Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320(5879):1034–9. https://doi.org/10.1126/science.1153213.
Article
CAS
PubMed
Google Scholar
Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 2007;5(10):782–91. Epub 2007/09/15. https://doi.org/10.1038/nrmicro1747.
Article
CAS
PubMed
Google Scholar
Heintz-Buschart A, Wilmes P. Human Gut Microbiome: Function Matters. Trends Microbiol. 2018;26(7):563–74. https://doi.org/10.1016/j.tim.2017.11.002.
Article
CAS
PubMed
Google Scholar
Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A. The importance of the microbiome of the plant holobiont. New Phytol. 2015;206(4):1196–206.
Article
PubMed
Google Scholar
Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T. The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiol Rev. 2013;37(3):462–76.
Article
CAS
PubMed
Google Scholar
Sun MY, Dafforn KA, Johnston EL, Brown MV. Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients. Environ Microbiol. 2013;15(9):2517–31. https://doi.org/10.1111/1462-2920.12133.
Article
PubMed
Google Scholar
Wemheuer B, Wemheuer F, Hollensteiner J, Meyer F-D, Voget S, Daniel R. The green impact: bacterioplankton response towards a phytoplankton spring bloom in the southern North Sea assessed by comparative metagenomic and metatranscriptomic approaches. Front Microbiol. 2015;6:805. https://doi.org/10.3389/fmicb.2015.00805.
Article
PubMed
PubMed Central
Google Scholar
Polónia ARM, Cleary DFR, Freitas R, Gomes NCM, de Voogd NJ. Archaeal and bacterial communities of Xestospongia testudinaria and sediment differ in diversity, composition and predicted function in an Indonesian coral reef environment. J Sea Res. 2017;119:37–53. https://doi.org/10.1016/j.seares.2016.10.007.
Article
Google Scholar
Yu H, Ling N, Wang T, Zhu C, Wang Y, Wang S, et al. Responses of soil biological traits and bacterial communities to nitrogen fertilization mediate maize yields across three soil types. Soil Tillage Res. 2019;185:61–9. https://doi.org/10.1016/j.still.2018.08.017.
Article
Google Scholar
Tripathi BM, Kim M, Kim Y, Byun E, Yang J-W, Ahn J, et al. Variations in bacterial and archaeal communities along depth profiles of Alaskan soil cores. Sci Rep. 2018;8(1):504. https://doi.org/10.1038/s41598-017-18777-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zozaya-Valdés E, Roth-Schulze AJ, Egan S, Thomas T. Microbial community function in the bleaching disease of the marine macroalgae Delisea pulchra. Environ Microbiol. 2017;19(8):3012–24. https://doi.org/10.1111/1462-2920.13758.
Article
CAS
PubMed
Google Scholar
Granzow S, Kaiser K, Wemheuer B, Pfeiffer B, Daniel R, Vidal S, et al. The effects of cropping regimes on fungal and bacterial communities of wheat and faba bean in a greenhouse pot experiment differ between plant species and compartment. Front Microbiol. 2017;8(902). https://doi.org/10.3389/fmicb.2017.00902.
Hartman K, van der Heijden MGA, Roussely-Provent V, Walser J-C, Schlaeppi K. Deciphering composition and function of the root microbiome of a legume plant. Microbiome. 2017;5(1):2. https://doi.org/10.1186/s40168-016-0220-z.
Article
PubMed
PubMed Central
Google Scholar
Louca S, Polz MF, Mazel F, Albright MB, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nature Ecology Evolution. 2018;2(6):936–43. https://doi.org/10.1038/s41559-018-0519-1.
Article
PubMed
Google Scholar
Birrer SC, Dafforn KA, Sun MY, Williams RBH, Potts J, Scanes P, et al. Using meta-omics of contaminated sediments to monitor changes in pathways relevant to climate regulation. Environ Microbiol. 2019;21(1):389–401. https://doi.org/10.1111/1462-2920.14470.
Article
CAS
PubMed
Google Scholar
Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc National Acad Sci. 2008;105(Supplement 1):11512–9. https://doi.org/10.1073/pnas.0801925105.
Article
Google Scholar
Jurburg SD, Salles JF. Functional redundancy and ecosystem function—the soil microbiota as a case study. In: Lo YH, Blanco JA, Roy S, editors. Biodiversity in Ecosystems-Linking Structure and Function: InTech; 2015. p. 29–49.
Google Scholar
Moya A, Ferrer M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 2016;24(5):402–13. https://doi.org/10.1016/j.tim.2016.02.002.
Article
CAS
PubMed
Google Scholar
Gamfeldt L, Hillebrand H, Jonsson PR. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology. 2008;89(5):1223–1231. doi: https://doi.org/10.1890/06-2091.1.
Beier S, Shen D, Schott T, Jürgens K. Metatranscriptomic data reveal the effect of different community properties on multifunctional redundancy. Mol Ecol. 2017;26(24):6813–26. https://doi.org/10.1111/mec.14409.
Article
CAS
PubMed
Google Scholar
Miki T, Yokokawa T, Matsui K. Biodiversity and multifunctionality in a microbial community: a novel theoretical approach to quantify functional redundancy. Proc R Soc B Biol Sci. 2014;281(1776):20132498. https://doi.org/10.1098/rspb.2013.2498.
Article
Google Scholar
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotech. 2013;31(9):814–21. https://doi.org/10.1038/nbt.2676
http://www.nature.com/nbt/journal/v31/n9/abs/nbt.2676.html#supplementary-information.
Article
CAS
Google Scholar
Aßhauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics. 2015;31(17):2882–4. https://doi.org/10.1093/bioinformatics/btv287.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iwai S, Weinmaier T, Schmidt BL, Albertson DG, Poloso NJ, Dabbagh K, et al. Piphillin: improved prediction of metagenomic content by direct inference from human microbiomes. PLoS One. 2016;11(11):e0166104. https://doi.org/10.1371/journal.pone.0166104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353(6305):1272–7. https://doi.org/10.1126/science.aaf4507.
Article
CAS
PubMed
Google Scholar
Bowman JS, Ducklow HW. Microbial communities can be described by metabolic structure: a general framework and application to a seasonally variable, depth-stratified microbial community from the coastal West Antarctic peninsula. PLoS One. 2015;10(8):e0135868. https://doi.org/10.1371/journal.pone.0135868.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koo H, Hakim JA, Morrow CD, Eipers PG, Davila A, Andersen DT, et al. Comparison of two bioinformatics tools used to characterize the microbial diversity and predictive functional attributes of microbial mats from Lake Obersee, Antarctica. J Microbiol Methods. 2017;140:15–22. https://doi.org/10.1016/j.mimet.2017.06.017.
Article
PubMed
PubMed Central
Google Scholar
Kaiser K, Wemheuer B, Korolkow V, Wemheuer F, Nacke H, Schöning I, et al. Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Sci Rep. 2016;6:33696. https://doi.org/10.1038/srep33696.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herzog S, Wemheuer F, Wemheuer B, Daniel R. Effects of fertilization and sampling time on composition and diversity of entire and active bacterial communities in German grassland soils. PLoS One. 2015;10(12):e0145575. https://doi.org/10.1371/journal.pone.0145575.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berkelmann D, Schneider D, Engelhaupt M, Heinemann M, Christel S, Wijayanti M, et al. How rainforest conversion to agricultural systems in Sumatra (Indonesia) affects active soil bacterial communities. Front Microbiol. 2018;9(2381). https://doi.org/10.3389/fmicb.2018.02381.
Semedo M, Song B, Sparrer T, Phillips RL. Antibiotic effects on microbial communities responsible for Denitrification and N(2) O production in grassland soils. Front Microbiol. 2018;9:2121. https://doi.org/10.3389/fmicb.2018.02121.
Article
PubMed
PubMed Central
Google Scholar
Wemheuer B, Wemheuer F, Meier D, Billerbeck S, Giebel H-A, Simon M, et al. Linking compositional and functional predictions to decipher the biogeochemical significance in DFAA turnover of abundant bacterioplankton lineages in the North Sea. Microorganisms. 2017;5(4). https://doi.org/10.3390/microorganisms5040068.
Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. The ISME J. 2018;12(10):2470–8. https://doi.org/10.1038/s41396-018-0158-1.
Article
CAS
PubMed
Google Scholar
Su Z, Dai T, Tang Y, Tao Y, Huang B, Mu Q, et al. Sediment bacterial community structures and their predicted functions implied the impacts from natural processes and anthropogenic activities in coastal area. Mar Pollut Bull. 2018;131:481–95. https://doi.org/10.1016/j.marpolbul.2018.04.052.
Article
CAS
PubMed
Google Scholar
Wilkinson TJ, Huws SA, Edwards JE, Kingston-Smith AH, Siu-Ting K, Hughes M, et al. CowPI: a rumen microbiome Focussed version of the PICRUSt functional inference software. Front Microbiol. 2018;9:1095. https://doi.org/10.3389/fmicb.2018.01095.
Article
PubMed
PubMed Central
Google Scholar
Biscarini F, Palazzo F, Castellani F, Masetti G, Grotta L, Cichelli A, et al. Rumen microbiome in dairy calves fed copper and grape-pomace dietary supplementations: composition and predicted functional profile. PLoS One. 2018;13(11):e0205670. https://doi.org/10.1371/journal.pone.0205670.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wemheuer F, Kaiser K, Karlovsky P, Daniel R, Vidal S, Wemheuer B. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Sci Rep. 2017;7:40914. https://doi.org/10.1038/srep40914.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang R, Liu P, Ye W. Illumina-based analysis of endophytic bacterial diversity of tree peony (Paeonia Sect. Moutan) roots and leaves. Brazilian J Microbiol. 2017;48(4):695–705. https://doi.org/10.1016/j.bjm.2017.02.009.
Article
CAS
Google Scholar
Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2(11):1533–42. https://doi.org/10.1038/s41564-017-0012-7.
Article
CAS
PubMed
Google Scholar
Team RC. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2018 2015.
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. https://doi.org/10.1093/bioinformatics/btq461.
Article
CAS
PubMed
Google Scholar
Hyatt D, Chen G, LoCascio P, Land M, Larimer F, Hauser L. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. https://doi.org/10.1186/1471-2105-11-119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meinicke P. UProC: tools for ultra-fast protein domain classification. Bioinformatics. 2015;31(9):1382–8. https://doi.org/10.1093/bioinformatics/btu843.
Article
CAS
PubMed
Google Scholar
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28(14):1823–9. https://doi.org/10.1093/bioinformatics/bts252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(D1):D590–D6. https://doi.org/10.1093/nar/gks1219.
Article
CAS
PubMed
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3. https://doi.org/10.1093/bioinformatics/btu033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59. https://doi.org/10.1038/nmeth.3176.
Article
CAS
PubMed
Google Scholar
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. https://doi.org/10.7717/peerj.2584.
Article
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. The ISME J. 2017;11(12):2639.
Article
PubMed
Google Scholar
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44(D1):D279–D85. https://doi.org/10.1093/nar/gkv1344.
Article
CAS
PubMed
Google Scholar
Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucleic Acids Res. 2003;31(1):371–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh T. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008;9:286–98. https://doi.org/10.1093/bib/bbn013.
Article
CAS
PubMed
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490. https://doi.org/10.1371/journal.pone.0009490.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–72. Epub 2006/07/06. https://doi.org/10.1128/aem.03006-05.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.
Article
PubMed
PubMed Central
Google Scholar
Peter H, Ylla I, Gudasz C, Romaní AM, Sabater S, Tranvik LJ. Multifunctionality and diversity in bacterial biofilms. PLoS One. 2011;6(8):e23225. https://doi.org/10.1371/journal.pone.0023225.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mori AS, Isbell F, Fujii S, Makoto K, Matsuoka S, Osono T. Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecol Lett. 2016;19(3):249–59. https://doi.org/10.1111/ele.12560.
Article
PubMed
Google Scholar
Delgado-Baquerizo M, Giaramida L, Reich PB, Khachane AN, Hamonts K, Edwards C, et al. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J Ecol. 2016;104(4):936–46. https://doi.org/10.1111/1365-2745.12585.
Article
Google Scholar
Fetzer I, Johst K, Schäwe R, Banitz T, Harms H, Chatzinotas A. The extent of functional redundancy changes as species’ roles shift in different environments. Proc National Acad Sci United States of America. 2015;112(48):14888–93. Epub 11/17. https://doi.org/10.1073/pnas.1505587112.
Article
CAS
Google Scholar
Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine Bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336(6081):608–11. https://doi.org/10.1126/science.1218344.
Article
CAS
PubMed
Google Scholar