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Tsukamurella paurometabola corrig. (Steinhaus 1941) Collins et al. 1988 is the type species 
of the genus Tsukamurella, which is the type genus to the family Tsukamurellaceae. The spe-
cies is not only of interest because of its isolated phylogenetic location, but also because it is 
a human opportunistic pathogen with some strains of the species reported to cause lung in-
fection, lethal meningitis, and necrotizing tenosynovitis. This is the first completed genome 
sequence of a member of the genus Tsukamurella and the first genome sequence of a mem-
ber of the family Tsukamurellaceae. The 4,479,724 bp long genome contains a 99,806 bp 
long plasmid and a total of 4,335 protein-coding and 56 RNA genes, and is a part of the Ge-
nomic Encyclopedia of Bacteria and Archaea project. 

Introduction 
Strain no. 33T (= DSM 20162 = ATCC 8368 = JCM 
10117) is the type strain of the species Tsukamurel-
la paurometabola, which in turn is the type species 
of the genus Tsukamurella [1,2]. Currently, there 
are eleven species within the genus Tsukamurella 
[1,3], which is named in honor of Michio Tsukamu-
ra, a Japanese microbiologist [1]. The species epi-
thet derives from the Greek words paurus meaning 
little and metabolus meaning changeable, referring 
to a metabolism that is little changeable [1]. Strain 
no. 33T was first isolated from the mycetome and 
ovaries of Cimex lectularis (bedbug) in a study on 
the bacterial flora of Hexapoda by Edward A. Stein-

haus in 1941 [2]. T. paurometabola was formerly 
also known as Corynebacterium paurometabolum 
(basonym) [1,4] as well as under its heterotypic 
synonym Rhodococcus aurantiacus [5,6], until Col-
lins et al. revised the controversial taxonomic posi-
tion of the species in 1988 [1] and J. P. Euzéby cor-
rected the species epithet according to the rules of 
to the International Code of Nomenclature of Bac-
teria (1990 Revision) [7]. T. paurometabola is 
known, albeit rarely, to be an opportunistic patho-
gen for humans, especially in patients with predis-
posing conditions, such as immunosuppression 
(leukemia, solid tumors, and HIV infection) [8,9], 
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chronic lung disease (tuberculosis) [9], and most 
often indwelling foreign bodies (long-term use of 
indwelling catheters) [10-13]. Here we present a 
summary classification and a set of features for T. 
paurometabola no. 33T, together with the descrip-
tion of the complete genomic sequencing and anno-
tation. 

Classification and features 
The phylogenetic neighborhood of T. paurometabo-
la no. 33T in a 16S rRNA based tree is shown in Fig-
ure 1. The sequences of the two identical 16S rRNA 
gene copies in the genome differ by one nucleotide 
from the previously published 16S rRNA sequence 
(AF283280). 

 

 
Figure 1. Phylogenetic tree highlighting the position of T. paurometabola relative to the other type strains within 
the genus Tsukamurella. The tree was inferred from 1,447 aligned characters [14,15] of the 16S rRNA gene se-
quence under the maximum likelihood criterion [16] and rooted with the members of the closely related genus 
Dietzia. The branches are scaled in terms of the expected number of substitutions per site. Numbers above 
branches are support values from 1,000 bootstrap replicates [17] if larger than 60%. Lineages with type strain ge-
nome sequencing projects registered in GOLD [18] are labeled with one asterisk, those registered as 'Complete 
and Publish. 

 
A representative genomic 16S rRNA sequence of 
strain no. 33T was compared using NCBI BLAST 
under default settings (e.g., considering only the 
high-scoring segment pairs (HSPs) from the best 
250 hits) with the most recent release of the 
Greengenes database [19] and the relative frequen-
cies, of taxa and keywords (reduced to their stem 
[20]) were determined, weighted by BLAST scores. 
The most frequently occurring genera were Tsu-
kamurella (34.7%), Mycobacterium (32.5%), Diet-
zia (20.6%) and Rhodococcus (12.1%) (220 hits in 

total). Regarding the seven hits to sequences from 
members of the species, the average identity within 
HSPs was 99.3%, whereas the average coverage by 
HSPs was 96.7%. Regarding the 45 hits to se-
quences from other members of the genus, the av-
erage identity within HSPs was 99.2%, whereas the 
average coverage by HSPs was 96.2%. Among all 
other species, the one yielding the highest score 
was Tsukamurella strandjordii, (NR_025113), 
which corresponded to an identity of 99.5% and a 
HSP coverage of 100.0%. (Note that the Greengenes 
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database uses the INSDC (= EMBL/NCBI/DDBJ) 
annotation, which is not an authoritative source for 
nomenclature or classification.) The highest-
scoring environmental sequence was DQ366095 
('on Oil Degrading Consortium oil polluted soil 
clone MH1 Pitesti'), which showed an identity of 
99.2% and an HSP coverage of 99.0%. The most 
frequently occurring keywords within the labels of 
environmental samples which yielded hits were 
'skin' (9.6%), 'human' (4.8%), 'microbiom, tempor, 
topograph' (4.2%), 'sea' (3.8%) and 'sediment' 
(1.8%) (30 hits in total). Environmental samples 
which yielded hits of a higher score than the high-
est scoring species were not found. These envi-
ronmental labels are in line with the locations re-
ported for the isolation of Tsukamurella strains, 
such as soil, human sputum, and bed bug [2,21]. 
The cells of T. paurometabola are straight to 
slightly curved rods with a size of 0.5-0.8 × 1.0-5 
µm and occur singly, in pairs, or in masses [2,21] 
(Figure 2). The organism is Gram-positive, weakly 
acid-fast (some strains are strongly acid-fast), 
non-sporeforming and non-motile [2,21] (Table 
1). The organism contains metachromatic gra-
nules [2]. Colonies of T. paurometabola are small 
(diameter, 0.5-2.0 mm) with convex elevation, 
have entire edges (sometimes rhizoidal), are 
dryish but easily emulsified and are white to 
creamy to orange in color [3.15]. T. paurometabola 
is strictly aerobic and chemoorganotrophic bacte-
rium [1]. Reaction is positive for catalase and py-
razinamidase [1]. Acid is produced from some su-
gars [1]. The organism does not produce nitriles 

from nitrates [2]. Indole is not produced by T. 
paurometabola [2]. The organism is non-
pathogenic for guinea pigs [2]. In general T. pau-
rometabola strains grow in the range 10°C to 35°C. 
Strain no. 33T does not grow at 45°C [1]. The 
strain did not survive heating at 60°C for 15 mi-
nutes [1]. Some strains of T. paurometabola pro-
duce acid from fructose, galactose, glucose, glyce-
rol, inositol, manitol, mannose, sorbitol, sucrose, 
and trehalose [1]. Acid is not produced from L-
arabinose, L-rhamnose, or D-xylose [1]. Some 
strains of T. paurometabola grow on ethanol, fruc-
tose, galactose, glucose, inositol, mannitol, man-
nose, melizitose, sorbitol, sucrose, trehalose, xy-
lose, n-butanol, isobutanol, 2,3-butylene glycol, 
propanol, propylene glycol, citrate, fumarate, ma-
late, pyruvate, and succinate [1]. The organism 
does not grow on adonitol, arabinose, inulin, lac-
tose, raffinose, or rhamnose [1]. Acetamide and 
nicotinamide are used as sole nitrogen sources but 
not benzamide [1]. Acetamide, glutamate, gluco-
samine, monoethanolamine, and serine are used 
as sole sources of carbon and nitrogen [1]. T. pau-
rometabola is able to degrade Tween 20, Tween 
40, Tween 60, and Tween 80, but not adenine, 
casein, or elastin [1]. Some strains of T. paurome-
tabolum degrade xanthine and tyrosine [1]. The 
organism produces β-galactosidase and urease, 
but not arylsulfatase or α-esterase [1]. T. pauro-
metabolum is resistant to ethambutol (5 µg/ml), 
5-fluorouracil (20 µg/ml), mitomycin C (10 
µg/ml), and picric acid (0.2% w/v) [1]. The organ-
ism is susceptible to bleomycin (5 µg/ml) [1]. 

 

 
Figure 2. Scanning electron micrograph of T. paurometabola no. 33T 
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Table 1. Classification and general features of T. paurometabola no. 33T according to the MIGS recommendations 
[22] and the NamesforLife database [23] 
MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [24] 
Phylum “Actinobacteria” TAS [25] 
Class Actinobacteria TAS [26] 
Subclass Actinobacteridae TAS [26,27] 
Order Actinomycetales TAS [26-29] 
Suborder Corynebacterineae TAS [26,27] 
Family Tsukamurellaceae TAS [26,27] 
Genus Tsukamurella TAS [1] 
Species Tsukamurella paurometabola TAS [1] 
Type strain no. 33 TAS [2] 

 Gram stain positive TAS [2] 
 Cell shape short rods occurring singly, in pairs or in masses TAS [2] 
 Motility none TAS [2] 
 Sporulation none TAS [2] 
 Temperature range 10°C–35°C, not at 45°C NAS [1] 
 Optimum temperature not reported  
 Salinity not reported  
MIGS-22 Oxygen requirement obligately aerobic TAS [1] 
 Carbon source carbohydrates TAS [1] 
 Energy metabolism chemoorganotroph TAS [1] 
MIGS-6 Habitat soil, human sputum, insect microbiome TAS [2,4] 
MIGS-15 Biotic relationship free-living NAS 

MIGS-14 Pathogenicity infection of the lung, lethal meningitis, and ne-
crotizing tenosynovitis TAS [4] 

 Biosafety level 1+ TAS [30] 
 Isolation ovaries of Cimex lectularius (bedbug) TAS [2,4] 
MIGS-4 Geographic location most probably close to Columbus, Ohio NAS 
MIGS-5 Sample collection time 1941 or before TAS [2] 
MIGS-4.1 Latitude not reported  
MIGS-4.2 Longitude not reported  
MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude not reported  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement 
(i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed 
for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evi-
dence). These evidence codes are from of the Gene Ontology project [31]. If the evidence code is IDA, the 
property was directly observed by one of the authors or an expert mentioned in the acknowledgements. 

 
Chemotaxonomy 
The major cell wall sugars of T. paurometabola are 
arabinose and galactose [1], but ribose and traces 
of glucose have also been observed (unpublished 
data, DSMZ). The diagnostic amino acid of pepti-
doglycan is meso-diaminopimelic acid (variation 
A1γ); the glycan moiety of cell walls contains N-
glycolyl residues [1]. Arabinogalactan is covalently 
attached to the peptidoglycan [32]. Long-chain 
highly unsaturated mycolic acids (62 to 78 carbon 
atoms) are present and contain one to six double 

bonds [1]. Fatty acid esters released on pyrolysis of 
mycolic acids have 20 to 22 carbon atoms [1,21]. 
The major polar lipids of T. paurometabola are di-
phosphatidylglycerol, phosphatidylethanolamine, 
phosphatidylinositol, and mono- and diacylated 
phosphatidylinositol dimannosides [1,21]. Some 
strains of T. paurometabola produce glycolipids [1]. 
The long-chain cellular fatty acids are predomi-
nantly straight-chain saturated, mono-unsaturated, 
and 10-methyl branched acids [1].  
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Menaquinones are the sole respiratory quinones, 
with MK-9 predominating [1]: 80% MK-9 (H0), 
6.8% MK-8 (H0), 3.5% MK-7 (H0), 2.3%.MK-10 (H0) 
and 6.7%.MK-8 (H2) (unpublished data, DSMZ). 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [33], and is part 

of the Genomic Encyclopedia of Bacteria and Arc-
haea project [34]. The genome project is depo-
sited in the Genome On Line Database [18] and the 
complete genome sequence is deposited in Gen-
Bank. Sequencing, finishing and annotation were 
performed by the DOE Joint Genome Institute 
(JGI). A summary of the project information is 
shown in Table 2. 

 

Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Three genomic libraries: Sanger 8 kb pMCL200 library, 40 kb 
(fosmid, pcc1Fos) library, 454 pyrosequence standard library 

MIGS-29 Sequencing platforms ABI3730, 454 GS FLX Titanium 

MIGS-31.2 Sequencing coverage 8.25 × Sanger; 37.9 × pyrosequence 

MIGS-30 Assemblers Newbler version 1.1.02.15, phrap 

MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 

 INSDC ID 
CP001966 (chromosome) 
CP001967 (plasmid Tpau01) 

 Genbank Date of Release May 17, 2010 

 GOLD ID Gc01341 

 NCBI project ID 29399 
 Database: IMG-GEBA 646564587 

MIGS-13 Source material identifier DSM 20162 

 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
T. paurometabola no. 33T, DSM 2016, was grown 
in medium 535 (Trypticase soy broth medium) 
[35] at 28°C. DNA was isolated from 0.5-1 g of cell 
paste using MasterPure Gram Positive DNA Purifi-
cation Kit (Epicentre MGP04100) following the 
standard protocol as recommended by the manu-
facturer, with modification st/LALMice for cell 
lysis as described in [24]. DNA is available through 
the DNA Bank Network [36]. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Sanger and 454 sequencing platforms. All gen-
eral aspects of library construction and sequenc-
ing can be found at the JGI website [37]. Pyrose-
quencing reads were assembled using the Newb-
ler assembler (Roche). Large Newbler contigs 
were broken into 4,920 overlapping fragments of 
1,000 bp and entered into assembly as pseudo-
reads. The sequences were assigned quality scores 

based on Newbler consensus q-scores with mod-
ifications to account for overlap redundancy and 
adjust inflated q-scores. A hybrid 454/Sanger as-
sembly was made using the parallel phrap as-
sembler [38]. Possible mis-assemblies were cor-
rected with Dupfinisher or transposon bombing of 
bridging clones [39]. Gaps between contigs were 
closed by editing in Consed, custom primer walk 
or PCR amplification. A total of 516 Sanger finish-
ing reads were produced to close gaps, to resolve 
repetitive regions, and to raise the quality of the 
finished sequence. The error rate of the completed 
genome sequence is less than 1 in 100,000. To-
gether, the combination of the Sanger and 454 se-
quencing platforms provided 46.15 × coverage of 
the genome. The final assembly contains 42,170 
Sanger reads and 745,985 pyrosequencing reads. 
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Genome annotation 
Genes were identified using Prodigal [40] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [41]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) non-redundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [42]. 

Genome properties 
The genome consists of a 4,379,918 bp long chro-
mosome and a 99,806 bp long plasmid, both with 
a G+C content of 68.4% (Figure 3 and Table 3). Of 
the 4,391 genes predicted, 4,335 were protein-
coding genes, and 56 RNAs; 93 pseudogenes were 
also identified. The majority of the protein-coding 
genes (68.7%) were assigned a putative function 
while the remaining ones were annotated as hypo-
thetical proteins. The distribution of genes into 
COGs functional categories is presented in Table 4. 

 
Figure 3. Graphical circular map of the chromosome. From outside to the center: Genes on forward 
strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes 
(tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 
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Table 3. Genome Statistics 
Attribute Value % of Total 

Genome size (bp) 4,479,724 100.00% 
DNA coding region (bp) 4,108,044 91.70% 
DNA G+C content (bp) 3,064,083 68.40% 
Number of replicons 2  
Extrachromosomal elements 1  
Total genes 4,391 100.00% 
RNA genes 56 1.28% 
rRNA operons 2  
Protein-coding genes 4,335 98.72% 
Pseudo genes 93 2.12% 
Genes with function prediction 3,017 68.71% 
Genes in paralog clusters 691 15.74% 
Genes assigned to COGs 3,025 68.89% 
Genes assigned Pfam domains 3,376 76.88% 
Genes with signal peptides 1,031 23.48% 
Genes with transmembrane helices 1,114 25.37% 
CRISPR repeats N.D.  

Table 4. Number of genes associated with the general COG functional categories 

Code value %age Description 
J 169 5.0 Translation, ribosomal structure and biogenesis 
A 1 0.0 RNA processing and modification 
K 310 9.2 Transcription 
L 198 5.9 Replication, recombination and repair 
B 1 0.0 Chromatin structure and dynamics 
D 31 0.9 Cell cycle control, cell division, chromosome partitioning 
Y 0 0.0 Nuclear structure 
V 39 1.2 Defense mechanisms 
T 131 3.9 Signal transduction mechanisms 
M 135 4.0 Cell wall/membrane/envelope biogenesis 
N 3 0.1 Cell motility 
Z 0 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 29 0.9 Intracellular trafficking, secretion, and vesicular transport 
O 102 3.0 Posttranslational modification, protein turnover, chaperones 
C 217 6.4 Energy production and conversion 
G 220 6.5 Carbohydrate transport and metabolism 
E 274 8.1 Amino acid transport and metabolism 
F 85 2.5 Nucleotide transport and metabolism 
H 165 4.9 Coenzyme transport and metabolism 
I 231 6.8 Lipid transport and metabolism 
P 169 5.0 Inorganic ion transport and metabolism 
Q 172 5.1 Secondary metabolites biosynthesis, transport and catabolism 
R 430 12.7 General function prediction only 
S 269 8.0 Function unknown 
- 1,366 31.1 Not in COGs 
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