Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12(10):686–98.
Article
CAS
PubMed
Google Scholar
Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, Kassabgy M, Huang SX, Mann AJ, Waldmann J, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336(6081):608–11.
Article
CAS
PubMed
Google Scholar
Wemheuer B, Gullert S, Billerbeck S, Giebel HA, Voget S, Simon M, Daniel R. Impact of a phytoplankton bloom on the diversity of the active bacterial community in the southern North Sea as revealed by metatranscriptomic approaches. Fems Microbiol Ecol. 2014;87(2):378–89.
Article
CAS
PubMed
Google Scholar
Buchan A, Gonzalez JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol. 2005;71(10):5665–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brinkhoff T, Giebel HA, Simon M. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol. 2008;189(6):531–9.
Article
CAS
PubMed
Google Scholar
Giebel HA, Brinkhoff T, Zwisler W, Selje N, Simon M. Distribution of Roseobacter RCA and SAR11 lineages and distinct bacterial communities from the subtropics to the Southern Ocean. Environ Microbiol. 2009;11(8):2164–78.
Article
CAS
PubMed
Google Scholar
Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The family Rhodobacteraceae. In: Rosenberg E, DeLong EF, Stackebrandt E, Lory S, Thompson F, editors. The prokaryotes-alphaproteobacteria and betaproteobacteria, vol. 8. 4th ed. Berlin: Springer; 2014. p. 439–512.
Chapter
Google Scholar
Wagner-Döbler I, Biebl H. Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol. 2006;60:255–80.
Article
PubMed
Google Scholar
Buchan A, González JM. Roseobacter. In: Timmis K, editor. Handbook of Hydrocarbon and Lipid Microbiology. Berlin Heidelberg: Springer; 2010. p. 1335–43.
Chapter
Google Scholar
Brakstad OG, Lodeng AGG. Microbial diversity during biodegradation of crude oil in seawater from the North Sea. Microb Ecol. 2005;49(1):94–103.
Article
CAS
PubMed
Google Scholar
McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ. Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol. 2007;9(1):165–76.
Article
CAS
PubMed
Google Scholar
Arnosti C, Ziervogel K, Yang T, Teske A. Oil-derived marine aggregates – hot spots of polysaccharide degradation by specialized bacterial communities. Deep-Sea Res II. 2016;129:179–86.
Article
CAS
Google Scholar
Sauret C, Böttjer D, Talarmin A, Guigue C, Conan P, Pujo-Pay M, Ghiglione J-F. Top-Down Control of Diesel-Degrading Prokaryotic Communities. Microb Ecol. 2015;70(2):445–58.
Article
CAS
PubMed
Google Scholar
Størdal IF, Olsen AJ, Jenssen BM, Netzer R, Hansen BH, Altin D, Brakstad OG. Concentrations of viable oil-degrading microorganisms are increased in feces from Calanus finmarchicus feeding in petroleum oil dispersions. Mar Pollut Bull. 2015;98(1–2):69–77.
Article
PubMed
Google Scholar
Brito EM, Guyoneaud R, Goni-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MAC, Wasserman JCA, Duran R. Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol. 2006;157(8):752–62.
Article
CAS
PubMed
Google Scholar
Harwati TU, Kasai Y, Kodama Y, Susilaningsih D, Watanabe K. Characterization of diverse hydrocarbon-degrading bacteria isolated from Indonesian seawater. Microbes Environ. 2007;22(4):412–5.
Article
Google Scholar
McNutt MK, Camilli R, Crone TJ, Guthrie GD, Hsieh PA, Ryerson TB, Savas O, Shaffer F. Review of flow rate estimates of the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A. 2012;109(50):20260–7.
Article
PubMed
Google Scholar
Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, et al. Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science. 2010;330(6001):204–8.
Article
CAS
PubMed
Google Scholar
Redmond MC, Valentine DL. Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci. 2012;109(50):20292–7.
Article
CAS
PubMed
Google Scholar
Yang T, Nigro LM, Gutierrez T, D’Ambrosio L, Joye SB, Highsmith R, Teske A. Pulsed blooms and persistent oil-degrading bacterial populations in the water column during and after the Deepwater Horizon blowout. Deep-Sea Res II. 2016;129:282–91.
Article
CAS
Google Scholar
Kleindienst S, Paul JH, Joye SB. Using dispersants after oil spills: impacts on the composition and activity of microbial communities. Nat Rev Microbiol. 2015;13(6):388–96.
Article
CAS
PubMed
Google Scholar
Passow U, Ziervogel K, Asper V, Diercks A. Marine snow formation in the aftermath of the Deepwater Horizon oil spill in the Gulf of Mexico. Environ Res Lett. 2012;7(3):035301.
Article
Google Scholar
Ziervogel K, McKay L, Rhodes B, Osburn CL, Dickson-Brown J, Arnosti C, Teske A. Microbial Activities and Dissolved Organic Matter Dynamics in Oil-Contaminated Surface Seawater from the Deepwater Horizon Oil Spill Site. Plos One. 2012;7(4):e34816.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joye SB, Teske AP, Kostka JE. Microbial Dynamics Following the Macondo Oil Well Blowout across Gulf of Mexico Environments. Bioscience. 2014;64(9):766–77.
Article
Google Scholar
Zech H, Thole S, Schreiber K, Kalhofer D, Voget S, Brinkhoff T, Simon M, Schomburg D, Rabus R. Growth phase-dependent global protein and metabolite profiles of Phaeobacter gallaeciensis strain DSM 17395, a member of the marine Roseobacter-clade. Proteomics. 2009;9(14):3677–97.
Article
CAS
PubMed
Google Scholar
Giebel HA, Kalhoefer D, Gahl-Janssen R, Choo YJ, Lee K, Cho JC, Tindall BJ, Rhiel E, Beardsley C, Aydogmus OO, et al. Planktomarina temperata gen. nov., sp nov., belonging to the globally distributed RCA cluster of the marine Roseobacter clade, isolated from the German Wadden Sea. Int J Syst Evol Microbiol. 2013;63:4207–17.
Article
CAS
PubMed
Google Scholar
Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7(1–2):203–14.
Article
CAS
PubMed
Google Scholar
Ludwig W. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32(4):1363–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dogs M, Voget S, Teshima H, Petersen J, Davenport K, Dalingault H, Chen A, Pati A, Ivanova N, Goodwin LA, et al. Genome sequence of Phaeobacter inhibens type strain (T5(T)), a secondary metabolite producing representative of the marine Roseobacter clade, and emendation of the species description of Phaeobacter inhibens. Stand Genomic Sci. 2013;9(2):334–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beyersmann PG, Chertkov O, Petersen J, Fiebig A, Chen A, Pati A, Ivanova N, Lapidus A, Goodwin LA, Chain P, et al. Genome sequence of Phaeobacter caeruleus type strain (DSM 24564(T)), a surface-associated member of the marine Roseobacter clade. Stand Genomic Sci. 2013;8(3):403–19.
Article
PubMed
PubMed Central
Google Scholar
Breider S, Scheuner C, Schumann P, Fiebig A, Petersen J, Pradella S, Klenk HP, Brinkhoff T, Göker M. Genome-scale data suggest reclassifications in the Leisingera-Phaeobacter cluster including proposals for Sedimentitalea gen. nov and Pseudophaeobacter gen. nov. Frontiers in. Microbiology. 2014;5:416.
Google Scholar
Riedel T, Teshima H, Petersen J, Fiebig A, Davenport K, Daligault H, Erkkila T, Gu W, Munk C, Xu Y, et al. Genome sequence of the Leisingera aquimarina type strain (DSM 24565(T)), a member of the marine Roseobacter clade rich in extrachromosomal elements. Stand Genomic Sci. 2013;8(3):389–402.
Article
PubMed
PubMed Central
Google Scholar
Buddruhs N, Chertkov O, Petersen J, Fiebig A, Chen A, Pati A, Ivanova N, Lapidus A, Goodwin LA, Chain P, et al. Complete genome sequence of the marine methyl-halide oxidizing Leisingera methylohalidivorans type strain (DSM 14336 T), a representative of the Roseobacter clade. Stand Genomic Sci. 2013;9(1):128–41.
Article
PubMed
PubMed Central
Google Scholar
Frank O, Pradella S, Rohde M, Scheuner C, Klenk HP, Goker M, Petersen J. Complete genome sequence of the Phaeobacter gallaeciensis type strain CIP 105210(T) (= DSM 26640(T) = BS107(T). Stand Genomic Sci. 2014;9(3):914–32.
Article
PubMed
PubMed Central
Google Scholar
Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, Liesegang H, Wollherr A, Kjelleberg S, Daniel R, Simon M, et al. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. Isme J. 2012;6(12):2229–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buddruhs N, Pradella S, Goker M, Pauker O, Pukall R, Sproer C, Schumann P, Petersen J, Brinkhoff T. Molecular and phenotypic analyses reveal the non-identity of the Phaeobacter gallaeciensis type strain deposits CIP 105210(T) and DSM 17395. Int J Syst Evol Microbiol. 2013;63:4340–9.
Article
CAS
PubMed
Google Scholar
Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Faimali M, Vandamme P. Ruegeria scottomollicae sp. nov., isolated from a marine electroactive biofilm. Int J Syst Evol Microbiol. 2008;58:2726–33.
Article
CAS
PubMed
Google Scholar
Fernandes N, Case RJ, Longford SR, Seyedsayamdost MR, Steinberg PD, Kjelleberg S, Thomas T. Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra. Plos One. 2011;6(12):e27387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park S, Park D-S, Bae KS, Yoon J-H. Phaeobacter aquaemixtae sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol. 2014;64(4):1378–83.
Article
CAS
PubMed
Google Scholar
Oh KH, Jung YT, Oh TK, Yoon JH. Ruegeria faecimaris sp nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol. 2011;61:1182–8.
Article
CAS
PubMed
Google Scholar
Collins AJ, Fullmer MS, Gogarten JP, Nyholm SV. Comparative genomics of Roseobacter clade bacteria isolated from the accessory nidamental gland of Euprymna scolopes. Front Microbiol. 2015;6:123.
Article
PubMed
PubMed Central
Google Scholar
Kim YG, Hwang CY, Cho BC. Pelagicola litoralis gen.nov., sp nov., isolated from coastal water in Korea. Int J Syst Evol Microbiol. 2008;58:2102–6.
Article
CAS
PubMed
Google Scholar
Freese HM, Dalingault H, Petersen J, Pradella S, Davenport K, Teshima H, Chen A, Pati A, Ivanova N, Goodwin LA, et al. Genome sequence of the phage-gene rich marine Phaeobacter arcticus type strain DSM 23566(T). Stand Genomic Sci. 2013;8(3):450–64.
Article
PubMed
PubMed Central
Google Scholar
Yoon JH, Kang SJ, Lee JS, Oh TK. Lutimaribacter saemankumensis gen. nov., sp nov., isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol. 2009;59:48–52.
Article
PubMed
Google Scholar
Uchino Y, Hirata A, Yokota A, Sugiyama J. Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol. 1998;44(3):201–10.
Article
CAS
PubMed
Google Scholar
Lee K. Ruegeria pelagia sp. nov., isolated from the Sargasso Sea, Atlantic ocean. Int J Syst Evol Microbiol. 2007;57:1815–8.
Article
PubMed
Google Scholar
Lee J, Roh SW, Whon TW, Shin NR, Kim YO, Bae JW. Genome sequence of strain TW15, a novel member of the genus Ruegeria, belonging to the marine Roseobacter clade. J Bacteriol. 2011;193(13):3401–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee M-H, Song E-J, Seo M-J, Hyun D-W, Bae J-W, Lee S-Y, Roh S, Nam Y-D. Phaeobacter marinintestinus sp. nov., isolated from the intestine of a sea cucumber (Apostichopus japonicus). Antonie Van Leeuwenhoek. 2015;107(1):209–16.
Article
CAS
PubMed
Google Scholar
Rivers A, Smith C, Moran M. An Updated genome annotation for the model marine bacterium Ruegeria pomeroyi DSS-3. Stand Genomic Sci. 2014;9(1):1–9.
Article
Google Scholar
Park S, Yoon JH. Ruegeria arenilitoris sp. nov., isolated from the seashore sand around a seaweed farm. Anton Leeuw Int J Gen Mol Microbiol. 2012;102(4):581–9.
Article
Google Scholar
Kim YO, Park S, Nam BH, Kang SJ, Hur YB, Lee SJ, Oh TK, Yoon JH. Ruegeria halocynthiae sp. nov., isolated from the sea squirt Halocynthia roretzi. Int J Syst Evol Microbiol. 2012;62:925–30.
Article
CAS
PubMed
Google Scholar
Huo YY, Xu XW, Li X, Liu C, Cui HL, Wang CS, Wu M. Ruegeria marina sp. nov., isolated from Marine Sediment. Int J Syst Evol Microbiol. 2011;61:347–50.
Article
CAS
PubMed
Google Scholar
Jin HM, Lee HJ, Kim JM, Park MS, Lee K, Jeon CO. Litorimicrobium taeanense gen. nov., sp nov., isolated from a sandy beach. Int J Syst Evol Microbiol. 2011;61:1392–6.
Article
CAS
PubMed
Google Scholar
Moran MA, Belas R, Schell MA, Gonzalez JM, Sun F, Sun S, Binder BJ, Edmonds J, Ye W, Orcutt B, et al. Ecological genomics of marine roseobacters. Appl Environ Microbiol. 2007;73(14):4559–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doberva M, Sanchez-Ferandin S, Ferandin Y, Intertaglia L, Croué J, Suzuki M, Lebaron P, Lami R. Genome Sequence of the Sponge-Associated Ruegeria halocynthiae strain MOLA R1/13b, a marine roseobacter with two quorum-sensing-based communication systems. Genome Announce. 2014;2(5):e00998–14.
Google Scholar
Kim YO, Park S, Nam BH, Jung YT, Kim DG, Yoon JH. Ruegeria meonggei sp. nov., an alphaproteobacterium isolated from ascidian Halocynthia roretzi. Anton Leeuw Int J Gen Mol Microbiol. 2014;105(3):551–8.
Article
CAS
Google Scholar
Gaboyer F, Tindall BJ, Ciobanu MC, Duthoit F, Le Romancer M, Alain K. Phaeobacter leonis sp. nov., an alphaproteobacterium from Mediterranean Sea sediments. Int J Syst Evol Microbiol. 2013;63:3301–6.
Article
CAS
PubMed
Google Scholar
Kampfer P, Arun AB, Rekha PD, Busse HJ, Young CC, Glaeser SP. Ruegeria intermedia sp. nov., a moderately thermophilic bacterium isolated from a coastal hot spring. Int J Syst Evol Microbiol. 2013;63:2538–44.
Article
CAS
PubMed
Google Scholar
Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ, Brinkhoff T. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol. 2006;56:1293–304.
Article
CAS
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J Comput Biol. 2012;19(5):455–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lowe TM, Eddy SR. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J, et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 2015;43(D1):D130–7.
Article
PubMed
Google Scholar
Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol. 2001;305(3):567–80.
Article
CAS
PubMed
Google Scholar
Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340(4):783–95.
Article
PubMed
Google Scholar
Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Pillay M, Ratner A, Huang JH, Woyke T, Huntemann M, et al. IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res. 2014;42(D1):D560–7.
Article
CAS
PubMed
Google Scholar
Petersen J, Frank O, Göker M, Pradella S. Extrachromosomal, extraordinary and essential—the plasmids of the Roseobacter clade. Appl Microbiol Biotechnol. 2013;97(7):2805–15.
Article
CAS
PubMed
Google Scholar
Buchan A, Neidle EL, Moran MA. Diverse organization of genes of the beta-ketoadipate pathway in members of the marine Roseobacter lineage. Appl Environ Microbiol. 2004;70(3):1658–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romero-Steiner S, Parales RE, Harwood CS, Houghton JE. Characterization of the pcaR regulatory gene from Pseudomonas putida, which is required for the complete degradation of p-hydroxybenzoate. J Bacteriol. 1994;176(18):5771–9.
CAS
PubMed
PubMed Central
Google Scholar
Berger M, Brock NL, Liesegang H, Dogs M, Preuth I, Simon M, Dickschat JS, Brinkhoff T. Genetic analysis of the upper phenylacetate catabolic pathway in the production of tropodithietic acid by Phaeobacter gallaeciensis. Appl Environ Microbiol. 2012;78(10):3539–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu C, Shao Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol. 2005;55(3):1181–6.
Article
CAS
PubMed
Google Scholar
Gutierrez T, Berry D, Yang TT, Mishamandani S, McKay L, Teske A, Aitken MD. Role of bacterial exopolysaccharides (EPS) in the fate of the oil released during the Deepwater Horizon oil spill. Plos One. 2013;8(6):e67717.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camilli R, Reddy CM, Yoerger DR, Van Mooy BAS, Jakuba MV, Kinsey JC, McIntyre CP, Sylva SP, Maloney JV. Tracking hydrocarbon plume transport and biodegradation at Deepwater Horizon. Science. 2010;330(6001):201–4.
Article
CAS
PubMed
Google Scholar
Diercks AR, Highsmith RC, Asper VL, Joung D, Zhou Z, Guo L, Shiller AM, Joye SB, Teske AP, Guinasso N. Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site. Geophys Res Lett. 2010;37(20):160–4.
Article
Google Scholar
Harayama S, Kishira H, Kasai Y, Shutsubo K. Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol. 1999;1(1):63–70.
CAS
PubMed
Google Scholar
Auch AF, Klenk HP, Goker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci. 2010;2(1):142–8.
Article
PubMed
PubMed Central
Google Scholar
Auch AF, von Jan M, Klenk HP, Goker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci. 2010;2(1):117–34.
Article
PubMed
PubMed Central
Google Scholar
Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. Bmc Bioinformatics. 2013;14:60.
Article
PubMed
PubMed Central
Google Scholar
Cunliffe M. Correlating carbon monoxide oxidation with cox genes in the abundant Marine Roseobacter Clade. Isme J. 2011;5(4):685–91.
Article
CAS
PubMed
Google Scholar
Cunliffe M. Physiological and metabolic effects of carbon monoxide oxidation in the model marine bacterioplankton ruegeria pomeroyi DSS-3. Appl Environ Microbiol. 2013;79(2):738–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moran MA, Miller WL. Resourceful heterotrophs make the most of light in the coastal ocean. Nat Rev Microbiol. 2007;5(10):792–800.
Article
CAS
PubMed
Google Scholar
Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, Howard EC, King E, Oakley CA, Reisch CR, et al. Genome characteristics of a generalist marine bacterial lineage. Isme J. 2010;4(6):784–98.
Article
CAS
PubMed
Google Scholar
Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Muller R, Wohlleben W, et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015;43(W1):W237–43.
Article
PubMed
PubMed Central
Google Scholar
Martens T, Gram L, Grossart HP, Kessler D, Muller R, Simon M, Wenzel SC, Brinkhoff T. Bacteria of the Roseobacter clade show potential for secondary metabolite production. Microb Ecol. 2007;54(1):31–42.
Article
CAS
PubMed
Google Scholar
Bruhn JB, Nielsen KF, Hjelm M, Hansen M, Bresciani J, Schulz S, Gram L. Ecology, inhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the Roseobacter clade. Appl Environ Microbiol. 2005;71(11):7263–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruhn JB, Gram L, Belas R. Production of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions. Appl Environ Microbiol. 2007;73(2):442–50.
Article
CAS
PubMed
Google Scholar
Prado S, Montes J, Romalde JL, Barja JL. Inhibitory activity of Phaeobacter strains against aquaculture pathogenic bacteria. Int Microbiol. 2009;12:107–14.
PubMed
Google Scholar
Brinkhoff T. Antibiotic production by a Roseobacter clade-affiliated species from the German Wadden Sea and its antagonistic effects on indigenous isolates. Appl Environ Microbiol. 2004;70(4):2560–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cascales E, Christie PJ. The versatile bacterial type IV secretion systems. Nat Rev Micro. 2003;1(2):137–49.
Article
CAS
Google Scholar
Craig L, Pique ME, Tainer JA. Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol. 2004;2(5):363–78.
Article
CAS
PubMed
Google Scholar
Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008;26(5):541–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woese CR, Kandler O, Wheelis ML. Towards a Natural System of Organisms - Proposal for the Domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87(12):4576–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garrity GM, Bell JA, Lilburn T. Phylum XIV. Proteobacteria phyl. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM, editors. Bergey’s Manual of Systematic Bacteriology. Second ed. Volume 2 (The Proteobacteria), Part B (The Gammaproteobacteria). New York: Springer; 2005. p 1.
Garrity GM, Bell JA, Lilburn T. Class I. Alphaproteobacteria class. nov..In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology. Second ed. Volume 2, Part C. New York: Springer; 2005. p 1.
107 VLN. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol. 2006;56(1):1–6.
Article
Google Scholar
Garrity GM, Bell JA, Lilburn T. Family I. Rhodobacteraceae fam. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology. Second ed. Volume 2, Part C. New York: Springer; 2005. p 1.
BAuA. Classification of Bacteria and Archaea in risk groups. TRBA. 2010;466:93.
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Proteinortho: Detection of (Co-)orthologs in large-scale analysis. Bmc Bioinformatics. 2011;12:124.
Article
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540–52.
Article
CAS
PubMed
Google Scholar