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Spirosoma linguale Migula 1894 is the type species of the genus. S. linguale is a free-living 
and non-pathogenic organism, known for its peculiar ringlike and horseshoe-shaped cell 
morphology. Here we describe the features of this organism, together with the complete ge-
nome sequence and annotation. This is only the third completed genome sequence of a 
member of the family Cytophagaceae. The 8,491,258 bp long genome with its eight plas-
mids, 7,069 protein-coding and 60 RNA genes is part of the Genomic Encyclopedia of Bacte-
ria and Archaea project. 

Introduction 
Strain 1T (= DSM 74 = ATCC 33905 = LMG 10896) 
is the type strain of the species Spirosoma lin-
guale, which is the type species of the genus Spi-
rosoma. The genus currently consists of five spe-
cies [1]. Strain 1T is reported to be isolated from 
a laboratory water bath (websites of DSMZ and 
ATCC), however, a proper reference could not be 
identified. Another strain of S. linguale was iso-
lated from fresh water from deep wells in Long 
Beach, California, USA [2]. Other strains from the 
genus Spirosoma were isolated from high arctic 
permafrost soil in Norway [3], soil from a ginseng 
field in Pocheon province, South Korea [4], and 

fresh water from the Woopo wetlands, South Ko-
rea [5]. This would allow the hypothesis that S. 
linguale is a free-living species with a worldwide 
distribution. The genus name Spirosoma derives 
from ‘spira’ from Latin meaning coil combined 
with ‘soma’, Latin for ‘body’, resulting in ‘coiled 
body’ [1]. Spirosoma was the first genus in the 
family Spirillaceae in Migula’s “System der Bakte-
rien” [6]. The species name is effectively pub-
lished by Migula in 1894 [7] and validly pub-
lished by Skerman in 1980 [8]. Various taxonom-
ic treatments have placed this organism either in 
the family “Flexibacteraceae” or the family Cyto-
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phagaceae. This would appear to be due to a 
number of nomenclatural problems. The family 
“Flexibacteriaceae” as outlined in TOBA 7.7 
would include Cytophaga hutchinsonii, which is 
the type species of the genus Cytophaga, which, 
in turn is the type of the family Cytophagaceae, a 
name that may not be replaced by the family 
name “Flexibacteriaceae” as long as Cytophaga 
hutchinsonii is one of the included species. How-
ever, the topology of the 16S rDNA based den-
drogram indicates that it may be possible to de-
fine a second family, including the genus Spiro-
soma, but excluding Cytophaga hutchinsonii. At 
the same time, the family Cytophagaceae may be 
defined to exclude the type species of the genus 
Flexibacter and members of the genus Spirosoma. 
It should also be remembered that the genus Spi-
rosoma is the type of the family Spirosomaceae 
Larkin and Borrall 1978. At present the higher 
taxonomic ranks of this group of organisms lacks 
formal modern descriptions and circumscrip-
tions making it difficult to make definitive state-

ments that would hold over the next few years. 
Here we present a summary classification and a 
set of features for S. linguale 1T, together with the 
description of the complete genomic sequencing 
and annotation. 

Classification and features 
Uncultured clone sequences in Genbank showed 
96% or less sequence identity to the 16S gene se-
quence (AM000023) of strain S. linguale 1T. No 
reasonable sequence similarity (>87%) to any me-
tagenomic survey were reported from the NCBI 
BLAST server (October 2009). 
Figure 1 shows the phylogenetic neighborhood of 
for S. linguale 1T in a 16S rRNA based tree. The 
sequences of the four identical 16S rRNA gene 
copies in the genome of S. linguale 1T are also 
identical with the previously published 16S rRNA 
sequence generated from LMG 10896 
(AM000023). 

 

Figure 1. Phylogenetic tree highlighting the position of S. linguale 1T and the type strains of the other species 
within the genus relative to the other type strains within the family Cytophagaceae. The tree was inferred from 
1,320 aligned characters [9,10] of the 16S rRNA gene sequence under the maximum likelihood criterion [11] 
and rooted with the type strain of the family Sphingobacteriaceae. The branches are scaled in terms of the ex-
pected number of substitutions per site. Numbers above branches are support values from 1,000 bootstrap repli-
cates if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [12] are 
shown in blue, published genomes such as the one of Dyadobacter fermentans [13] in bold. 
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On TGEY medium [14], strain S. linguale 1T forms 
mucoid, opaque, and smooth colonies with a yel-
lowish nondiffusible pigment [15]. The colony size 
is 2-4 mm, circular, with entire margins and con-
vex elevation. In broth, growth is aerobic (Table 1) 
with even turbidity and flaky sediment [15]. The 
Gram-negative cells have round ends and show 

vibroid, horseshoe, and ring-like shapes, as well as 
coils and spiral forms [Figure 2 and ref. 15]. The 
cell width is 0.5 – 1.0 µm, and the outer ring di-
ameter is 1.5–3.0 µm. The cell length is 2.0–5.0 µm 
[22]. Reports on filaments are conflicting [15,22]. 
 

 

Figure 2. Scanning electron micrograph of S. linguale 1T 

 
Strain S. linguale 1T produces oxidatively acid from 
arabinose, ribose, xylose, rhamnose, fructose, galac-
tose, glucose, mannose, α-methyl-D-glucoside, sali-
cin, cellobiose, lactose, maltose, melibiose, sucrose, 
trehalose, raffinose, dextrin and inulin, but not 
from sorbose, glycerol, erythritol, dulcitol, manni-
tol, and sorbitol [22]. On the enzymatic level, strain 
S. linguale 1T is positive for oxidase, catalase, ONPG-
reaction, and, albeit weakly, for phosphatase, but 
negative for urease, lecithinase, lysine decarbox-
ylase, phenylalanine deaminase, and hemolysin, 
indole, methyl red, Voges-Proskauer, NO3 reduction 
and H2S reactions [22]. Strain S. linguale 1T hydro-
lyzes esculin, tributyrin, gelatin, and, less well, 
starch and casein, but not cellulose and chitin [22]. 
It utilizes for growth on basal medium [25] glycerol 
phosphate, succinate, tartrate, and malonate as sin-
gle carbon source, but not acetate, benzoate, citrate, 
formate, methylamine, propionate, and methanol 

[22]. Strain S. linguale 1T grows well on nutrient 
agar, nutrient agar + 5% sucrose, Microcyclus-
Spirosoma agar, and yeast extract tryptone agar, 
weakly on peptonized milk agar, blood, and choco-
late, and not on eosin methylene blue agar, phenol 
red mannitol salt agar, phenyl ethyl alcohol agar, 
trypticase soy agar (TSA), TSA + 3% glucose, TSA + 
3% sucrose, McConkey, bismuth sulfide agar, and 
Salmonella-Shigella agar [22]. Strain S. linguale 1T is 
susceptible to actinomycin D (100 µg/ml), ampicil-
lin (10 µg), aureomycin (15 µg), carbenicillin (50 
µg), erythromycin (15 µg), furadantin/macrodantin 
(300 µg), gentamicin (10 µg), kanamycin (30 µg), 
mitomycin C (1 µg/ml), neomycin (30 µg), penicil-
lin G (10 units), streptomycin (10 µg), sulfame-
thoxyzole/trimethopterin (25 µg), sulfathiazole 
(300 µg), and tetracycline(30 µg), but resistant to 
colistin (10 µg), polymixin B (300 units), and triple 
sulfa (1 mg) [22].  
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Table 1. Classification and general features of S. linguale 1T according to the MIGS recommendations [16] 
MIGS ID Property Term Evidence code 

 Current classification 
 

Domain Bacteria TAS [17] 
Phylum Bacteroidetes TAS [18,19] 
Class Sphingobacteria TAS [18,20] 
Order Sphingobacteriales TAS [18,20] 
Family Cytophagaceae TAS [8,21] 
Genus Spirosoma TAS [3,7,8] 
Species Spirosoma linguale TAS [7] 
Type strain 1 TAS [7,8] 

 Gram stain negative TAS [15] 

 Cell shape vibroid, horseshoe, and ring-like shapes; 
spiral form TAS [15] 

 Motility non-motile TAS [15] 
 Sporulation nonsporulating NAS 
 Temperature range 5°C–39°C TAS [5] 
 Optimum temperature 20°C–30°C TAS [5] 
 Salinity 0-1.25% (w/v) TAS [5] 
MIGS-22 Oxygen requirement aerobic TAS [15] 

 Carbon source glycerol phosphate, succinate, tartrate, 
malonate TAS [22] 

 Energy source carbohydrates TAS [22] 
MIGS-6 Habitat Laboratory water bath NAS 
MIGS-15 Biotic relationship free-living NAS 
MIGS-14 Pathogenicity not reported NAS 
 Biosafety level 1 TAS [23] 
 Isolation not reported NAS 
MIGS-4 Geographic location Germany NAS 
MIGS-5 Sample collection time not reported  
MIGS-4.1 
MIGS-4.2 

Latitude 
Longitude not reported 

 
MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude not reported  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author State-
ment (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly 
observed for the living, isolated sample, but based on a generally accepted property for the species, or 
anecdotal evidence). These evidence codes are from of the Gene Ontology project [24]. If the evidence 
code is IDA, then the property was directly observed for a live isolate by one of the authors, or an expert 
mentioned in the acknowledgements. 

Chemotaxonomy 
Earlier studies report C16:1 to be the dominant fat-
ty acid (47.9%), followed by iso-C17:0 (20.1%), C16:0 
(14.2%), iso-C15:0 (11.0%) and iso-C13:0 (3.4%). 
Anteiso and hydroxy fatty acids are each below 
2.1% [26]. The fatty acids comprise a complex 
mixture of straight chain saturated and unsatu-
rated fatty acids, together with iso-branched and 
3-hydroxylated iso-branched fatty acids. The fatty 

acids comprise iso-C13:0 (2.2%), iso-C15:0 (9.3%), 
iso-C15:0 3-OH (3.4%), anteiso-C15:0 (2.6%), C16:0 
(3.6%), C16:0 3-OH (2.2%), C16:1 ω 5c (22.2%), C17:0 
2-OH (1.0%), iso-C17:0 3-OH (8.6%), iso-C13:0 
(2.2%), C17:1 ω 9c (1.2%) and C16:1 ω 7c and/or 
iso-C15:0 2-OH (42.4%). The polar lipids comprise 
phosphatidylethanolamine and a number of lipids 
and amino lipids that were not further characte-

http://standardsingenomics.org/�


Spirosoma linguale type strain (1T) 

180 Standards in Genomics Sciences 

rized. The fatty acid pattern is typical of the evolu-
tionary group currently defined as the phylum 
Bacteroidetes. Furthermore the presence of phos-
phatidylethanolamine as the predominant/sole 
diglyceride based phospholipid is also typical of 
the vast majority of the phylum Bacteroidetes. Li-
mited detailed studies indicate that this phospho-
lipid contains both saturated and unsaturated 
straight chain fatty acids. Hydroxylated fatty acids 
are not present in this compound. In contrast, the 
limited studies on the amino lipids of Flavobacte-
rium johnsoniae indicate that they are amino acid 
based, with a 3-OH fatty acid in amide linkage 
with a free amino group of the amino acid. The 3-
OH fatty acid is further esterified with either a 
non-hydroxylated fatty acid, or with a second hy-
droxylated fatty acid. The presence of lipids that 
did not stain further running in proximity with the 
major aminolipid may also be indicative of cap-
nines. The failure to resolve the fatty acids re-
ported by the MIDI Sherlock MIS system as 
“summed feature 4” C16:1ω7c/iso C15:0 2-OH is prob-
lematic for genomics, since it either indicates that 

two mechanisms of introducing double bonds into 
fatty acids are present (C16:1ω5c and C16:1ω7c) or a 
fatty acid 2-hydroxylase is present. Furthermore, 
the distribution of 3-OH and 2-OH fatty acids 
among the amino- and non-staining lipids may 
also be characteristic. The main isoprenoid qui-
none is MK-7 (91.5%), followed by MK-8 (7.2%) 
and MK-6 (1.3%) [26]. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position, and is part of the 
Genomic Encyclopedia of Bacteria and Archaea 
project. The genome project is deposited in the 
Genome OnLine Database [12] and the complete 
genome sequence is deposited in GenBank. Se-
quencing, finishing and annotation were per-
formed by the DOE Joint Genome Institute (JGI). A 
summary of the project information is shown in 
Table 2. 

 

Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 

Two Sanger libraries: 8kb pMCL200 
and fosmid pcc1Fos 
One 454 pyrosequence and one 
Solexa standard library 

MIGS-29 Sequencing platforms ABI3730, 454 GS FLX, Illumina GA 
MIGS-31.2 Sequencing coverage 10.1× Sanger; 18.4× pyrosequence 
MIGS-30 Assemblers Newbler 1.1.02.15, phrap 
MIGS-32 Gene calling method Prodigal, GenePRIMP 
 INSDC ID 

CP001769 (chromosome) 
CP001770-77 (plasmids) 

 Genbank Date of Release January 13, 2010 
 GOLD ID Gc01186 
 NCBI project ID 28817 
 Database: IMG-GEBA 2501939635 
MIGS-13 Source material identifier DSM 74 
 Project relevance Tree of Life, GEBA 

 
Growth conditions and DNA isolation 
S. linguale 1T, DSM 74, was grown in DSMZ me-
dium 7 [27] at 28°C. DNA was isolated from 0.5-
1 g of cell paste using Qiagen Genomic 500 DNA 
Kit (Qiagen, Hilden, Germany) with cell lysis 
modification st/L [28] and one hour incubation 
at 37°C. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Sanger and 454 sequencing platforms. All gen-
eral aspects of library construction and sequenc-
ing can be found at http://www.jgi.doe.gov/. 454 
Pyrosequencing reads were assembled using the 
Newbler assembler version 1.1.02.15 (Roche). 
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Large Newbler contigs were broken into 9,401 
overlapping fragments of 1,000 bp and entered 
into assembly as pseudo-reads. The sequences 
were assigned quality scores based on Newbler 
consensus q-scores with modifications to account 
for overlap redundancy and to adjust inflated q-
scores. A hybrid 454/Sanger assembly was made 
using the parallel phrap assembler (High Perfor-
mance Software, LLC). Possible mis-assemblies 
were corrected with Dupfinisher [29] or transpo-
son bombing of bridging clones (Epicentre Bio-
technologies, Madison, WI). Gaps between contigs 
were closed by editing in Consed, custom primer 
walk or PCR amplification. A total of 974 Sanger 
finishing reads were produced to close gaps, to 
resolve repetitive regions, and to raise the quality 
of the finished sequence. Illumina reads were used 
to improve the final consensus quality using an in-
house developed tool (the Polisher). The error 
rate of the completed genome sequence is less 
than 1 in 100,000. Together all sequence types 
provided 28.5× coverage of the genome. The final 
assembly contains 87,186 Sanger and 666,973 
pyrosequence reads. 

Genome annotation 
Genes were identified using Prodigal [30] as part 
of the Oak Ridge National Laboratory genome 
annotation pipeline, followed by a round of ma-
nual curation using the JGI GenePRIMP pipeline 
[31]. The predicted CDSs were translated and 
used to search the National Center for Biotech-
nology Information (NCBI) nonredundant data-
base, UniProt, TIGRFam, Pfam, PRIAM, KEGG, 
COG, and InterPro databases. Additional gene 
prediction analysis and manual functional anno-
tation was performed within the Integrated Mi-
crobial Genomes Expert Review (IMG-ER) plat-
form [32]. 

Genome properties 
The genome consists of a 8,078,757 bp long 
chromosome and eight plasmids with 6,072 to 
189,452 bp length (Table 3 and Figure 3). Of the 
7,129 genes predicted, 7,069 were protein-
coding genes, and 60 RNAs; 131 pseudogenes 
were also identified. The majority of the protein-
coding genes (61.5%) were assigned with a puta-
tive function while those remaining were anno-
tated as hypothetical proteins. The distribution 
of genes into COGs functional categories is pre-
sented in Table 4. 

Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 8,491,258 100.00% 

DNA coding region (bp) 7,518,086 88.54% 

DNA G+C content (bp) 4,258,276 50.15% 

Number of replicons 9  
Extrachromosomal elements 8  
Total genes 7,129 100.00% 

RNA genes 60 0.84% 

rRNA operons 4  
Protein-coding genes 7,069 99.16% 

Pseudo genes 131 1.84% 

Genes with function prediction 4,386 61.52% 

Genes in paralog clusters 1,713 2.71% 

Genes assigned to COGs 4,306 60.40% 

Genes assigned Pfam domains 4,519 63.39% 

Genes with signal peptides 2,271 41.86% 

Genes with transmembrane helices 1,606 22.53% 

CRISPR repeats 2  
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Figure 3. Graphical circular map of the chromosome (A) and the eight plasmids: pSLIN01 (B), pSLIN02 (C), 
pSLIN03 (D), pSLIN04 (E), pSLIN05 (Fs), pSLIN06 (G), pSLIN07 (H), pSLIN08 (I). Plasmids not drawn to scale. 
From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand 
(color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 
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Table 4. Number of genes associated with the general COG functional categories 
Code Value %age Description 

J 173 2.4 Translation, ribosomal structure and biogenesis 
A 1 0.0 RNA processing and modification 
K 398 6.6 Transcription 
L 251 3.6 Replication, recombination and repair 
B 1 0.0 Chromatin structure and dynamics 
D 32 0.5 Cell cycle control, mitosis and meiosis 
Y 0 0.0 Nuclear structure 
V 161 2.3 Defense mechanisms 
T 380 5.4 Signal transduction mechanisms 
M 411 5.8 Cell wall/membrane biogenesis 
N 14 0.2 Cell motility 
Z 0 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 68 1.0 Intracellular trafficking and secretion 
O 161 2.3 Posttranslational modification, protein turnover, chaperones 
C 223 3.2 Energy production and conversion 
G 383 5.4 Carbohydrate transport and metabolism 
E 297 4.2 Amino acid transport and metabolism 
F 80 1.1 Nucleotide transport and metabolism 
H 174 2.5 Coenzyme transport and metabolism 
I 162 2.3 Lipid transport and metabolism 
P 277 3.9 Inorganic ion transport and metabolism 
Q 121 1.7 Secondary metabolites biosynthesis, transport and catabolism 
R 611 8.6 General function prediction only 
S 424 6.0 Function unknown 
- 2,823 39.9 Not in COGs 
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