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Starkeya novella (Starkey 1934) Kelly et al. 2000 is a member of the family Xanthobacteraceae in the 
order ‘Rhizobiales’, which is thus far poorly characterized at the genome level. Cultures from this spe-
cies are most interesting due to their facultatively chemolithoautotrophic lifestyle, which allows them to 
both consume carbon dioxide and to produce it. This feature makes S. novella an interesting model or-
ganism for studying the genomic basis of regulatory networks required for the switch between con-
sumption and production of carbon dioxide, a key component of the global carbon cycle. In addition, 
S. novella is of interest for its ability to grow on various inorganic sulfur compounds and several C1-
compounds such as methanol. Besides Azorhizobium caulinodans, S. novella is only the second spe-
cies in the family Xanthobacteraceae with a completely sequenced genome of a type strain. The cur-
rent taxonomic classification of this group is in significant conflict with the 16S rRNA data. The ge-
nomic data indicate that the physiological capabilities of the organism might have been underestimat-
ed. The 4,765,023 bp long chromosome with its 4,511 protein-coding and 52 RNA genes was se-
quenced as part of the DOE Joint Genome Institute Community Sequencing Program (CSP) 2008. 

Introduction 
Strain ATCC 8093T (ATCC 8093 = DSM 506 = NBRC 
14993) is the type strain of the species Starkeya no-
vella [1] and the type species of the genus Starkeya 
[1], which currently contains only one other species, 
S. koreensis [2]. The most prominent feature of S. 
novella is its ability to grow as a facultative 
chemolithoautotroph [3], a heterotroph [4], or 
methylotroph [1,5]. Cultures of strain ATCC 8093T 
were first isolated from soil samples taken from ag-
ricultural land in New Jersey by Robert L. Starkey in 
the early 1930s [6,7] and deposited in the American 
Type Culture Collection (ATCC) under the basonym 
Thiobacillus novellus [3,8]. The bacterium was re-
ferred to as the ‘new’ Thiobacillus as it was the first 
facultatively chemolithoautotrophic sulfur oxidizer 

to be isolated. Until then, all known dissimilatory 
sulfur-oxidizing bacteria were also obligate auto-
trophs. As a result, the metabolism of T. novellus was 
intensely studied for many years following its dis-
covery, and particularly following the development 
of more sophisticated biochemical and molecular 
methods in the 1960s. 

During the last fifty years, the strain has been used in 
numerous molecular studies, both of its oxidative 
sulfur metabolism and the versatility and regulation 
of its carbon metabolism. Studies included genera-
tion of reducing power in chemosynthesis [9], car-
bon dioxide fixation and carboxydismutase action 
[10], catabolite repression in facultative chemoauto-

http://dx.doi.org/10.1601/nm.1572�
http://dx.doi.org/10.1601/nm.14021�
http://dx.doi.org/10.1601/nm.1572�
http://dx.doi.org/10.1601/nm.14021�
http://dx.doi.org/10.1601/nm.1277�
http://dx.doi.org/10.1601/nm.1572�
http://dx.doi.org/10.1601/nm.1572�
http://dx.doi.org/10.1601/nm.1537�
http://dx.doi.org/10.1601/nm.1572�
http://dx.doi.org/10.1601/nm.14021�
http://dx.doi.org/10.1601/nm.1572�
http://dx.doi.org/10.1601/nm.1572�
http://dx.doi.org/10.1601/nm.1571�
http://dx.doi.org/10.1601/nm.11054�
http://dx.doi.org/10.1601/nm.1572�
http://dx.doi.org/10.1601/nm.1572�
http://dx.doi.org/10.1601/nm.1888�
http://dx.doi.org/10.1601/nm.1874�
http://dx.doi.org/10.1601/nm.1888�


Kappler et al. 

http://standardsingenomics.org 45 

trophs [11], regulation of glucose transport and me-
tabolism [12], isolation and characterization of a 
bacteriophage [13], pathways of thiosulfate oxida-
tion [9,14-17], the formation of sulfite during the 
oxidation of thiosulfate [18], and the isolation and 
characterization of a bacterial sulfite dehydrogenase 
[19-29], a sulfite-oxidizing enzyme. 

Based on the 16S rRNA gene sequence in 2000 Kelly 
et al. [1] proposed the reclassification of T. novellus 
to S. novella. The genus name Starkeya is in honor of  
Robert L. Starkey and his important contribution to 
soil microbiology and sulfur biochemistry [1]; the 
species epithet was derived from the Latin adjective 
‘novella’, new [3]. Here we present a summary classi-
fication and a set of features for S. novella ATCC 
8093T, together with the description of the genomic 
sequencing and annotation. 

Classification and features 
16S rRNA analysis 
The single genomic 16S rRNA sequence of strain 
ATCC 8093T was compared using NCBI BLAST 
[30,31] under default settings (e.g., considering only 
the high-scoring segment pairs (HSPs) from the best 
250 hits) with the most recent release of the 
Greengenes database [32] and the relative frequen-
cies of taxa and keywords (reduced to their stem 
[33]) were determined, weighted by BLAST scores. 
The most frequently occurring genera were 
Ancylobacter (30.0%), Starkeya (13.4%), Agrobacte-
rium (13.1%), Xanthobacter (12.4%) and 
Azorhizobium (11.5%) (98 hits in total). Regarding 
the three hits to sequences from members of the 
species, the average identity within HSPs was 
99.5%, whereas the average coverage by HSPs was 
92.8%. Among all other species, the one yielding the 
highest score was Ancylobacter rudongensis 
(AY056830), which corresponded to an identity of 
98.1% and an HSP coverage of 98.4%. (Note that the 
Greengenes database uses the INSDC (= 
EMBL/NCBI/DDBJ) annotation, which is not an au-
thoritative source for nomenclature or classifica-
tion.) The highest-scoring environmental sequence 
was EU835464 ('structure and quorum sensing re-
verse osmosis RO membrane biofilm clone 3M02'), 
which showed an identity of 98.4% and an HSP cov-
erage of 100.0%. The most frequently occurring 
keywords within the labels of all environmental 
samples which yielded hits were 'skin' (6.0%), 
'microbiom' (3.0%), 'human, tempor, topograph' 
(2.5%), 'compost' (2.1%) and 'dure' (2.1%) (152 hits 
in total) and fit only partially to the known habitat of 

the species. Environmental samples that yielded hits 
of a higher score than the highest scoring species 
were not found. 

Figure 1 shows the phylogenetic neighborhood of   
in a 16S rRNA based tree. The sequence of the single 
16S rRNA gene copy in the genome differs by nine 
nucleotides from the previously published 16S rRNA 
sequence (D32247), which contains one ambiguous 
base call. 

To measure conflict between 16S rRNA data and 
taxonomic classification in detail, we followed a con-
straint-based approach as described recently in de-
tail [41], conducting both unconstrained searches 
and searches constrained for the monophyly of both 
families and using our own re-implementation of 
CopyCat [42] in conjunction with AxPcoords and 
AxParafit [43] was used to determine those leaves 
(species) whose placement significantly deviated 
between the constrained and the unconstrained 
tree. 

The best-supported ML tree had a log likelihood of -
12,191.55, whereas the best tree found under the 
constraint had a log likelihood of -12,329.92. The 
constrained tree was significantly worse than the 
globally best one in the SH test as implemented in 
RAxML [37,44] (α = 0.01). The best supported MP 
trees had a score of 1,926, whereas the best con-
strained trees found had a score of 1.982 and were 
also significantly worse in the KH test as implement-
ed in PAUP [8,44] (α < 0.0001). Accordingly, the cur-
rent classification of the family as used in [45,46], on 
which the annotation of Figure 1 is based, is in sig-
nificant conflict with the 16S rRNA data. Figure 1 
also shows those species that cause phylogenetic 
conflict as detected using the ParaFit test (i.e., those 
with a p value > 0.05 because ParaFit measures the 
significance of congruence) in green font color. Ac-
cording to our analyses, the Hyphomonadaceae gen-
era (Blastochloris and Prosthecomicrobium) nested 
within the Xanthobacteraceae display significant 
conflict. In the constrained tree (data not shown), 
the Angulomicrobium-Methylorhabdus clade is 
placed at the base of the Xanthobacteraceae clade 
(forced to be monophyletic). For this reason, 
Angulomicrobium and Methylorhabdus were not de-
tected as causing conflict (note that the ParaFit test 
essentially compares unrooted trees). A taxonomic 
revision of the group would probably need to start 
with the reassignment of these genera to different 
families. 
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Figure 1. Phylogenetic tree highlighting the position of S. novella relative to the type strains of the other species 
within the family Xanthobacteraceae (blue font color). The tree was inferred from 1,381 aligned characters [34,35] 
of the 16S rRNA gene sequence under the maximum likelihood (ML) criterion [36]. Hyphomicrobiaceae (green 
font color for those species that caused conflict according to the Parafit test, black color for the remaining ones; 
see below for the difference) were included in the dataset for use as outgroup taxa but then turned out to be inter-
mixed with the target family; hence, the rooting shown was inferred by the midpoint-rooting method [29]. The 
branches are scaled in terms of the expected number of substitutions per site. Numbers adjacent to the branches 
are support values from 550 ML bootstrap replicates [37] (left) and from 1,000 maximum-parsimony bootstrap rep-
licates [38] (right) if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD 
[39] are labeled with one asterisk, those also listed as 'Complete and Published' with two asterisks (see [40] and 
CP000781 for Xanthobacter autotrophicus, CP002083 for Hyphomicrobium denitrificans and CP002292 for 
Rhodomicrobium vannielii). 
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Morphology and physiology 
Cells of S. novella ATCC 8093T are non-motile, 
Gram-negative staining short rods or coccobacilli 
with a size of 0.4–0.8 μm × 0.8 –2.0 μm, occurring 
singly or in pairs (Figure 2, Table 1) [1]. Colonies 
grown on thiosulfate agar turn white with sulfur 
on biotin supplemented growth media [1], while 
in the presence of small amounts of yeast extract 
(DSMZ medium 69) the colonies have a pale pink 
appearance following growth on thiosulfate and 
no sulfur formation is observed. Cells grow on thi-
osulfate and tetrathionate under aerobic condi-
tions, but not on sulfur or thiocyanate [1]. Ammo-
nium salts, nitrates, urea and glutamate can serve 
as nitrogen sources [1]. Several surveys of sub-
strates supporting heterotrophic growth have 
been published, and include glucose, formate, 
methanol, oxalate [1,2,4,6]. The growth range 
spans from 10-37°C, with an optimum at 25-30°C, 
and a pH range from 5.7-9.0 with an optimum at 
pH 7.0 [1]. 

Chemotaxonomy 
The lipopolysaccharide of strain ATCC 8093T 
lacks heptoses and has only 2,3-diamino-2,3-
dideoxyglucose as the backbone sugar [1]; other 
data on the cell wall structure of strain ATCC 
8093T are not available. The major isoprenoid 

quinone is ubiquinone Q-10 [1], and the major cel-
lular fatty acids are octadecenoid acid (C18:1) and 
C19 cyclopropane acid; no hydroxyl acids are pre-
sent [1]. Cells contain putrescine and 
homospermidine. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of the DOE Joint Genome Institute Communi-
ty Sequencing Program (CSP) 2008. The genome 
project is deposited in the Genomes On Line Data-
base [39] and the complete genome sequence is 
deposited in GenBank. Sequencing, finishing and 
annotation were performed by the DOE Joint Ge-
nome Institute (JGI). A summary of the project in-
formation is shown in Table 2. 

Growth conditions and DNA isolation
Strain ATCC 8093T was grown from a culture of 
DSMZ 506 in DSMZ medium 69 at 28°Cg DNA was 
purified using the Genomic-tip 100 System 
(Qiagen) following the directions provided by the 
supplier. The purity, quality and size of the bulk 
gDNA preparation were assessed by JGI according 
to DOE-JGI guidelines. 

 

 
Figure 2. Transmission electron micrograph of S. novella ATCC 8093T. Scale bar: 500 nm 
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Table 1. Classification and general features of S. novella according to the MIGS recommendations [47] and the 
NamesforLife database [48]. 

MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [49] 

Phylum Proteobacteria TAS [50] 

Class Alphaproteobacteria TAS [51,52] 

Order ‘Rhizobiales’ TAS [52,53] 

Family Xanthobacteraceae TAS [54] 

Genus Starkeya TAS [1] 

Species Starkeya novella TAS [1] 

Type strain ATCC 8093 TAS [1] 

 Gram stain negative TAS [1] 

 Cell shape rod-shaped (some coccobacilli) TAS [1] 

 Motility non-motile TAS [1] 

 Sporulation not reported  

 Temperature range mesophile, 10–37°C TAS [1] 

 Optimum temperature 25–30°C TAS [1] 

 Salinity not reported  

MIGS-22 Oxygen requirement strictly aerobic TAS [1] 

 Carbon source CO2, citrate, glutamic acid (among others) TAS [1,3] 

 

Energy metabolism facultatively chemolithoautotroph and methylotroph, 
heterotroph 

TAS [1,5] 

MIGS-6 Habitat soil TAS [1] 

MIGS-15 Biotic relationship free living NAS 

MIGS-14 Pathogenicity none NAS 

 Biosafety level 1 TAS [55] 

MIGS-23.1 Isolation soil TAS [1] 

MIGS-4 Geographic location not reported (probably New Jersey)  

MIGS-5 Sample collection time 1934 or before TAS [6,7] 

MIGS-4.1 Latitude not reported  

MIGS-4.2 Longitude not reported  

MIGS-4.3 Depth not reported  

MIGS-4.4 Altitude not reported  

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable 
Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property 
for the species, or anecdotal evidence). Evidence codes are from the Gene Ontology project [56]. 
 

http://dx.doi.org/10.1601/nm.1572�
http://dx.doi.org/10.1601/nm.419�
http://dx.doi.org/10.1601/nm.808�
http://dx.doi.org/10.1601/nm.809�
http://dx.doi.org/10.1601/nm.1277�
http://dx.doi.org/10.1601/nm.14021�
http://dx.doi.org/10.1601/nm.1571�
http://dx.doi.org/10.1601/nm.1572�


Kappler et al. 

http://standardsingenomics.org 49 

Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Three genomic libraries: one 454 pyrosequence standard library, 
one 454 PE library (22 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 

MIGS-31.2 Sequencing coverage 44.3 × Illumina; 53.5 × pyrosequence 

MIGS-30 Assemblers Newbler version 2.0.1-PreRelease-03-30-2009, Velvet, phrap 
version SPS - 4.24 

MIGS-32 Gene calling method Prodigal 

 INSDC ID CP002026 

 GenBank Date of Release November 21, 2011 

 GOLD ID Gc01353 

 NCBI project ID 37659 

 Database: IMG-GEBA 648028054 

MIGS-13 Source material identifier DSM 506 

 Project relevance Carbon cycle, Environmental 
 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Illumina and 454 sequencing platforms. All 
general aspects of library construction and se-
quencing can be found at the JGI website [57]. 
Pyrosequencing reads were assembled using the 
Newbler assembler (Roche). The initial Newbler 
assembly consisting of 13 contigs in one scaffold 
was converted into a phrap [58] assembly by mak-
ing fake reads from the consensus, to collect the 
read pairs in the 454 paired end library. Illumina 
GAii sequencing data (211.3 Mb) were assembled 
with Velvet [59] and the consensus sequences 
were shredded into 1.5 kb overlapped fake reads 
and assembled together with the 454 data. The 
454 draft assembly was based on 259.9 Mb 454 
draft data and all of the 454 paired-end data. 
Newbler parameters were -consed -a 50 -l 350 -g -
m -ml 20. The Phred/Phrap/Consed software 
package [58] was used for sequence assembly and 
quality assessment in the subsequent finishing 
process. After the shotgun stage, reads were as-
sembled with parallel phrap (High Performance 
Software, LLC). Possible mis-assemblies were cor-
rected with gapResolution [58], Dupfinisher [60], 

or sequencing cloned bridging PCR fragments with 
subcloning. Gaps between contigs were closed by 
editing in Consed, by PCR and by Bubble PCR pri-
mer walks (J.-F. Chang, unpublished). A total of 43 
additional reactions were necessary to close gaps 
and to raise the quality of the finished sequence. 
Illumina reads were also used to correct potential 
base errors and increase consensus quality using a 
software Polisher developed at JGI [61]. The error 
rate of the completed genome sequence is less 
than 1 in 100,000. Together, the combination of 
the Illumina and 454 sequencing platforms pro-
vided 97.8 × coverage of the genome. The final 
assembly contained 865,253 pyrosequence and 
6,036,863 Illumina reads. 

Genome annotation 
Genes were identified using Prodigal [62] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [63]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) non-redundant database, 
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UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and 
InterPro databases. These data sources were 
combined to assert a product description for each 
predicted protein. Non-coding genes and miscel-
laneous features were predicted using tRNAscan-
SE [64, RNAMMer [65], Rfam [66], TMHMM [67], 
and SignalP [68]. 

Genome properties 
The genome consists of a circular 4,765,023 bp 
chromosome a 67.9% G+C content (Table 3 and 
Figure 3). Of the 4,563 genes predicted, 4,511 
were protein-coding genes, and 52 RNAs; 80 

pseudogenes were also identified. The majority of 
the protein-coding genes (74.8%) were assigned a 
putative function while the remaining ones were 
annotated as hypothetical proteins. The distribu-
tion of genes into COGs functional categories is 
presented in Table 4. A total of 388 genes are pre-
dicted to encode proteins involved in signal trans-
duction, including 284 one-component systems, 
41 histidine kinases, 47 response regulators, sev-
en chemotaxis proteins and two additional unclas-
sified proteins. 

 

Table 3. Genome Statistics 
Attribute Value % of Total 

Genome size (bp) 4,765,023 100.00% 

DNA coding region (bp) 4,222,317 88.61% 

DNA G+C content (bp) 3,234,723 67.88% 

Number of replicons 1  

Extrachromosomal elements 0  

Total genes 4,563 100.00% 

RNA genes 52 1.14% 

rRNA operons 1  

tRNA genes 46 1.01% 

Protein-coding genes 4,511 98.86% 

Pseudo genes 80 1.75% 

Genes with function prediction (proteins) 3,413 74.80% 

Genes in paralog clusters 2,690 58.95% 

Genes assigned to COGs 3,582 78.50% 

Genes assigned Pfam domains 3,730 81.74% 

Genes with signal peptides 1,730 37.91% 

Genes with transmembrane helices 1,169 25.62% 

CRISPR repeats 0  
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Figure 3. Graphical map of the chromosome. From outside to the center: Genes on forward strand (color by COG 
categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs 
black), GC content (black), GC skew (purple/olive). 
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Table 4. Number of genes associated with the general COG functional categories 
Code value % age Description 

J 176 4.5 Translation, ribosomal structure and biogenesis 

A 0 0.0 RNA processing and modification 

K 303 7.7 Transcription 

L 118 3.0 Replication, recombination and repair 

B 2 0.1 Chromatin structure and dynamics 

D 30 0.8 Cell cycle control, cell division, chromosome partitioning 

Y 0 0.0 Nuclear structure 

V 54 1.4 Defense mechanisms 

T 181 4.6 Signal transduction mechanisms 

M 210 5.3 Cell wall/membrane biogenesis 

N 8 0.2 Cell motility 

Z 0 0.0 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 36 0.9 Intracellular trafficking and secretion, and vesicular transport 

O 148 3.8 Posttranslational modification, protein turnover, chaperones 

C 291 7.4 Energy production and conversion 

G 270 6.9 Carbohydrate transport and metabolism 

E 504 12.8 Amino acid transport and metabolism 

F 77 2.0 Nucleotide transport and metabolism 

H 156 4.0 Coenzyme transport and metabolism 

I 143 3.6 Lipid transport and metabolism 

P 229 5.8 Inorganic ion transport and metabolism 

Q 105 2.7 Secondary metabolites biosynthesis, transport and catabolism 

R 487 12.4 General function prediction only 

S 405 10.3 Function unknown 

- 981 21.5 Not in COGs 

Insights into the genome 
As indicated in the introduction, because S. novella 
was the first facultative sulfur chemolithotrophic 
bacterium to be isolated, many studies of its meta-
bolic capabilities were carried out following its dis-
covery. Several groups worked on the carbon me-
tabolism of S. novella, which led to the discovery of 
an operational pentose phosphate pathway in this 
bacterium [69], which is also the only reported 
pathway of glucose metabolism in the description 
of S. novella [1]. However, analysis of the genome 
sequence revealed that in addition to a pentose 

phosphate pathway, S. novella also contains en-
zymes required for the Entner-Doudoroff pathway 
(Snov_2999 & Snov_3400, 2-dehydro-3-deoxy-
phosphogluconate aldolase; 6-phosphogluconate 
dehydratase; biocyc database) and the enzymes 
required for the Embden-Meyerhoff pathway, alt-
hough this pathway appears to lack a phosphofruc-
tokinase (EC 2.7.1.11), indicating that it may only 
be able to be used for gluconeogenesis. 
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The respiratory chain of S. novella has also been 
studied and an aa3 type terminal oxidase was 
identified and characterized in some detail [70-
73]. It was also discovered that the cytochrome 
c that interacts with this cytochrome oxidase 
(most likely this cytochrome is encoded by 
Snov_1033) has properties that are reminiscent 
of the mitochondrial respiratory chain cyto-
chrome c [70-75], including a high pI and an 
ability to transfer electrons to the bovine cyto-
chrome oxidase [76]. The analysis of the genome 
revealed a much greater diversity of respiratory 
chain complexes than previously recognized, 
including two NADH oxidases (gene regions 
Snov_1853 & Snov_2407), one succinate dehy-
drogenase (Snov_3317 gene region) and a cyto-
chrome bc1 complex (Snov_2477 gene region). 
In addition to these components, the genome 
encodes two aa3 type cytochrome oxidases 
(gene regions Snov_0584 & 4240), two cyto-
chrome bd type quinol oxidases (pfam02322, 
gene regions Snov_0620 & 3535), a cbb3 type 
cytochrome oxidase (gene region Snov_4464), 
and a cyoB type quinol oxidase (COG0843, 
cd01662, gene region Snov_1015) indicating a 
significant versatility of respiration in S. novella 
as well as the potential to grow at low oxygen 
tensions as both the cbb3 and bd type oxidases 
are known to have high affinities for oxygen, en-
abling growth under microaerophilic conditions. 
Experiments in our laboratory have shown that 
final OD600 values reached by cultures grown on 
thiosulfate (5g/l) and hydrogen carbonate (20 
mM) supplemented DSMZ medium 69 were the 
same regardless of whether 25, 50, 100 or 200 
ml of medium were used in a 250 ml flask. This 
clearly confirms that, as indicated by the ge-
nome data, S. novella is capable of growth under 
microaerophilic as well as aerobic conditions. 

We also re-evaluated the range of substrates 
that support growth of S. novella. In the descrip-
tion of the genus Starkeya [1] only glucose, 
formate, methanol and oxalate were listed as 
growth-supporting substrates in addition to thi-
osulfate and tetrathionate. An early paper re-
porting a test of the heterotrophic potential of S. 
novella was published in 1969 by Taylor and 
Hoare [4] in which they identified 16 potential 
growth substrates (Table no. 7 in [4]) including 
all of the above except oxalate, which was iden-
tified  

subsequently by [5] who were seeking to evalu-
ate the C1 compound metabolism of S. novella 
and also identified formamide as a potential 
substrate. It is unclear why the description of 
the genus Starkeya did not list all of the 16 
growth substrates identified by Taylor and 
Hoare. To confirm the earlier data, we carried 
out a growth substrate screen using the Biolog 
system (GN2 assay plates) as well as an api20NE 
test for bacterial identification. Some substrates 
that are not part of this Biolog GN2 plate (e.g. 
oxalate, fructose, succinate etc.) were inde-
pendently tested in the laboratory for their abil-
ity to support growth. In the API20NE test, in 
addition to a positive oxidase response, S. novel-
la tested positive for ESC/Fecit and p-
nitrophenyl hydrolysis, glucose, mannitol and 
gluconate utilization. The Biolog assay clearly 
showed that the heterotrophic potential of this 
bacterium is greater than previously identified, 
with a total of 28 growth-supporting substrates 
being identified in the screen (Table 5). The 
metabolic profile could not be identified as such, 
and was most closely related to that of 
Ancylobacter aquaticus (SIM: 0.45, Dist: 8.96), 
which supports the phylogenetic placement of S. 
novella in the Ancylobacter subgroup of the 
Xanthobacteriaceae. When combining all the da-
ta from the various studies, there are now 39 
substrates that have been identified as support-
ing heterotrophic growth of S. novella. In addi-
tion to sugars such as glucose, fructose and 
arabinose, several sugar alcohols and amino ac-
ids as well as some organic acids can be used as 
growth substrates (Table 5). This reasonably 
large range of growth substrates is reflected in 
the size and the diversity of metabolic pathways 
present in the S. novella genome which, with a 
size of 4.6 Mb, is comparable to the genomes of 
e.g., Escherichia coli and Rhodopseudomonas 
palustris. 

Although the analyses presented above are lim-
ited, they clearly illustrate that while the ge-
nome data confirm many of the results from ear-
ly studies of the physiology of this bacterium, 
the metabolic capabilities of S. novella as indi-
cated by the genome data clearly exceed those 
previously published in the literature and sug-
gest that the versatility and adaptability to 
changing environments likely is a significant 
factor for its survival. 
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Table 5. Growth substrates utilized by S. novella 
Substrate  substrate  

D-glucose + L-Histidine + 

D-fructose + Proline + 

Sucrose - l-Leucine - 

D-Galactose + L-Isoleucine - 

L-arabinose + L-Tryptophan - 

D-gluconate + DL-Serine + 

D-arabitol + D-alanine (+) 

Adonitol + L-alanine - 

Xylitol + L-Glutamate - 

D-sorbitol + L-threonine + 

D-Mannitol + L-aspartate - 

Lactose - hydroxy-L Proline + 

Maltose + L-Alaninamide + 

D-Ribose (+) DL- Lactate + 

Glycerol + Malate - 

Pyruvate + Succinate (+) 

Formate + Fumarate - 

Formamide + Citrate - 

Formaldehyde - Methylpyruvate + 

Methylamine - Monomethylsuccinate + 

Trimethylamine - Alpha ketobutyrate + 

H2/CO2 - Alpha hydroxybutyrate + 

Ethylamine - Beta hydroxy butyrate + 

Oxalate + Gamma aminobutyrate + 

Acetate + Benzoate - 

Propionate + p-Hydroxybenzoate - 

Butyrate - m-Hydroxybenzoate - 

Methanol + p-Aminobenzoate - 

Ethyl alcohol + Cyclohexanol - 

n-Propanol + Cyclohexane - 

n-Butyl alcohol - carboxylate  

Results are combined from work done for this paper and [4-6]+ = substrate utilized, - 
= substrate not utilized, (+) = weak growth supported or ambiguous results in growth 
tests, italics = different results obtained in growth studies by different authors. 
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