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Treponema succinifaciens Cwyk and Canale-Parola 1981 is of interest because this strictly 
anaerobic, apathogenic member of the genus Treponema oxidizes carbohydrates and couples 
the Embden-Meyerhof pathway via activity of a pyruvate-formate lyase to the production of 
acetyl-coenzyme A and formate. This feature separates this species from most other anaerob-
ic spirochetes. The genome of T. succinifaciens 6091T is only the second completed and pub-
lished type strain genome from the genus Treponema in the family Spirochaetaceae. The 
2,897,425 bp long genome with one plasmid harbors 2,723 protein-coding and 63 RNA 
genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project. 

Introduction 
Strain 6091T (= DSM 2489 = ATCC 33096 = JCM 
13475) is the type strain of Treponema succinifa-
ciens [1,2]. Currently, there are 25 species placed 
in the genus Treponema [3]. The species epithet is 
derived from the Latin noun acidum succinicum 
meaning succinic acid and the Latin verb facio 
meaning to make, produce, referring to the succin-
ic acid-producing property of the species [1]. T. 
succinifaciens was isolated from the colon of 
swine, and first described as small spirochete by 
Harris et al. in 1972 [4]. In 1974 it was published 
that strain 6091T belonged to a group of harmless 
inhabitants of the intestine of healthy pigs and had 
no pathogenic potential [5]. No further isolates 
have been described and strain 6091T was desig-

nated the type strain of the new species T. succini-
faciens in 1979 [1]. Here we present a summary 
classification and a set of features for T. succinifa-
ciens 6091T, together with the description of the 
complete genomic sequencing and annotation. 

Classification and features 
A representative genomic 16S rRNA sequence of T. 
succinifaciens was compared using NCBI BLAST [6] 
under default settings (e.g., considering only the 
high-scoring segment pairs (HSPs) from the best 
250 hits) with the most recent release of the Green-
genes database [7] and the relative frequencies of 
taxa and keywords (reduced to their stem [8]) were 
determined, weighted by BLAST scores. The most 
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frequently occurring genera were Treponema 
(97.5%) and Spirochaeta (2.5%) (32 hits in total). 
Regarding the single hit to sequences from members 
of the species, the average identity within HSPs was 
97.7%, whereas the average coverage by HSPs was 
96.1%. Regarding the 14 hits to sequences from oth-
er members of the genus, the average identity within 
HSPs was 89.2%, whereas the average coverage by 
HSPs was 54.1%. Among all other species, the one 
yielding the highest score was Treponema socranskii 
(AY369254), which corresponded to an identity of 
89.8% and an HSP coverage of 55.7%. (Note that the 
Greengenes database uses the INSDC (= 
EMBL/NCBI/DDBJ) annotation, which is not an au-
thoritative source for nomenclature or classifica-
tion.) The highest-scoring environmental sequence 
was EU462604 ('Evolution mammals and their gut 
microbes Sumatran orangutan feces clone orang2 
aai66a03'), which showed an identity of 99.6% and 
an HSP coverage of 91.6%. The most frequently oc-

curring keywords within the labels of environmental 
samples which yielded hits were 'gut' (11.2%), 
'evolut, fece, mammal, microb' (8.2%), 'baboon, ha-
madrya' (6.3%), 'termit' (5.1%) and 'homogen' 
(2.2%) (218 hits in total). The most frequently oc-
curring keywords within the labels of environmental 
samples which yielded hits of a higher score than the 
highest scoring species were 'gut' (12.1%), 'evolut, 
fece, mammal, microb' (11.5%), 'baboon, hamadrya' 
(9.9%), 'rumen' (1.3%) and 'termit' (1.1%) (77 hits 
in total). These keywords fit to the ecological and 
physiological properties reported for strain 6091T in 
the original description [1]. 
Figure 1 shows the phylogenetic neighborhood of T. 
succinifaciens in a 16S rRNA based tree. The se-
quences of the four 16S rRNA gene copies in the ge-
nome differ from each other by up to seven nucleo-
tides, and differ by up to 14 nucleotides from the 
previously published 16S rRNA sequence (M57738), 
which contains 26 ambiguous base calls. 

 

 
Figure 1. Phylogenetic tree highlighting the position of T. succinifaciens relative to the type strains of the oth-
er species within the phylum 'Spirochaetes'. The tree was inferred from 1,350 aligned characters [9,10] of the 
16S rRNA gene sequence under the maximum likelihood (ML) criterion [11]. Rooting was done initially using 
the midpoint method [12] and then checked for its agreement with the current classification (Table 1). The 
branches are scaled in terms of the expected number of substitutions per site. Numbers adjacent to the 
branches are support values from 1,000 ML bootstrap replicates [13] (left) and from 1,000 maximum parsi-
mony bootstrap replicates [14] (right) if larger than 60%. Lineages with type strain genome sequencing 
projects registered in GOLD [15] are marked with one asterisk, those also listed as 'Complete and Published' 
(as well as the target genome) with two asterisks [16]. 



Han et al. 

http://standardsingenomics.org 363 

The cells of T. succinifaciens are of helical shape 
(0.3 × 4-8 µm) and usually exhibit irregular coiling 
(Figure 2). Cells are up to 16 µm long and also 
chains of cells may occur in culture [1]. T. succini-
faciens is a Gram-negative and non spore-forming 
bacterium (Table 1). The organism displays tem-
perature-dependent motility of translational, rota-
ry and flexing movements; at 23–25°C no transla-
tional movement can be observed and rotation is 
slow, whereas at 37°C cells are very mobile (aver-
age velocity: 15µm/s) [1]. T. succinifaciens harbors 
two periplasmic fibrils inserted near each end of 
the cell [1]. The genome of T. succinifaciens con-
tains 63 genes involved in motility (see below). 
The organism is a strictly anaerobic chemoorga-
notroph [1]. T. succinifaciens requires rumen fluid 
in media for good growth, replacement with a 
mixture of short-chain fatty acids leads to reduced 
growth yields [1]. The temperature range for 
growth is between 22°C and 43°C, with an opti-
mum between 35°C and 39°C [1]. The organism is 
catalase-negative and does not grow in the pres-
ence of 6.5% NaCl [1]. T. succinifaciens requires 
CO2 for growth and is able to utilize arabinose, xy-
lose, glucose, mannose, galactose, maltose, lactose, 
cellobiose, dextrin and starch for fermentation. 
Sugar alcohols, amino acids and other organic ac-
ids cannot be fermented by the organism [1]. Ma-
jor fermentation products of glucose are acetate, 
formate, succinate and lactate, whereas pyruvate, 
acetoin and 2,3-butanediol are formed in minor 
amounts [1]. Assays of enzymatic activities 
showed that T. succinifaciens dissimilates glucose 
via the Embden-Meyerhof pathway [1]. It was 

shown that pyruvate is metabolized through the 
activity of pyruvate formate lyase to yield acetyl-
coenzyme A and formate, which is in contrast to 
other spirochetes that degrade pyruvate to acetyl-
coenzyme A, CO2 and H2 [1]. Furthermore, T. suc-
cinifaciens is capable of CO2 fixation for the pro-
duction of succinate [1]. Also, the organism pos-
sesses enzymatic activity of adenine deaminase, 
phosphoribosyltransferase (for adenine, guanine 
and hypoxanthine), nucleotidase (for AMP, IMP 
and GMP), nucleoside phosphorylase (for adeno-
sine, guanosine and inosine) and nucleoside hy-
drolase (for inosine and guanosine) [28]. Whether 
these activities are important for the survival of T. 
succinifaciens under nutrient deprivation or for 
adaptation to environmental stress is still unclear. 
An outer membrane-associated serine protease, 
which was found in several pathogenic spiro-
chetes and also in T. succinifaciens, might be in-
volved in the survival within the intestine, howev-
er, a role in pathogenesis can so far not be ex-
cluded [29]. T. succinifaciens is susceptible to pe-
nicillin G (4 units/ml), cephalotin (4 µg/ml) and 
chloramphenicol (4 µg/ml). Growth of the organ-
ism is not impaired by erythromycin (4 µg/ml), 
oxytetracycline (4 µg/ml), polymyxin B (40 
units/ml), rifampin (4 µg/ml), streptomycin (4 
µg/ml), tetracycline (4 µg/ml) or vancomycin (4 
µg/ml) [1]. 

Chemotaxonomy 
No chemotaxonomic information is currently 
available for T. succinifaciens. 

 

 
Figure 2. Scanning electron micrograph of T. succinifaciens 6091T 
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Table 1. Classification and general features of T. succinifaciens 6091T according to the MIGS 
recommendations [17] and the NamesforLife database [3]. 

MIGS ID Property Term Evidence code 

 Current classification 

Domain Bacteria TAS [18] 

Phylum “Spirochaetae” TAS [19] 

Class “Spirochaetes” TAS [20] 

Order Spirochaetales TAS [21,22] 

Family Spirochaetaceae TAS [21,23] 

Genus Treponema TAS [21,24,25] 

Species Treponema succinifaciens TAS [1,2] 

Type strain 6091 TAS [1,2] 

 Gram stain negative TAS [1] 

 Cell shape helical-shaped TAS [1] 

 Motility motile TAS [1] 

 Sporulation none TAS [1] 

 Temperature range 22–43°C TAS [1] 

 Optimum temperature 35–39°C TAS [1] 

 Salinity not reported  

MIGS-22 Oxygen requirement anaerobic TAS [1] 

 Carbon source carbohydrates TAS [1] 

 Energy metabolism chemoorganotroph TAS [1] 

MIGS-6 Habitat intestine of healthy pigs TAS [1] 

MIGS-15 Biotic relationship free-living NAS 

MIGS-14 Pathogenicity none NAS 

 Biosafety level 1 TAS [26] 

 Isolation colon of swine TAS [1] 

MIGS-4 Geographic location USA TAS [1] 

MIGS-5 Sample collection time 1972 or before TAS [1] 

MIGS-4.1 Latitude not reported  

MIGS-4.2 Longitude not reported  

MIGS-4.3 Depth not reported  

MIGS-4.4 Altitude not reported  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Au-
thor Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author State-
ment (i.e., not directly observed for the living, isolated sample, but based on a generally ac-
cepted property for the species, or anecdotal evidence). These evidence codes are from of the 
Gene Ontology project [27]. If the evidence code is IDA, the property was directly observed by 
one of the authors or an expert mentioned in the acknowledgements. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [30], and is part 
of the Genomic Encyclopedia of Bacteria and Arc-
haea project [31]. The genome project is depo-
sited in the Genomes On Line Database [15] and 

the complete genome sequence is deposited in 
GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome Insti-
tute (JGI). A summary of the project information is 
shown in Table 2. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality finished 

MIGS-28 Libraries used 
Three genomic libraries: one 454 pyrosequence standard library, one 
454 PE library (10.5 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 
MIGS-31.2 Sequencing coverage 960.0 × Illumina; 47.3 × pyrosequence 
MIGS-30 Assemblers Newbler version 2.3, Velvet version 0.7.63, phrap version SPS - 4.24 
MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 
 INSDC ID CP002631 
 Genbank Date of Release April 15, 2011 
 GOLD ID Gc01722 
 NCBI project ID 50825 
 Database: IMG-GEBA 2504557012 
MIGS-13 Source material identifier DSM 2489 
 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
T. succinifaciens strain 6091T, DSM 2489, was 
grown anaerobically in DSMZ medium 275 (Tre-
ponema succinifaciens medium) [32] at 37°C. DNA 
was isolated from 0.5-1 g of cell paste using Mas-
terPure Gram-positive DNA purification kit (Epi-
centre MGP04100) following the standard proto-
col as recommended by the manufacturer with 
modification st/DL for cell lysis as described in 
Wu et al. 2009 [31]. DNA is available through the 
DNA Bank Network [33]. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Illumina and 454 sequencing platforms. All 
general aspects of library construction and se-
quencing can be found at the JGI website [34]. Py-
rosequencing reads were assembled using the 
Newbler assembler (Roche). The initial Newbler 
assembly consisting of 134 contigs in two scaf-
folds was converted into a phrap assembly [35] by 
making fake reads from the consensus, to collect 
the read pairs in the 454 paired end library. Illu-
mina sequencing data (3,531 Mb) was assembled 
with Velvet [36] and the consensus sequences 
were shredded into 1.5 kb overlapped fake reads 
and assembled together with the 454 data. The 
454 draft assembly was based on 136.1 Mb 454 
draft data and all of the 454 paired end data. 
Newbler parameters are -consed -a 50 -l 350 -g -m 
-ml 20. The Phred/Phrap/Consed software pack-
age [35] was used for sequence assembly and 
quality assessment in the subsequent finishing 
process. After the shotgun stage, reads were as-
sembled with parallel phrap (High Performance 

Software, LLC). Possible mis-assemblies were cor-
rected using gapResolution [34], Dupfinisher [37] 
or sequencing cloned bridging PCR fragments with 
subcloning. Gaps between contigs were closed by 
editing in Consed [35], by PCR and by Bubble PCR 
primer walks (J.-F. Chang, unpublished). A total of 
305 additional reactions were necessary to close 
gaps and to raise the quality of the finished se-
quence. Illumina reads were also used to correct 
potential base errors and increase consensus 
quality using a software Polisher developed at JGI 
[38]. The error rate of the completed genome se-
quence is less than 1 in 100,000. Together, the 
combination of the Illumina and 454 sequencing 
platforms provided 1,007.3 × coverage of the ge-
nome. The final assembly contained 486,725 py-
rosequence and 36,577,056 Illumina reads. 

Genome annotation 
Genes were identified using Prodigal [39] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [40]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) non-redundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [41]. 
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Genome properties 
The genome consists of a 2,731,853 bp long chro-
mosome and a 165.572 bp long plasmid both with 
a G+C content of 39.1% (Figure 3, Figure 4 and 
Table 3). Of the 2,786 genes predicted, 2,723 were 
protein-coding genes, and 63 RNAs; 115 pseudo-

genes were also identified. The majority of the 
protein-coding genes (57.8%) were assigned a 
putative function while the remaining ones were 
annotated as hypothetical proteins. The distribu-
tion of genes into COGs functional categories is 
presented in Table 4. 

 
Figure 3. Graphical map of the chromosome (not drawn to scale with plasmid in Figure 4). From bottom to top: 
Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA 
genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 
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Figure 4. Graphical map of the plasmid  (not drawn to scale 
with chromosome in Figure 3). From bottom to top: Genes on 
forward strand (color by COG categories), Genes on reverse 
strand (color by COG categories), RNA genes (tRNAs green, 
rRNAs red, other RNAs black), GC content, GC skew. 

Table 3. Genome Statistics 
Attribute Value % of Total 

Genome size (bp) 2,897,425 100.00% 

DNA coding region (bp) 2,550,315 88.02% 

DNA G+C content (bp) 1,133,894 39.13% 

Number of replicons 2  
Extrachromosomal elements 0  
Total genes 2,786 100.00% 

RNA genes 63 2.26% 

rRNA operons 4  
Protein-coding genes 2,723 97.74% 

Pseudo genes 115 4.13% 

Genes with function prediction 1,611 57.82% 

Genes in paralog clusters 373 13.39% 

Genes assigned to COGs 1,674 60.09% 

Genes assigned Pfam domains 1,800 64.61% 

Genes with signal peptides 812 29.15% 

Genes with transmembrane helices 581 20.85% 

CRISPR repeats 1  
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Table 4. Number of genes associated with the general COG functional categories 
Code value %age Description 

J 142 7.8 Translation, ribosomal structure and biogenesis 

A 0 0.0 RNA processing and modification 

K 120 6.6 Transcription 

L 179 9.8 Replication, recombination and repair 

B 0 0.0 Chromatin structure and dynamics 

D 24 1.3 Cell cycle control, cell division, chromosome partitioning 

Y 0 0.0 Nuclear structure 

V 46 2.5 Defense mechanisms 

T 103 5.7 Signal transduction mechanisms 

M 120 6.6 Cell wall/membrane/envelope biogenesis 

N 63 3.5 Cell motility 

Z 1 0.0 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 61 3.3 Intracellular trafficking, secretion, and vesicular transport 

O 55 3.0 Posttranslational modification, protein turnover, chaperones 

C 74 4.1 Energy production and conversion 

G 111 6.1 Carbohydrate transport and metabolism 

E 128 7.0 Amino acid transport and metabolism 

F 62 3.4 Nucleotide transport and metabolism 

H 58 3.2 Coenzyme transport and metabolism 

I 34 1.9 Lipid transport and metabolism 

P 60 3.3 Inorganic ion transport and metabolism 

Q 5 0.3 Secondary metabolites biosynthesis, transport and catabolism 

R 240 13.2 General function prediction only 

S 138 7.6 Function unknown 

- 1,112 39.9 Not in COGs 
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