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ClaMS – “Classifier for Metagenomic Sequences” – is a Java application for binning 
assembled contigs in metagenomes using user-specified training sets and initial parameters. 
Since ClaMS trains on sequence composition-based genomic signatures, it is much faster than 
binning tools that rely on alignments to homologs; ClaMS can bin ~20,000 sequences in 3 
minutes on a laptop with a 2.4 GH× Intel Core 2 Duo processor and 2 GB RAM. ClaMS is 
meant to be a desktop application for biologists and can be run on any machine under any 
Operating System on which the Java Runtime Environment can be installed. 

Availability: ClaMS is freely available in both GUI-based and command line-based forms and 
can be obtained from http://clams.jgi-psf.org/. 

Supplementary Information: A more detailed overview of the software and usage guidelines 
are found at http://  clams.jgi-psf.org/details

*Correspondence: Amrita Pati, apati@lbl.gov 

Introduction 
Metagenome binning is the process of assigning 
nucleotide sequences in a metagenome to known 
taxonomic groups. Mapping sequences to their 
taxonomic groups of origin leads to better 
characterization of a metagenome, which 
facilitates the accomplishment of objectives such 
as genome assembly from metagenomes and 
assembly and annotation improvement. Existing 
binning methods can be characterized in two ways 
-- (1) Composition-based binning tools and 
homology-based binning tools (2) ab initio 
unsupervised classifiers and supervised/training-
based classifiers. In unsupervised binning, a 
dataset is classified to pre-existing bins trained on 
genomic sequences without any interference or 
supervision from the user. In supervised binning, 
the user integrates additional known facts about 
the dataset into the binning process by 
participating in the training process – by 
specifying sequences for each training bin and/or 
selecting the taxonomic units to which the dataset 
must be binned. Homology-based classifiers such 
as MEGAN [1] rely on alignments of sequences to 
homologs and are extremely computation-
intensive. For large metagenomic datasets 
sequenced using next-generation sequencing 
technologies, homology-based binning can be 
prohibitive in terms of time and computation. 
While existing composition-based binning tools 
(Phylopythia [2], TETRA [3]) are much faster than 

homology-based binning tools, they are mostly 
unsupervised, and their accuracy is limited since 
the information about the presence and 
abundance of specific phylogenetic populations is 
not used in the binning process, even though such 
information obtained by 16S rDNA amplicon 
analysis results is available for many 
metagenomic datasets. Even in the absence of 
rRNA amplicon analysis experiments, some 
intelligence about the constituent organisms of a 
metagenome can be obtained by a few iterations 
of ab initio binning. The objective of ClaMS is to 
integrate this information into the binning process 
thus achieving higher accuracy of binning, and to 
produce a desktop/laptop application that is 
platform-independent, fast, and easily usable by 
biologists. 

Principles 
ClaMS works by characterizing a sequence with a 
signature vector that is derived from its 
composition and described as a de Bruijn chain 
(DBC) signature [4]. A double stranded DNA 
sequence is treated as a walk in a de Bruijn graph 
and artifacts such as the stationary distribution of 
the underlying Markov chain and the strength of 
connectivity of various graph-components to the 
graph are used to compute the DBC signature. The 
transition probability matrix of the underlying 
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Markov chain of even a relatively short sequence 
can accurately predict its stationary distribution, 
and this property is exploited in the computation 
of DBC signatures. The DBC signature is highly 
conserved within a species while varying between 
species and this can be proved both 
mathematically and experimentally [4]. This 
property also manifests at higher taxonomic 
levels. It is more complex than the oligonucleotide 
frequency signatures used by Phylopythia and 
TETRA, and different from the interpolated 
Markov Models used by Phymm [5]. Since a DBC 
signature of order k incorporates information 
about k-mers and (k+1)-mers in its computation, 
it is much faster to train. While the greater 
amount of information used by applications such 
as Phylopythia and Phymm does mean higher 
accuracy, ClaMS is targeted for use on assembled 
contigs with supervision from the user and in this 
scenario, accuracy is not compromised. Pre-
computed signatures at various word lengths (2-
4) are included with ClaMS for all finished 
genomes. These signatures have been computed 
using the taxonomy and isolate genome sequences 
in IMG [6] and will be updated with each release 
of ClaMS or on request. The users can define 
training sequence sets either by clicking a node in 
the phylogenetic tree in the ClaMS-GUI or by 
uploading their own fasta files of sequences. For 
each sequence to be binned, its signature, which is 
a vector, is computed. This signature is compared 
individually with the centroid signatures of all 
training sets and the best match is declared as the 
bin for that sequence. 

Results and Discussion 
To demonstrate the accuracy of binning using 
ClaMS, we binned a real metagenome and a 
simulated metagenome using ClaMS. The real 
metagenome, the Phrap-assembled phosphorus 
removal sludge metagenome (SLU) sampled from 
laboratory-scale bioreactor (IMG/M, taxon OID: 
2000000000 [6]), is 56.6M bases long, has 60.45% 
GC, and contains 31,742 assembled contigs. The 
simulated metagenome, the assembled medium 
complexity simulated simMC dataset from FAMeS 
[7], has 15109 non-chimeric contigs that were 
1000 bases or longer and candidates for binning 
using ClaMS. We evaluated the results using cross-
validation of the binned contigs. In the case of 
simMC, the correct bins of the contigs were 
already known for cross-validation, in the case of 

SLU, best hits from Blast alignment were used to 
cross-validate bins. 
The phylogenetic distribution of genes in the SLU 
dataset based on their best Blast hits in IMG/M [6] 
and the 16S rRNA tree in [8] showed that the 
dataset was dominated by Betaproteobacteria 
(127 species), Gammaproteobacteria (396 
species), Bacteroidetes (81 species), and the 
genome of Candidatus A. phosphatis. Four training 
sets were used to bin SLU: the longest contig 
belonging to Candidatus A. phosphatis in the SLU 
dataset (subsequently removed from the set to be 
binned), betaproteobacterial isolate genomes, all 
gammaproteobacterial isolate genomes, and all 
genomes of Bacteroidetes. Scaffolds assigned to 
each bin were then cross-validated using their 
existing Blast-based class assignment in IMG/M. 
As part of the processing pipeline in IMG/M ,the 
phylogenetic distribution for the metagenome is 
computed by aligning genes on scaffolds (using 
BLASTP) to the non-redundant database of 
sequences computed from isolate genomes stored 
in IMG. Results are viewable as a phylogenetic 
distribution of genes in the metagenome by 
assigning scaffolds to appropriate bins at various 
taxonomic levels based on the alignment of genes 
present on them. Results are outlined in Figure 1 
Approximately 91% of the scaffolds in the 
Candidatus A. phosphatis bin have best BLAST 
matches to Betaproteobacteria, as do 77% of the 
scaffolds in the Betaproteobacteria bin. Similarly, 
90% of the scaffolds in the Bacteroidetes bin have 
BLAST matches to Bacteroidetes, while the 
scaffolds in the Gammaproteobacteria bin are 
distributed between Betaproteobacteria (59%) 
and Gammaproteobacteria (25%). The latter 
misclassification could be attributed to the fact 
that the Gammaproteobacteria in the SLU dataset 
are dominated by Xanthomonadales whose 
scaffolds have high GC content (64-67%) that is 
closer to that of Betaproteobacteria (62%) than to 
Gammaproteobacteria (48%). Moreover the 
taxonomic position of Xanthomonadales is not well 
defined [9]. This example illustrates the dangers 
of relying on isolate genome sequences as a 
training set, especially when relatively large 
taxonomic groups, such as phyla or classes are 
considered. Binning can often produce more 
accurate results if longer contigs from the 
sequence set to be binned, whose origins are 
known, are used as training sets. 
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Figure 1. Cross-validation of scaffolds in the SLU dataset assigned by ClaMS to user-defined bins with respect to 
existing phylogenetic assignments of these scaffolds made by IMG/M based on their best Blast hit. The x-axis 
indicates the bin whose scaffolds are being cross-validated. The y-axis indicates the bacterial classes to which 
scaffolds in that bin actually map to in IMG/M. Bubble sizes represent percentages. 

The Phrap-assembled simulated acid mine 
drainage dataset (simMC) from FAMeS was 
binned in an unsupervised manner at various 
phylogenetic levels. The dataset has been 
constructed from the reads collected from 
genomes classified to 79 genera, 60 families, 42 
orders, 17 classes, and 9 phyla under the bacterial 
and archaeal domains. Whole genome sequences 
of organisms under a taxonomic unit were used to 
train the bin for that taxonomic unit. For example, 
all Alphaproteobacteria species (except those used 
in the simulated dataset) were used to train the 
Alphaproteobacteria bin. All contigs longer than 
1,000 bases were binned using ClaMS. Figure 2a 
illustrates the sensitivity and specificity of the 
unsupervised binning process at various 
phylogenetic levels when the best two bins for a 
contig are considered for the correct match. For 
example, at the genus level, 79 bins (one for each 
genus) were used to bin the assembled contigs, 
where a bin for a particular genus was trained 

using genomic sequences from all isolate genomes 
belonging to that genus. Negatives were 
determined by counting sequences that could not 
be binned at given cut-offs for distance and contig 
length. Sensitivity was computed as the 
percentage of sequences for which bins existed 
that were binned correctly (ratio of the number of 
true positives to the sum of the number of true 
positives and the number of false negatives) while 
specificity was computed as the ratio of the 
number of true negatives to the sum of the 
number of true negatives and the number of false 
positives. Unsupervised binning of a metagenomic 
dataset yields relatively accurate results at the 
genus, family, and domain levels, but the same 
cannot be said of the order, class, and phylum 
levels, where the dispersion in the properties of 
the signature is much greater and the accuracy of 
binning is much lower. For metagenomic datasets 
whose dominant constituent populations are 
known, supervised binning while training on 
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contigs from the same dataset is the best course of 
action. This is illustrated by the specificity vs. 
sensitivity plots in Figure 2b, where binning was 
done on all contigs longer than 1,000 bases in the 
simMC dataset using training sets specified by the 
user. A total of 9 genera, 8 families/orders and 6 
classes were selected and each bin was trained 
using contigs from the same metagenome. A 
combination of the two binning approaches, in 
which the user specified a training set of isolate 
genomes instead of selecting training sequences 
from the same metagenome produces better 
results than unsupervised binning, but is less 

accurate than supervised binning with training 
contigs from the same metagenome (Figure 3). 
ClaMS can run in a command-line mode, which 
makes it convenient to be included in processing 
pipelines and large-scale batch-processing jobs. 
Screenshots of the ClaMS user-interface and a 
demonstration of the usage including visualization 
of results are available at http:// . 
The user-friendly interface, built-in taxonomy 
browser, bundled genomic signatures, and fast 
computations make ClaMS an ideal desktop 
supervised binning application for biologists. 

clams.jgi-psf.org

Figure 2a. Sensitivity and specificity on binning contigs longer than 1000 bps in the Phrap-
assembled simMC dataset at the genus, family, order, and class levels using ClaMS in an ab initio 
manner. The stars in matching colors indicate the same values for binning all contigs longer than 
8,000 bps in the same dataset. The grey star represents the sensitivity/specificity values at the 
domain level. 
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Figure 2b. Results of binning the same (Figure 2a) contigs in simMC using 
user-specfied bins for training. 

Figure 3. Sensitivity and specificity on binning contigs longer than 1,000 bps in 
the Phrap-assembled simMC dataset at the genus, family, order, and class levels 
using ClaMS in an ab initio manner. Complete genomes were used to train the 9 
genera, 8 families/orders, and 6 classes specified by the user. Observe that a 
large amount of noise is added to the bins at the class level because of including 
all complete genomes in that class. The in-built taxonomy browser in ClaMS 
was used to make these bin selections. 
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