth Federal Interagency Sedimentation Conference; 2006. p. 738–44.
Google Scholar
Oertli B, Biggs J, Céréghino R, Grillas P, Joly P, Lachavanne JB. Conservation and monitoring of pond biodiversity: introduction. Aquat Conserv Mar Freshwat Ecosyst. 2005;15(6):535–40.
Article
Google Scholar
Søndergaard M, Jeppesen E, Jensen JP. Pond or lake: does it make any difference? Arch Hydrobiol. 2005;162(2):143–65.
Article
CAS
Google Scholar
Davies EV, Winstanley C, Fothergill JL, James CE. The role of temperate bacteriophages in bacterial infection. FEMS Microbiol Lett. 2016;363(5):fnw015.
Article
CAS
Google Scholar
Taylor S, Gilbert P, Cooke D, Deary M, Jeffries M. High carbon burial rates by small ponds in the landscape. Front Ecol Environ. 2018;17(1):25–31.
Article
Google Scholar
Chopyk J, Allard S, Nasko DJ, Bui A, Mongodin EF, Sapkota AR. Agricultural freshwater pond supports diverse and dynamic bacterial and viral populations. Front Microbiol. 2018;9:792.
Article
Google Scholar
Biggs J, Von Fumetti S, Kelly-Quinn M. The importance of small waterbodies for biodiversity and ecosystem services: implications for policy makers. Hydrobiologia. 2017;793(1):3–39.
Article
Google Scholar
Chou W-W, Lee S-H, Wu C-F. Evaluation of the preservation value and location of farm ponds in Yunlin County, Taiwan. Int J Environ Res Public Health. 2014;11(1):548–72.
Article
Google Scholar
Biggs J, Williams P, Whitfield M, Nicolet P, Weatherby A. 15 years of pond assessment in Britain: results and lessons learned from the work of pond conservation. Aquat Conserv Mar Freshwat Ecosyst. 2005;15(6):693–714.
Article
Google Scholar
Kimbrel JA, Ballor N, Wu Y-W, David MM, Hazen TC, Simmons BA, et al. Microbial community structure and functional potential along a hypersaline gradient. Front Microbiol. 2018;9:1492.
Article
Google Scholar
Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol. 2000;66(7):3052–7.
Article
Google Scholar
Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne J-B. Does size matter? The relationship between pond area and biodiversity. Biol Conserv. 2002;104(1):59–70.
Article
Google Scholar
Crevecoeur S, Vincent WF, Comte J, Lovejoy C. Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems. Front Microbiol. 2015;6:192.
Article
Google Scholar
Qin Y, Hou J, Deng M, Liu Q, Wu C, Ji Y, et al. Bacterial abundance and diversity in pond water supplied with different feeds. Sci Rep. 2016;6:35232.
Article
CAS
Google Scholar
Arias C, Abernathy J, Liu Z. Combined use of 16S ribosomal DNA and automated ribosomal intergenic spacer analysis to study the bacterial community in catfish ponds. Lett Appl Microbiol. 2006;43(3):287–92.
Article
CAS
Google Scholar
Deng M, Hou J, Song K, Chen J, Gou J, Li D, et al. Community metagenomic assembly reveals microbes that contribute to the vertical stratification of nitrogen cycling in an aquaculture pond. Aquaculture. 2020;520:734911.
Article
CAS
Google Scholar
Boix D, Biggs J, Céréghino R, Hull AP, Kalettka T, Oertli B. Pond research and management in Europe:“small is beautiful”. Hydrobiologia. 2012;689(1):1–9.
Article
Google Scholar
Kirchman DL. Processes in microbial ecology. New York: Oxford University Press; 2018.
Book
Google Scholar
Harper LR, Buxton AS, Rees HC, Bruce K, Brys R, Halfmaerten D, et al. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia. 2018;826(1):1–17.
Google Scholar
Water M. WSUD engineering procedures: Stormwater. Melbourne: CSIRO Publishing; 2005.
Google Scholar
Pachepsky Y, Kierzewski R, Stocker M, Sellner K, Mulbry W, Lee H, et al. Temporal stability of Escherichia coli concentrations in waters of two irrigation ponds in Maryland. Appl Environ Microbiol. 2018;84(3):e01876–17.
Google Scholar
Paerl HW, Huisman J. Blooms like it hot. Science. 2008;320(5872):57–8.
Article
CAS
Google Scholar
Mrdjen I, Fennessy S, Schaal A, Dennis R, Slonczewski JL, Lee S, et al. Tile drainage and anthropogenic land use contribute to harmful algal blooms and microbiota shifts in inland Water bodies. Environ Sci Technol. 2018;52(15):8215–23.
Article
CAS
Google Scholar
Chin DA. Linking pathogen sources to water quality in small urban streams. J Environ Eng. 2009;136(2):249–53.
Article
CAS
Google Scholar
Gu G, Luo Z, Cevallos-Cevallos JM, Adams P, Vellidis G, Wright A, et al. Factors affecting the occurrence of Escherichia coli O157 contamination in irrigation ponds on produce farms in the Suwannee River watershed. Can J Microbiol. 2012;59(3):175–82.
Article
CAS
Google Scholar
Pandey PK, Kass PH, Soupir ML, Biswas S, Singh VP. Contamination of water resources by pathogenic bacteria. AMB Express. 2014;4(1):51.
Article
Google Scholar
Greene S, Daly E, Talbot E, Demma L, Holzbauer S, Patel N, et al. Recurrent multistate outbreak of salmonella Newport associated with tomatoes from contaminated fields, 2005. Epidemiol Infect. 2008;136(2):157–65.
Article
CAS
Google Scholar
Zhang S, Pang S, Wang P, Wang C, Han N, Liu B, et al. Antibiotic concentration and antibiotic-resistant bacteria in two shallow urban lakes after stormwater event. Environ Sci Pollut Res. 2016;23(10):9984–92.
Article
CAS
Google Scholar
Van Hoek AH, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJ. Acquired antibiotic resistance genes: an overview. Front Microbiol. 2011;2:203.
Google Scholar
Brookes JD, Antenucci J, Hipsey M, Burch MD, Ashbolt NJ, Ferguson C. Fate and transport of pathogens in lakes and reservoirs. Environ Int. 2004;30(5):741–59.
Article
Google Scholar
Sharpton TJ. An introduction to the analysis of shotgun metagenomic data. Front Plant Sci. 2014;5:209.
Article
Google Scholar
Wommack KE, Nasko DJ, Chopyk J, Sakowski EG. Counts and sequences, observations that continue to change our understanding of viruses in nature. J Microbiol. 2015;53(3):181–92.
Article
CAS
Google Scholar
Malki K, Rosario K, Sawaya NA, Székely AJ, Tisza MJ, Breitbart M. Prokaryotic and viral community composition of Freshwater Springs in Florida. USA. Mbio. 2020;11(2):e00436–20.
CAS
Google Scholar
de Cárcer DA, López-Bueno A, Pearce DA, Alcamí A. Biodiversity and distribution of polar freshwater DNA viruses. Sci Adv. 2015;1(5):e1400127.
Article
CAS
Google Scholar
Roux S, Enault F, Robin A, Ravet V, Personnic S, Theil S, et al. Assessing the diversity and specificity of two freshwater viral communities through metagenomics. PLoS One. 2012;7(3):e33641.
Article
CAS
Google Scholar
Watkins SC, Kuehnle N, Ruggeri CA, Malki K, Bruder K, Elayyan J, et al. Assessment of a metaviromic dataset generated from nearshore Lake Michigan. Mar Freshw Res. 2016;67(11):1700–8.
Article
Google Scholar
Skvortsov T, de Leeuwe C, Quinn JP, McGrath JW, Allen CC, McElarney Y, et al. Metagenomic characterisation of the viral community of Lough Neagh, the largest freshwater lake in Ireland. PLoS One. 2016;11(2):e0150361.
Article
CAS
Google Scholar
Wommack KE, Colwell RR. Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev. 2000;64(1):69–114.
Article
CAS
Google Scholar
Brüssow H, Canchaya C, Hardt W-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68(3):560–602.
Article
CAS
Google Scholar
Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, et al. Cryptic prophages help bacteria cope with adverse environments. Nat Commun. 2010;1:147.
Article
CAS
Google Scholar
Bruder K, Maiki K, Cooper A, Sible E, Shapiro JW, Watkins SC, et al. Freshwater Metaviromics and bacteriophages: a current assessment of the state of the art in relation to Bioinformatic challenges: supplementary issue: bioinformatics methods and applications for big Metagenomics data. Evol Bioinforma. 2016;12:EBO. S38549.
Article
Google Scholar
Corinaldesi C, Tangherlini M, Dell’Anno A. From virus isolation to metagenome generation for investigating viral diversity in deep-sea sediments. Sci Rep. 2017;7(1):1–12.
Article
CAS
Google Scholar
John SG, Mendez CB, Deng L, Poulos B, Kauffman AKM, Kern S, et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ Microbiol Rep. 2011;3(2):195–202.
Article
CAS
Google Scholar
Chopyk J, Chattopadhyay S, Kulkarni P, Claye E, Babik KR, Reid MC, et al. Mentholation affects the cigarette microbiota by selecting for bacteria resistant to harsh environmental conditions and selecting against potential bacterial pathogens. Microbiome. 2017;5(1):22.
Article
Google Scholar
Holm JB, Humphrys MS, Robinson CK, Settles ML, Ott S, Fu L, et al. Ultrahigh-throughput multiplexing and sequencing of> 500-base-pair amplicon regions on the Illumina HiSeq 2500 platform. MSystems. 2019;4(1):e00029–19.
Article
CAS
Google Scholar
Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014;2(1):1–7.
Article
Google Scholar
Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics. 2012;13(1):31.
Article
CAS
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.
Article
CAS
Google Scholar
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
Article
Google Scholar
Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic analysis with bioconductor. Nat Methods. 2015;12(2):115–21.
Article
CAS
Google Scholar
Paulson JN, Pop M, Bravo HC, Paulson MJN. OTU TU, biocViews bioinformatics D: package ‘metagenomeSeq’; 2013.
Google Scholar
Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, et al. The vegan package. Community ecology package; 2007. p. 631–7.
Google Scholar
McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data; 2013.
Google Scholar
Vavrek MJ. Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontol Electron. 2011;14(1):16.
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer Science & Business Media; 2009. p. 224.
Book
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):btu170.
Article
CAS
Google Scholar
Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63.
Article
CAS
Google Scholar
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–6.
Article
CAS
Google Scholar
Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006;34(19):5623–30.
Article
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
CAS
Google Scholar
Consortium U. The universal protein resource (UniProt) in 2010. Nucleic Acids Res. 2009;38(suppl_1):D142–8.
Article
CAS
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
Google Scholar
Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17(1):1.
Article
CAS
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
CAS
Google Scholar
Kolde R, Kolde MR. Package ‘pheatmap’; 2018.
Google Scholar
McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57(7):AAC. 00419–3.
Article
CAS
Google Scholar
Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit M-A. Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. ISME J. 2017;11(1):237.
Article
CAS
Google Scholar
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–4.
Article
CAS
Google Scholar
Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66.
Article
CAS
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Article
CAS
Google Scholar
Ballif M, Harino P, Ley S, Coscolla M, Niemann S, Carter R, et al. Drug resistance-conferring mutations in mycobacterium tuberculosis from Madang, Papua New Guinea. BMC Microbiol. 2012;12(1):191.
Article
CAS
Google Scholar
Sulochana S, Narayanan S, Paramasivan C, Suganthi C, Narayanan P. Analysis of fluoroquinolone resistance in clinical isolates of mycobacterium tuberculosis from India. J Chemother. 2007;19(2):166–71.
Article
CAS
Google Scholar
De Smet KA, Kempsell KE, Gallagher A, Duncan K, Young DB. Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from mycobacterium tuberculosis. Microbiology. 1999;145(11):3177–84.
Article
Google Scholar
Sajduda A, Brzostek A, Popławska M, Augustynowicz-Kopeć E, Zwolska Z, Niemann S, et al. Molecular characterization of rifampin-and isoniazid-resistant mycobacterium tuberculosis strains isolated in Poland. J Clin Microbiol. 2004;42(6):2425–31.
Article
CAS
Google Scholar
Zuurmond A-M, Olsthoorn-Tieleman LN, de Graaf JM, Parmeggiani A, Kraal B. Mutant EF-tu species reveal novel features of the enacyloxin IIa inhibition mechanism on the ribosome1. J Mol Biol. 1999;294(3):627–37.
Article
CAS
Google Scholar
Vilcheze C, Weisbrod TR, Chen B, Kremer L, Hazbón MH, Wang F, et al. Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob Agents Chemother. 2005;49(2):708–20.
Article
CAS
Google Scholar
Krishnamurthy SR, Wang D. Origins and challenges of viral dark matter. Virus Res. 2017;239:136–42.
Article
CAS
Google Scholar
Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev. 2006;81(2):163–82.
Article
Google Scholar
McDonald RI, Green P, Balk D, Fekete BM, Revenga C, Todd M, et al. Urban growth, climate change, and freshwater availability. Proc Natl Acad Sci. 2011;108(15):6312–7.
Article
CAS
Google Scholar
Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev. 2011;75(1):14–49.
Article
CAS
Google Scholar
Zhang D, Zhang W, Liang Y. Bacterial community in a freshwater pond responding to the presence of perfluorooctanoic acid (PFOA). Environ Technol. 2019;9:1–11.
Google Scholar
Chopyk J, Nasko DJ, Allard S, Callahan MT, Bui A, Ferelli AMC, et al. Metagenomic analysis of bacterial and viral assemblages from a freshwater creek and irrigated field reveals temporal and spatial dynamics. Sci Total Environ. 2020;706:135395.
Article
CAS
Google Scholar
Cha Y, Cho KH, Lee H, Kang T, Kim JH. The relative importance of water temperature and residence time in predicting cyanobacteria abundance in regulated rivers. Water Res. 2017;124:11–9.
Article
CAS
Google Scholar
Beaulieu M, Pick F, Gregory-Eaves I. Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnol Oceanogr. 2013;58(5):1736–46.
Article
CAS
Google Scholar
Dodds WK, Gudder DA, Mollenhauer D. The ecology of Nostoc. J Phycol. 1995;31(1):2–18.
Article
CAS
Google Scholar
Kurmayer R. The toxic CYANOBACTERIUM NOSTOC SP. strain 152 produces highest amounts of microcystin and NOSTOPHYCIN under stress conditions 1. J Phycol. 2011;47(1):200–7.
Article
CAS
Google Scholar
Oudra B, Dadi-El Andaloussi M, Vasconcelos V. Identification and quantification of microcystins from a Nostoc muscorum bloom occurring in Oukaïmeden River (high-atlas mountains of Marrakech, Morocco). Environ Monit Assess. 2009;149(1–4):437–44.
Article
CAS
Google Scholar
Nutrient Policy and Data: Health and Ecological Effects. https://www.epa.gov/nutrient-policy-data/health-and-ecological-effects. Accessed Jan 2019.
Ueno Y, Nagata S, Tsutsumi T, Hasegawa A, Watanabe MF, Park H-D, et al. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis. 1996;17(6):1317–21.
Article
CAS
Google Scholar
Lun Z, Hai Y, Kun C. Relationship between microcystin in drinking water and colorectal cancer. Biomed Environ Sci. 2002;15(2):166–71.
Google Scholar
Eiler A, Bertilsson S. Flavobacteria blooms in four eutrophic lakes: linking population dynamics of freshwater bacterioplankton to resource availability. Appl Environ Microbiol. 2007;73(11):3511–8.
Article
CAS
Google Scholar
Ulrich N, Rosenberger A, Brislawn C, Wright J, Kessler C, Toole D, et al. Restructuring of the aquatic bacterial community by hydric dynamics associated with superstorm sandy. Appl Environ Microbiol. 2016;82(12):3525–36.
Article
CAS
Google Scholar
Kan J. Storm events restructured bacterial community and their biogeochemical potentials. J Geophys Res Biogeo. 2018;123(7):2257–69.
Article
CAS
Google Scholar
Layton A, McKay L, Williams D, Garrett V, Gentry R, Sayler G. Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol. 2006;72(6):4214–24.
Article
CAS
Google Scholar
Fiksdal L, Maki J, LaCroix S, Staley J. Survival and detection of Bacteroides spp., prospective indicator bacteria. Appl Environ Microbiol. 1985;49(1):148–50.
Article
CAS
Google Scholar
Dick LK, Bernhard AE, Brodeur TJ, Santo Domingo JW, Simpson JM, Walters SP, et al. Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Appl Environ Microbiol. 2005;71(6):3184–91.
Article
CAS
Google Scholar
D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011;477(7365):457.
Article
CAS
Google Scholar
Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10(12s):S122.
Article
CAS
Google Scholar
Marti E, Variatza E, Balcazar JL. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 2014;22(1):36–41.
Article
CAS
Google Scholar
Yang Y, Song W, Lin H, Wang W, Du L, Xing W. Antibiotics and antibiotic resistance genes in global lakes: a review and meta-analysis. Environ Int. 2018;116:60–73.
CAS
Google Scholar
Czekalski N, Sigdel R, Birtel J, Matthews B, Bürgmann H. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Environ Int. 2015;81:45–55.
CAS
Google Scholar
Watve MG, Tickoo R, Jog MM, Bhole BD. How many antibiotics are produced by the genus Streptomyces? Arch Microbiol. 2001;176(5):386–90.
CAS
Google Scholar
Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One. 2012;7(4):e34953.
CAS
Google Scholar
Thaker MN, Wang W, Spanogiannopoulos P, Waglechner N, King AM, Medina R, et al. Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat Biotechnol. 2013;31(10):922.
Article
CAS
Google Scholar
Egan S, Wiener P, Kallifidas D, Wellington E. Phylogeny of Streptomyces species and evidence for horizontal transfer of entire and partial antibiotic gene clusters. Antonie Van Leeuwenhoek. 2001;79(2):127–33.
CAS
Google Scholar
Balcazar JL. Bacteriophages as vehicles for antibiotic resistance genes in the environment. PLoS Pathog. 2014;10(7):e1004219.
Google Scholar
Moon K, Jeon JH, Kang I, Park KS, Lee K, Cha C-J, et al. Freshwater viral metagenome reveals novel and functional phage-borne antibiotic resistance genes. Microbiome. 2020;8(1):1–15.
Google Scholar
Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, et al. Functional metagenomic profiling of nine biomes. Nature. 2008;452(7187):629.
CAS
Google Scholar
Tamaki H, Zhang R, Angly FE, Nakamura S, Hong PY, Yasunaga T, et al. Metagenomic analysis of DNA viruses in a wastewater treatment plant in tropical climate. Environ Microbiol. 2012;14(2):441–52.
CAS
Google Scholar
Chopyk J, Kulkarni P, Nasko DJ, Bradshaw R, Kniel KE, Chiu P, et al. Zero-valent iron sand filtration reduces concentrations of virus-like particles and modifies virome community composition in reclaimed water used for agricultural irrigation. BMC Res Notes. 2019;12(1):223.
Article
Google Scholar
Segobola J, Adriaenssens E, Tsekoa T, Rashamuse K, Cowan D. Exploring viral diversity in a unique south African soil habitat. Sci Rep. 2018;8(1):111.
Article
CAS
Google Scholar
Williamson S, Houchin L, McDaniel L, Paul J. Seasonal variation in lysogeny as depicted by prophage induction in Tampa Bay. Florida. Appl Environ Microbiol. 2002;68(9):4307–14.
Article
CAS
Google Scholar
Payet JP, Suttle CA. To kill or not to kill: the balance between lytic and lysogenic viral infection is driven by trophic status. Limnol Oceanogr. 2013;58(2):465–74.
Article
Google Scholar
Lara E, Vaqué D, Sà EL, Boras JA, Gomes A, Borrull E, et al. Unveiling the role and life strategies of viruses from the surface to the dark ocean. Sci Adv. 2017;3(9):e1602565.
Article
CAS
Google Scholar
Knowles B, Silveira C, Bailey B, Barott K, Cantu V, Cobián-Güemes A, et al. Lytic to temperate switching of viral communities. Nature. 2016;531(7595):466.
Article
CAS
Google Scholar
Silveira CB, Rohwer FL. Piggyback-the-winner in host-associated microbial communities. NPJ Biofilms Microbiomes. 2016;2:16010.
Article
Google Scholar
Costeira R, Doherty R, Allen CC, Larkin MJ, Kulakov LA. Analysis of viral and bacterial communities in groundwater associated with contaminated land. Sci Total Environ. 2019;656:1413–26.
Article
CAS
Google Scholar
Hill MJ, Hassall C, Oertli B, Fahrig L, Robson BJ, Biggs J, et al. New policy directions for global pond conservation. Conserv Lett. 2018;11(5):e12447.
Article
Google Scholar