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Insights into the microbiome assembly 
during different growth stages and storage 
of strawberry plants
Expedito Olimi1, Peter Kusstatscher1*  , Wisnu Adi Wicaksono1, Ahmed Abdelfattah1,2, Tomislav Cernava1 and 
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Abstract 

Background:  Microbiome assembly was identified as an important factor for plant growth and health, but this pro-
cess is largely unknown, especially for the fruit microbiome. Therefore, we analyzed strawberry plants of two cultivars 
by focusing on microbiome tracking during the different growth stages and storage using amplicon sequencing, 
qPCR, and microscopic approaches.

Results:  Strawberry plants carried a highly diverse microbiome, therein the bacterial families Sphingomonadaceae 
(25%), Pseudomonadaceae (17%), and Burkholderiaceae (11%); and the fungal family Mycosphaerella (45%) were most 
abundant. All compartments were colonized by high number of bacteria and fungi (107–1010 marker gene copies per 
g fresh weight), and were characterized by high microbial diversity (6049 and 1501 ASVs); both were higher for the 
belowground samples than in the phyllosphere. Compartment type was the main driver of microbial diversity, struc-
ture, and abundance (bacterial: 45%; fungal: 61%) when compared to the cultivar (1.6%; 2.2%). Microbiome assembly 
was strongly divided for belowground habitats and the phyllosphere; only a low proportion of the microbiome was 
transferred from soil via the rhizosphere to the phyllosphere. During fruit development, we observed the highest rates 
of microbial transfer from leaves and flowers to ripe fruits, where most of the bacteria occured inside the pulp. In post-
harvest fruits, microbial diversity decreased while the overall abundance increased. Developing postharvest decay 
caused by Botrytis cinerea decreased the diversity as well, and induced a reduction of potentially beneficial taxa.

Conclusion:  Our findings provide insights into microbiome assembly in strawberry plants and highlight the impor-
tance of microbe transfer during fruit development and storage with potential implications for food health and safety.

Keywords:  Fragaria × ananassa, Microbiome assembly, Fruit pathogens, Bacterial communities, Fungal communities, 
Amplicon sequencing, CLSM
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Background
The plant microbiome consists of bacteria, archaea, 
fungi, viruses,  microalgae, oomycetes and small proto-
zoans [1, 2]. Microorganisms occur specifically in vari-
ous plant compartments, which are mainly divided into 

belowground habitats  (e.g. roots and their rhizosphere) 
and aboveground habitats  (e.g. leaves, flowers, fruits, 
and stem), and are transferred to the next generation by 
propagules including seeds [3, 4]. Previous studies have 
indicated that plant compartments are connected yet 
distinct in their microbiome composition [5, 6], even at 
strain level [7]. Significant variation in the microbiome 
between the aboveground and belowground compart-
ments is commonly observed, which can be explained 
by contrasting biotic and abiotic factors [8, 9]. The plant 
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microbiome contributes to the plant phenotype [10, 
11], can influence plant metabolism [12, 13], and plays 
important roles in plant health and productivity [14–16]. 
Therefore, the plant and its associated microbiome have 
collectively been referred to as the plant holobiont [17]. 
While belowground plant microbiome assembly, e.g. in 
the rhizosphere, is well-studied, less is known about con-
nections to the phyllosphere and developing fruits [10].

Strawberry (Fragaria x ananassa [Weston] Rozier), 
which belongs to the Rosaceae  plant family, is a high-
value horticultural crop with significant nutritional ben-
efits [18]. Special attributes such as its red color, juicy 
texture, and sweet fruity flavor have made strawberries 
one of the most desired fruits [19, 20]. More than 300 
compounds including volatiles are involved in its unique 
flavor to which metabolic interplay with bacteria  con-
tributes [12, 21]. In addition, remarkable health benefits, 
attributed to strawberry anthocyanins, were revealed by 
studies involving animal models and human clinical tri-
als [22–25]. Owing to the abovementioned benefits, the 
global production reached 14.6 million tonnes in 2019 
[26]. However, strawberry production and storage are 
challenged by a plethora of constraints caused by fun-
gal and bacterial pathogens, as well as nematodes, both 
in open and closed farming systems [27, 28]. The use of 
conventional crop protection strategies is increasingly 
limited due to phased-out chemicals that are linked 
to environmental and human health concerns [29]. 
Therefore, the search for alternative strategies utiliz-
ing the plant’s microbiome has driven the development 
of antagonistic and plant growth-promoting bioinocu-
lants [30, 31]. In addition, fruit-associated microbes 
were previously discussed to influence their shelf life [32, 
33]. Different studies revealed a plant species-specific, 
strawberry-associated microbiome [34, 35], influenced 
by management and linked with the phyllosphere and 
rhizosphere plant-soil feedback [36, 37]. Using targeted 
approaches to induce microbiome changes in plants, 
and thus also in strawberry fruit, could not only pro-
vide a potential strategy for improving pre- and posthar-
vest plant healht, but also food quality and safety.

This study aimed at investigating the bacterial and 
fungal microbiome assembly in different plant compart-
ments (leaves, flowers, fruits, rhizosphere, soil) and cul-
tivars (’Mara des Bois’, ’White 90 ananas’) during fruit 
development of strawberries. In addition, we focused on 
microbiome changes that are evoked by storage and dis-
ease of fruits. Specifically, we studied (I) how the micro-
bial community composition and structure vary among 
plant compartments and cultivars, (II) which propor-
tion of the microbiome is shared in the phyllosphere and 
potentially transferred during fruit development, and 

(III) how postharvest cold storage and disease incidence 
induce changes in the fruit microbiome.

Methods
Experimental design and sampling
Plants of two strawberry cultivars, Fragaria x ananassa 
‘Mara des Bois’ (henceforth referred as cultivar 1) and 
‘White ananas’ (cultivar 2), were bought from a plant 
nursery and planted at Graz University Botanical Gar-
den (47.081  N, 15.4549E), and sampled between spring 
(April 2020) to late summer (August 2020). Twenty 
strawberry plants per cultivar were grown and no fer-
tilizer or plant protectants were used, except the physi-
cal removal of weeds. ‘Mara des Bois’ is a hybrid from a 
cross of four European garden-type strawberries (Hami 
Gento × Ostara) × (Red Gauntlet × Korona) [38]. It is an 
everbearing, highly productive cultivar and much desired 
on the European fruit market [39]; strawberry plants of 
this cultivar are tolerant to powdery mildew (caused by 
Podosphaera aphanis). On the other hand, in contrast to 
the usual red pigmentation of strawberry, ‘White ananas’ 
is characterized by a white coloration of ripe fruits. This 
has been attributed to the deficiency of Fra a 1-A pro-
teins, which are critical in pigment biosynthesis [40, 41]. 
The soil was described as loamy and had a pH of 7.55. 
Soil mineral content and other physico-chemical proper-
ties are highlighted in Additional File 1: Table S1.

Two months after planting, samples including bulk soil, 
rhizosphere (roots with attached soil), leaves, and flow-
ers (anthosphere) were collected. From the whole field, 
bulk soil samples (n = 6) were taken from six random 
locations at a depth of approximately 5–10 cm between 
rows free from plant influence to represent the natural 
soil from this field. Subsequently, to obtain a sufficient 
amount of material, for each cultivar and compartment 
(rhizosphere, leaves and flowers), six biological repli-
cates,  with each replicate composed of samples from at 
least two adjacent plants, were collected. Rhizosphere 
sampling involved partially digging out actively growing 
roots and detaching the roots from the plant, followed by 
light shaking of the roots to remove loosely attached soil. 
For leaf sampling, a total of six trifoliate strawberry leaves 
from two adjacent plants (three random leaves per plant) 
were pooled to constitute a single biological replicate; 
similarly, a total of six flower samples (including stamen, 
pistil, and flower stalk; three random flowers per plant) 
were pooled and treated as a single biological replicate. 
Subsequently, sampling of the immature and ripe fruits 
(carposphere) was performed as follows. Immature fruits 
were collected one week after flower opening, while ripe 
fruits were picked at the full ripening stage. One part of 
the ripe fruits (six samples of each cultivar) was stored at 
4 °C for one week after harvest before further processing. 
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To investigate fruit microbiome changes induced due to 
disease, we sampled diseased fruits from plants of each 
cultivar; these samples showed visible signs of gray mold 
rot disease caused by fungi within the genus Botrytis 
(especially B. cinerea). Sampling was carefully imple-
mented to avoid contamination by disinfecting utilized 
tools with Bacillol (PAUL HARTMANN GmbH, Wiener 
Neudorf, Austria), and changing or disinfecting hand 
gloves between  handling of different samples. All sam-
ples were placed in sterile bags and temporarily stored in 
a cooling box before being transferred to our laboratory 
facility within two hours for subsequent processing and 
storage.

Sample processing and DNA extraction
Soil samples were transferred to 2-mL tubes and stored 
at −20 °C. Processing of the rhizosphere, leaves, flowers, 
and immature fruits involved grinding the samples in a 
mortar and adding 4 mL sodium chloride buffer (0.85%). 
Thereafter, 2 mL of the homogenate were centrifuged at 
16,000 g for 15 min at 4 °C, and the obtained pellet was 
stored at −20  °C prior to DNA extraction. For process-
ing ripe fruits, 4 mL sodium chloride buffer and samples 
were gently squeezed in stomacher bags followed by cen-
trifugation of the homogenate and pelleting the sample as 
described above. Total DNA extraction was performed 
using FastDNA™ SPIN Kit for Soil (MP Biomedicals; 
United States) following the manufacturer’s instruc-
tions. DNA was quality checked using a Nanodrop 2000 
(Thermo Scientific, Wilmington, DE, USA) and stored at 
-20 °C until PCRs were carried out.

Quantification of the total bacterial and fungal community 
using real‑time quantitative PCR (qPCR)
For determining gene copy numbers of bacteria and fungi 
within samples, qPCR was performed using the primer 
pairs Unibac-II-515f/Unibac-II-806r for bacteria (10 μM 
each; [42]) and ITS1f/ITS2r for fungi (10 μM each; [43]). 
Reactions were performed in a total volume of 10 μL in 
a reaction mix composed of 5 μL of KAPA SYBR Green 
(Bio-Rad, Hercules, CA, U.S.A.), 0.5 μL of each primer, 
3 μL of PCR grade water and 1 μL template DNA (sam-
ples were diluted 1:10 in PCR grade water). For each sam-
ple, amplifications were conducted in triplicates using 
a Rotor-Gene™ 6000 series (Corbett Research, Sydney, 
Australia) thermal cycler with the following program 
settings: initial denaturation (95  °C,5  min) followed by 
35 cycles of denaturation (95  °C,10 s); annealing (54  °C, 
15 s); extension (72 °C, 10 s); then melt down from 72 to 
96  °C. Serial dilutions of standards containing defined 
copy numbers were generated according to [42] and 
used for the calculation of gene copy numbers in differ-
ent samples. For bacterial standards a DNA template of 

Bacillus sp., while Penicillium sp. was used for ITS stand-
ards. A standard regression curve was used to fit the gene 
copy numbers of the analyzed samples and the numbers 
per gram of the samples computed.

Amplicon library preparation
Extracted DNA was used for Illumina library prepara-
tion that was based on amplicons of the hypervariable 
V4 region of the bacterial 16S rRNA gene and the ITS1 
regions of fungal DNA. For the bacterial community 
analysis, we employed one-step PCR using the primer 
pair 515F (5’-CTT​GGT​CAT​TTA​GAG​GAA​GTAA-3’) 
and 806R (5’-GCT​GCG​TTC​TTC​ATC​GAT​GC-3’) for 
amplicon library preparation [44–46]. Both forward and 
reverse primers contained sample specific barcodes, 
facilitating multiplexed sequencing.

One microliter (µL) of extracted DNA was used in 
each 30-µL reaction. The reaction mixture contained 6 
µL (5xTaq &GO, PCR pre-mix, MP Biomedicals), 0.6 
µL (10 µM 515F/806R) primers, 0.45 µL (50 µM mPNA 
and pPNA), and 20.9 µL of PCR grade water. The pep-
tide nucleic acid (PNA) PCR clamps were used to block 
the amplification of plastid and mitochondrial 16S rRNA 
gene of plants during the PCR amplification of bacte-
rial community [47, 48]. All reactions were performed 
in triplicates on a thermocycler (Bio-metra GmbH, Jena, 
Germany). The PCR program included an initial dena-
turation (96  °C, 5 min), followed by 30 cycles (94  °C for 
60 s, 78  °C PNA step for 5 s, 54  °C for 1 min, 74  °C for 
60 s), followed by 74 °C for 10 min and then cooled down 
to 10 °C.

For the library preparation of the fungal community we 
used the primer pair ITS1f (5’-CTT​GGT​CAT​TTA​GAG​
GAA​GTAA-3’) and ITS2r (5’-GCT​GCG​TTC​TTC​ATC​
GAT​GC-3’) [43, 49]. The preparation followed a two-step 
amplification approach involving amplification of the 
ITS1/ITS2 region and subsequent attachment of sample 
specific barcodes. All amplifications were performed in 
triplicates. In the first PCR, 1 µL of DNA template was 
used for each 10 µL reaction; the reaction mixture con-
tained 2 µL (5 × Taq & Go), 1.2 µL (25 mM MgCl2), 0.1 
µL (10  µM ITS1/ITS2 primers with pads), and 5.6 µL 
of PCR grade water. The second amplification was per-
formed using 2 µL of the first PCR product in 30 µL reac-
tion mixture. Each reaction mixture was composed of 6 
µL (5xTaq &GO), 1.2 µL (10  µM; Forward/Reverse bar-
code primers), and 19.6 µL of PCR grade water. The PCR 
program for the first amplification step included an initial 
denaturation (96 °C, 5 min), followed by 35 cycles (95 °C 
for 30 s, 58 °C for 35 s, 72 °C for 40 s), followed by 72 °C 
for 10 min and then cool down to 10 °C. The subsequent 
reaction program involved: initial denaturation (95  °C, 
5 min), then 15 cycles (95 °C for 30 s, 53 °C for 30 s, 72 °C 
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for 30 s), followed by 5 min at 72 °C and cooling to 10 °C. 
Successful PCR amplifications at the correct amplicon 
size were confirmed by gel electrophoresis. PCR ampli-
cons were purified using the Wizard SV Gel and PCR 
Clean-Up System (Promega, Madison, WI) following 
the manufacturer’s instructions. Purified PCR amplicons 
were quantified using a Nanodrop 2000 (Thermo Sci-
entific, Wilmington, DE, USA) and pooled in equimo-
lar concentrations. Paired-end Illumina MiSeq 2 × 300 
sequencing of the amplicon library was performed by the 
sequencing provider GENEWIZ (Berlin, Germany). All 
raw reads obtained from the sequencing company were 
deposited at the European Nucleotide Archive (ENA) 
under study accession number PRJEB47432.

Bioinformatic pipeline
Paired-end reads were quality-checked and demulti-
plexed using cutadapt [50]. Demultiplexed reads were 
further analysed using the open-source QIIME2 ver-
sion 2020.6.0 pipeline (https://​qiime2.​org) [51]. Primer 
sequences were removed and DADA2 algorithm in 
QIIME2 was employed to quality filter, denoise and 
remove chimeric sequences [52], thus generating repre-
sentative sequences, known as amplicon sequence vari-
ants (ASVs), and a feature table. Taxonomic assignments 
were performed using the reference databases SILVA132 
for 16S rRNA gene fragments [53, 54] and UNITE v7 [55] 
for fungal sequence reads.

Statistical analysis
The R version 4.0.3 [56] was used for performing statis-
tical analysis and visualization; supplemented by Micro-
biome analyst [57]. Kruskal–Wallis followed by the 
Wilcoxon-Mann–Whitney test was performed to detect 
significant differences in microbial gene copies between 
different plant compartments and cultivars. For micro-
biome analyses, the obtained microbial ASV tables and 
taxonomic classifications were uploaded into R via phy-
loseq [58] and vegan [59] packages. Both alpha and beta 
diversity analyses were performed on datasets rarefied 
to minimum sampling depths of 1000 and 2500 reads 
per sample for bacterial and fungal communities respec-
tively as shown in Additional file 1: Fig. S1. To illustrate 
sequencing depth, alpha rarefaction curves were plotted 
using ranacapa Shinny web application [60]. Microbial 
alpha diversity was determined using Shannon diversity 
and richness (Observed ASVs) indices. For bacterial com-
munity, parametric analysis involving two-way ANOVA, 
followed by post-hoc analysis using TUKEY-HSD test 
correction was employed to determine the differences in 
α-diversity between compartments and cultivars. Mean-
while, due to non-parametric characteristics of the fungal 
dataset, we employed the non-parametric Kruskal–Wallis 

test, followed by the Wilcoxon-Mann–Whitney test, and 
Benjamini-Hochberg’s FDR method for diversity com-
parisons between compartments and cultivar groups. 
Beta diversity analyses based on normalized Bray–Curtis 
dissimilarity matrix was performed using permutational 
analysis of variance (PERMANOVA, 999 permutations) 
to reveal the compartment type and cultivar effects on 
microbial community composition. The distance matri-
ces were visualized using principal coordinates analysis 
(PCoA). Stacked bar plots were used for visualization of 
microbial taxonomic composition. Additionally, Linear 
discriminant analysis Effect Size (LEfSE) [61] was imple-
mented to identify the taxa which explained the differ-
ences between strawberry compartments, cultivars, as 
well as fruit development stages. We used the Source-
Tracker2 package in R [62] to estimate the proportion 
of microbiome transferred among strawberry compart-
ments. This tool is designated to estimate the proportion 
of microbiome that originates from a set of source-sink 
environments. We tested each strawberry compartment 
for being a source or a sink in a similar way as it was 
already described [63].

Fluorescent in situ hybridization and confocal laser 
scanning microscopy (FISH‑CLSM)
We observed the native colonization patterns of 
the  strawberry fruit microbiota by FISH-CLSM, using 
a Leica TCSSPE confocal scanning microscope (Leica 
Microsystems, Mannheim, Germany) with the oil immer-
sion objective lens Leica ACS APO 40 × oil CS. Briefly, 
strawberry fruit tissues (including a thin fruit peeling and 
fruit fresh) were fixed with 4% paraformaldehyde/phos-
phate-buffered saline overnight at 4  °C prior to applica-
tion of the  FISH protocol according to [64]. Precisely, 
the Cy3-labelled EUB338MIX [65, 66] was used to stain 
overall bacteria colonization; for specific visualization 
of Firmicutes the  Cy5-labeled LGC-mix was used  [67], 
and ALEXA488-labeled GAM42a for Gammaproteobac-
teria  [68]. For contrasting host cell walls, FISH samples 
were treated with calcofluor White [69]. Micrographs 
visualizing the bacterial colonization were generated  by 
maximum projections of optical z-stacks slices.

Results
Abundances of bacteria and fungi in different strawberry 
compartments
Gene copy numbers of bacterial 16S rRNA fragments 
and the fungal ITS region per gram fresh weight of each 
strawberry compartment (leaves, flowers, fruits, rhizo-
sphere, and soil) were quantified and ranged between 
2.83 × 107 and 1.17 × 1010, and between 4.27 × 108 and 
3.38 × 109 respectively. There was a significant effect 
of compartment type (Kruskal–Wallis: P < 0.005) on 

https://qiime2.org
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bacterial and fungal gene copy numbers (Fig.  1a, b). 
Moreover, significant differences (P < 0.05) in microbial 
abundance between belowground (rhizosphere and bulk 
soil) and aboveground (leaves, flowers, immature fruits, 
and ripe fruits) compartments were observed (Additional 
file  1: Table  S2). Bacterial abundance was high in the 
rhizosphere (mean: 1.17 × 1010) and soil (1.07 × 1010) but 
not significantly different. Interestingly, bacterial abun-
dance among the phyllosphere compartments decreased 
from leaves (6.3 × 108) to flowers (3.51 × 108) and imma-
ture fruits (2.83 × 107), but then increased in ripe fruits 
(5.98 × 108). Diseased fruits (1.5 × 109) and stored fruits 
(1.25 × 109) contained more bacteria as compared to 
ripe fruits at harvest. Meanwhile, the fungal abundance 
in soil and the  rhizosphere was significantly higher in 

comparison to leaves and immature fruits (Fig. 1b); how-
ever, no significant differences were observed among 
the phyllosphere compartments (Additional file  1: 
Table  S4). As with the bacterial community, the fun-
gal abundance was higher in diseased (3.38 × 109) and 
stored (1.16 × 109)  fruits in comparison to ripe fruits 
(6.98 × 108), but not significantly different. The fungal 
abundance in cultivar 1 was significantly higher than in 
cultivar 2 (Kruskal–Wallis test: P = 0.002); while no sig-
nificant difference (Kruskal–Wallis test: P = 0.496) in 
bacterial abundance was observed between the culti-
vars. To estimate the number of ingested microorgan-
isms upon consumption of one ripe strawberry fruit, 
we multiplied the calculated microbial (16S rRNA and 
ITS) gene copy numbers per gram of ripe fruit with the 

Fig. 1  Bacterial and fungal community abundances and alpha diversity (Shannon index). Boxplots indicate observed bacterial (a) and fungal (b) 
gene copy numbers as well as bacterial (c) and fungal (d) diversity in soil, rhizosphere, and strawberry phyllosphere compartments. Significant 
differences (P < 0.05) were respectively obtained by pairwise Wilcoxon Rank Sum Test (for abundance) and TUKEY-HSD test (alpha diversity), and are 
indicated by different letters above the boxplots
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estimated mean weight of a standard strawberry fruit 
(16  g). The amount of microbiota consumed was calcu-
lated as the ratio of total gene copies and the average 16S 
rRNA (4.2) and ITS (113) gene copies per genome as ear-
lier estimated [70, 71]. Thus, we found that consuming a 
strawberry fruit results in the ingestion of 2.28 × 109 and 
of 9.88 × 107 bacterial and fungal cells respectively.

Compartment type defines diversity of the strawberry 
microbiome
Amplicon sequencing of bacterial and fungal communi-
ties respectively yielded 2,309,124 and 1,383,225 high-
quality reads. After filtering to remove non-target reads 
(e.g. chloroplast or mitochondria), sequences were 
assigned to 6049 bacterial and 1501 fungal amplicon 
sequence variants (ASVs). With respect to compartment 
type, one-way ANOVA and Kruskal–Wallis tests that 
were employed respectively on bacterial and fungal com-
munities revealed significant differences (P < 0.001) in 
microbial alpha diversity between the phyllosphere and 
belowground compartments. The average alpha diver-
sity based on the Shannon index was generally higher 
in belowground compared to the phyllosphere compart-
ments (bacteria: H´ = 5.23 vs 3.2, and fungi: H´ = 3.42 vs 
1.64) (Fig. 1c, d). There were no significant variations in 
alpha diversity between soil and rhizosphere for either 
community (P > 0.05), although the soil diversity was 
higher (bacteria: H’ = 5.75; fungi: H’ = 3.82) in compari-
son to rhizosphere (bacteria: H’ = 4.97; fungi: H’ = 3.21). 
Furthermore, no significant difference in bacterial diver-
sity was observed between ripe- and stored fruits; how-
ever, diseased fruits were significantly less diverse in 
comparison to either ripe or stored fruits. Regarding the 
fungal community, the diversity was significantly higher 
in leaves (H´ = 2.77) than in flowers, immature fruits, 
and ripe fruits; however, the fungal diversity in ripe and 
stored fruits was higher than in diseased fruits, but not 
statistically different (Fig.  1d). Generally, we observed 
a significant influence of the  cultivar (Kruskal–Wal-
lis: P < 0.05) on microbial diversity, but compartment-
specific differences were only noticeable in leaves for 
the bacterial community (Additional File 1: Tables S3 
and S4). In addition, as shown in Additional File 1: Fig. 
S2, microbial richness (observed ASVs) showed a similar 
trend to microbial diversity, albeit with slight variations; 
however, chao1 which estimates overall community rich-
ness was slightly higher (Additional File 1: Fig.S2c and d) 
in comparison to observed ASVs (Additional File 1: Fig.
S2a and b).

Microbial composition and structure varied 
between the phyllosphere and belowground communities
Permutational multivariate analyses of variance (PER-
MANOVA) of Bray–Curtis distance matrix revealed 
that compartments (R2; bacteria:0.451 and fungi: 0.609) 
significantly contributed to microbial community differ-
ences (P = 0.001). Visualization of Bray–Curtis distance 
matrices by Principal Coordinates Analysis (PCoA) fur-
ther showed compartment-specific community separa-
tion (bacterial: P = 0.001, R2 = 0.199; fungal community: 
P = 0.001, R2 = 0.304). Moreover, a separation between 
strawberry cultivars among belowground and above-
ground compartments was visible (Fig. 2a, b).

The taxonomic assignment of ASVs in the phyllosphere 
and belowground compartments revealed 31 different 
bacterial phyla, and 394 families; while fungal ASVs were 
assigned to 6 phyla, and 145 families. Among the bac-
terial phyla, Proteobacteria were predominant with an 
average abundance of 50.1%, followed by Bacteroidetes 
(12.3%), Actinobacteria (11.2%), Acidobacteria (8.3%), 
Chloroflexi (7.4%), and Firmicutes (2.8%). The fungal 
phyla were predominated by Ascomycota (76%), Mor-
tierellomycota (11.3%), and Basidiomycota (11.1%); as 
well Chytridiomycota and Mucoromycota. To visualize 
the phyllosphere and belowground microbial composi-
tion, the top 15 families were shown, while the remaining 
taxa were classified as others (Fig. 2c, d). At family level, a 
high proportion of taxa were classified as “others” (46.2% 
average abundance) and were respectively high in soil 
(74.6%) and the rhizosphere (49.6%) as compared to phyl-
losphere compartments (14.3%); this reflected the higher 
diversity in soil and rhizosphere compared with phyllo-
sphere compartments. The most abundant bacterial fam-
ily was Sphingomonadaceae (average abundance: 10.3%), 
which was highly present in phyllosphere compartments, 
followed by Burkholderiaceae (9.4%), Flavobacteriaceae 
(5.5%), and Pseudomonadaceae (5.1%) (Fig.  2c). Bacte-
rial  families including Enterobacteriaceae, Bacillaceae, 
Hymenobacteraceae and Beijerinckiaceae were mainly 
found in the phyllosphere, reflecting the niche preference 
of these taxa. The family Flavobacteriaceae was exclu-
sively found in the rhizosphere and soil, while Moraxel-
laceae and Rhizobiaceae were exclusive for phyllosphere 
compartments and the rhizosphere.

The most abundant fungal family was Mycosphaere-
llaceae (overall average abundance: 14.9%), and was 
present with average abundances 43.3%, 0.6% and 
0.8% in the phyllosphere compartments, rhizosphere, 
and soil respectively. This was followed by Mortierel-
laceae (11.3%), and unidentified Capnodiales (10.5%) 
(Fig. 2d). The fungal families which were highly present 
in the rhizosphere and soil included Chaetomiaceae 
(average abundance: 5.8%), Lasiosphaeriaceae (3.4%), 
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Sordariomycetes-fam-Incertae-sedis (2.8%), and Psath-
yrellaceae (2.6%). Analogous to the bacterial community, 
the soil and rhizosphere as compared to the phyllosphere 
compartments were associated with a high presence of 
fungal families classified as “others”, with relative abun-
dances of 38.5%, 22.5%, and 7.5% respectively. Addition-
ally, differences in microbiome composition between 
the rhizosphere and phyllopshere, as well as between 
strawberry cultivars were observed. These differences 
were mainly attributed to bacterial families Flavobacte-
riaceae, Pseudomonadaceae, Moraxellaceae, and Micro-
coccaceae. Meanwhile, some of the fungal taxa such as 

Chaetomiaceae, Mycosphaerellaceae, and unidentified 
Capnodiales varied in composition between cultivars.

Strawberry cultivar influenced the structure 
and composition of phyllosphere microbiome
We observed the significant effect of host cultivar on 
microbial β-diversity among plant compartments (bac-
terial community: P = 0.023, R2 = 0.017; fungal commu-
nity: P = 0.001, R2 = 0.023). Compartment-specific PCoA 
plots which were constructed using Bray Curtis dis-
tances, revealed cultivar separation in the various plant 
compartments (Additional File 1: Fig. S3 and S4), and sta-
tistical differences further confirmed by PERMANOVA 

Fig. 2  Principle Coordinates Analysis (PCoA) and stacked bar plot representation of plant-associated microbial communities with respect to 
above-and belowground compartments in the different strawberry cultivars. Bacterial (a and c) and fungal (b and d) community clustering and 
composition in the rhizosphere, soil, and phyllosphere compartments (average of leaves, flowers, and fruits). The stacked bar plots are based on the 
top 15 families, while all remaining taxa were included in “Others”. Colors represent the compartment type, while shapes show soil and strawberry 
cultivar



Page 8 of 15Olimi et al. Environmental Microbiome           (2022) 17:21 

(Additional File 1: Tables S3 and S4). The differences 
between strawberry cultivars were more pronounced in 
the phyllosphere compartments (bacteria-R2 = 16.8–36.5; 
fungi- R2 = 22.3 -91.1%) compared to rhizosphere (bac-
teria—R2 = 12.8; fungi—R2 = 14.2%) (Additional File 1: 
Tables S3 and S4). Therefore, comparative analysis of 
microbial community composition in the phyllosphere 
compartments for the two cultivars was performed.

Microbial community composition within phyllo-
sphere compartments, as well as between strawberry 

cultivars was visualized for the top 15 ASVs at genus level 
(Fig. 3). The most dominant bacterial taxa were identified 
as Sphingomonas (28.4%), Pseudomonas (9.6%), Bacil-
lus (7.2%), Massilia (5.7%), Pantoea (5.2%), Methylo-
bacterium (4.5%), and Hymenobacter (3.6%). These taxa 
showed variations among phyllosphere compartments 
as well as between cultivars. Predominant fungal genera 
included Mycosphaerella (average abundance: 42.7%), 
unidentified Capnodiales (31.3), Alternaria (6.6%), and 
unidentified Helotiales (5%). Mycosphaerella was found 

Fig. 3  Microbial community comparison between strawberry cultivars in the different phyllosphere compartments. Bacterial (a) and fungal (b) 
communities are shown at genus level. The asterisks indicate genera which were significantly different as revealed by Linear discriminant analysis 
Effect Size (LEfSe). The stacked bar plots were based on top 15 genera, while all remaining taxa were included in “Others”
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in all phyllosphere compartments, regardless of cultivar, 
and especially in flowers of cultivar 1 (Fig.  3b). A simi-
lar distribution was observed for Botrytis, it was present 
in ripe fruits of cultivar 1, as well as in leaves, immature 
fruits, and flowers of cultivar 2.

Linear discriminant analysis Effect Size (LEfSe) analy-
sis performed on phyllosphere microbiomes revealed 
that 38 bacterial and 23 fungal genera were differentially 
abundant among phyllosphere microbiomes, as well as 
between cultivars. The bacterial and fungal genera with 
highest LDA scores (4 to 6.6) are shown in Additional 
File 1: Fig. S5a and b. Bacillus, Pantoea, Burkholderia-
Caballeronia-Paraburkholderia, Acinetobacter, Methy-
lobacterium, Hymenobacterium, and Pseudarthrobacter 
were among the bacterial genera which showed signifi-
cant differential abundance, while fungal genera included 
Mycosphaerella, unidentified Capnodiales, unidentified 
Helotiales, Taphrina, unidentified Pleosporales, and uni-
dentified Dothioracea (Fig. 3).

Microbiome transfer between plant compartments 
during fruit development
The SourceTracker2 software was employed to study the 
microbiome that was potentially transferred between 
strawberry compartments. It revealed that within bac-
terial as well as fungal communities, low proportions 
of the microbiome were likely transferred from soil to 
the phyllosphere via the rhizosphere (Fig.  4). Moreover, 
direct microbiome transfer from soil to the phyllosphere 
was equally low (Additional File 1: Table S5). In contrast, 

a major microbiome transfer was identified from leaves, 
flowers, and immature fruits to ripe fruits, and from 
flowers and leaves into immature fruits. The proportion 
of fungal microbiota (50% to 99%) which were potentially 
transferred between phyllosphere compartments was 
substantially higher as compared to bacteria (38–80%). 
Generally, flowers, immature fruits and mature fruits 
shared the highest percentage of their microbiome; thus, 
indicating a major likely transfer of microbial signatures 
along the fruit development. In terms of cultivar, we 
found that cultivar 2 had a slightly higher enrichment 
of soil microbiota in the rhizosphere than cultivar 1, as 
well as a slightly higher transfer potential of rhizosphere-
enriched bacteria to the phyllosphere compartments. 
Interestingly, either no or very little microbial transfer 
from belowground to the phyllosphere compartment was 
observed in both cultivars.

Storage and disease state induced shift in fruit microbiome
To investigate the effect of storage and disease on the 
fruit microbiome, microbial shift analysis between 
fresh ripe fruits, stored fruits, and diseased fruits was 
performed. We observed that disease more than stor-
age severely induced changes in the fruit microbiome. 
This was further supported by a significantly higher 
bacterial diversity in ripe fruits as compared to stored 
and diseased fruits (Fig.  1, Additional File 1: Tables 
S3, and S4); the fungal community, on the other hand, 
showed no significant differences. We also noticed an 
increase in microbial abundance and a simultaneous 

Fig. 4  Tracking microbiome transfer between belowground and aboveground strawberry compartments. Cultivar 1 (a) and cultivar 2 (b) are 
shown separately. The compartments represented include bulk soil, rhizosphere, leaves, flowers, immature fruits and ripe fruits. The percentage of 
microbiota transferred is color coded to indicate bacteria (black) and fungi (red). Percentages given are based on SourceTracker2 analysis in R. The 
dotted lines represent source-sink linkages that showed no potential microbial transfer
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decrease in diversity in stored and diseased fruits; 
however, the highest shifts were observed for diseased 
fruits (Fig. 1, Additional File 1: Tables S2, S3, and S4). 
For example, the  disease condition increased bacterial 
and fungal abundance by 60% and 80% respectively, 
while decreasing diversity by 29% and 48%. In addition, 
storage increased bacterial and fungal abundance by 
54% and 40% respectively, while decreasing diversity by 
1.5% and 2.8%. Interestingly, this shift in microbiome 
composition and separation was also observed among 
the strawberry cultivars as shown in Fig.  5. Statistical 
analysis based on PERMANOVA revealed a signifi-
cant effect of fruit condition (P = 0.001) on microbial 
community composition (R2 = 33 and 66% for bacte-
rial and fungal communities, respectively). Likewise, 
the significant effect of cultivar on the different fruit 
conditions, as well as their interactions was shown 
(Additional file  1: Table  S6). PCoA visualization of 

Bray–Curtis distances further showed community sep-
aration among fruit conditions and cultivar (Fig. 5a, b). 
Moreover, changes in taxonomic composition were also 
evident. The abundance of Proteobacteria in ripe fruits, 
stored and diseased fruits showed substantial varia-
tions (69.5%, 78.6% and 94.7%, respectively) as did that 
of Actinobacteria (18.2%, 8.5% and 1.1%, respectively); 
while Firmicutes were highly abundant in stored fruits 
(3.3%). Conversely, for the fungal community, Ascomy-
cota (97.9%) and Basidiomycota (2%) were dominant.

On genus level, Sphingomonas (average abundance: 
15.5%), Methylobacterium (13.2%), and Pseudomonas 
(11.4%) were predominant; Sphingomonas was highly 
present in ripe fruits followed by stored fruits, while 
Methylobacterium (23.7%) was accumulated in stored 
fruits (Fig. 5c). Significant differentially abundant bacte-
rial genera among fruit conditions and strawberry culti-
vars (LEfSE analysis) included: Hymenobacter (enriched 

Fig. 5  Microbial community structure and composition of fresh ripe fruits, stored fruits, and diseased fruits. Bacteria (a and c) and fungi (b and d) 
are respectively shown in PCoA and stacked bar plots representing the structure and composition of bacterial and fungal communities. The stacked 
bar plots were respectively based on the top 10 bacterial and fungal genera, while “Others” include the remaining taxa. The asterisks indicate genera 
which were significantly different among the three fruit conditions as determined by LEfSe. Colors represent fruit condition, while shapes show 
strawberry cultivar
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in ripe and stored fruits); Massilia (ripe fruits); as well as 
Dyella, Acetobacter, and Serratia (were exclusively found 
associated with diseased fruits) as shown in Additional 
File 1: Fig. S5c. Fungal genera including Mycosphaerella 
(average abundance: 45.4%), Botrytis (21.8%), unidenti-
fied Capnodiales (15.7%), and Alternaria (6.4%), pre-
dominated the microbiomes of ripe fruits, stored fruits, 
and diseased fruits. Remarkably, Botrytis (84%) was 
highly present in diseased fruits, while Mycosphaerella 
(65%) and Alternaria (15%) were enriched in stored fruits 
(Fig.  5d). Significant differential abundance was found 
for: Mycosphaerella, Botrytis, unidentified Capnodiales, 
unidentified Helotiales, unidentified Ceratobasidiaceae, 
Taphrina, and Alternaria as shown in Additional file  1: 
Fig.S5d. Our attempt to visualize bacteria colonizing the 
strawberry fruit tissues revealed the presence of bacteria 
in the fruit pulp and the outer fruit surface (Additional 
File 1: Fig. S6); all bacteria were labeled with the univer-
sal FISH probes included in EUB338MIX. However, we 
were unable to visualize bacteria corresponding to Fir-
micutes and Gammaproteobacteria labelled with specific 
probes (Cy5-labeled LGC-mix and ALEXA488-labeled 
GAM42a, respectively).

Discussion
In the present study, we observed a specific microbial 
composition in the phyllosphere and belowground com-
partments with a higher belowground diversity and 
abundance similar to other plant hosts [6, 16, 72]. Plant 
compartments were found to have a greater impact on 
the plant microbiome than cultivars, which is consistent 
with prior findings [73].

Microbiome assembly in the phyllosphere and rhizos-
phere of strawberry plants was significantly different, and 
especially the phyllosphere showed a clear developmental 
pattern. During fruit development, from flower through 
immature fruit to ripe fruit, we found that a substantial 
fraction of the microbiome is shared between those com-
partments indicating a major transfer of communities 
along that route. Fruit development was also associated 
with an increase of bacterial diversity and abundance. 
This could partly be attributed to the cumulative occu-
pation of different microorganisms during fruit devel-
opment. Moreover, microbiota transmission via  insects 
and wind during pollination was previously suggested 
to contribute to plant and fruit microbiome assembly 
[74]. Occurrence of the genus Buchnera in strawberry, 
which is strongly associated with insects, is an indication 
for that observation. In addition, the growth of straw-
berry stolons in proximity to the ground, could have 
potentially contributed to the transfer of soil microor-
ganisms to the fruit. Bacterial taxa including Sphingo-
monas, Pseudomonas, Massilia, Pantoea, Acinetobacter, 

Methylobacterium, and Hymenobacter were prevalent 
in the phyllosphere microbiomes including flowers and 
fruits. Sphingomonas and Pseudomonas were previously 
found to be abundant in apple flower [75] and fruit [76] 
microbiomes. Moreover, phyllosphere-adapted bacte-
rial genera like Methylobacterium and Sphingomonas [2, 
77] are known to commonly compose the core of phyl-
losphere microbiomes where they can have implications 
for plant growth promotion and pathogen suppression 
[11, 78–80], and even for strawberry flavor [12]. Sphin-
gomonas was previously shown to have a high niche ver-
satility in the phyllosphere; it was detected in the core 
microbiomes of tomato trichomes as well as apple fruits 
[76, 81]. On the other hand, for the fungal community, a 
decrease in diversity was observed during fruit develop-
ment. Genera including Mycosphaerella and Alternaria, 
as well as unidentified Capnodiales and unidentified 
Helotiales were predominant as previously observed 
[27, 82]. Mycosphaerella is the largest genus of ascomy-
cetes  and clades of this genus representing Cercospora 
and Septoria are known plant pathogens [83, 84]. Alter-
naria and Mycosphaerella are both leaf-infecting fungi, 
and Alternaria has been linked to common human 
allergens in addition to being a plant pathogen [85, 86]. 
Moreover, Cryptococcus, a yeast previously isolated 
from fruit washings and used in biological management 
of fruit postharvest diseases [87], was found to be asso-
ciated with flowers and potentially transferred to the 
fruit microbiome. However, this needs further attention 
as some members of the genus Cryptococcus have been 
associated with potential health hazards to human and 
animal health [88, 89].

Further decipherment of the fruit microbiome 
revealed distinct shifts due to cold storage and dis-
ease incidence. Generally, for either community, a 
higher microbial diversity was observed in fresh ripe 
fruits compared to diseased fruits. Simultaneously, 
we observed an increase in bacterial and fungal abun-
dances (up to 80%) in stored and diseased fruits in com-
parison to ripe fruits. The decrease in diversity due to 
disease has previously been associated to the so- called 
“dysbiosis” state [33, 90]. Fruits with higher diversity are 
thought to be healthier as well as better storable, while 
dysbiosis is often linked to predominance of opportun-
istic taxa [33]. In spite of the comparably similar micro-
biome compositions between ripe and stored fruits, the 
proportion of genera such as Shingomonas decreased in 
stored fruits. We presume that the reduction in abun-
dance of potentially core members like Sphingomonas 
is connected to disruptions, favoring opportunists or 
even pathogenic taxa as previously revealed [91]. Alter-
ations in microbial networks as well as reduced diver-
sity are commonly associated with disease outbreaks 
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[1]. In the present study, the diseased fruit microbiome 
was associated with a high occurrence of distinct taxa 
including Serratia, Pantoea, Dyella, Pseudomonas, and 
unidentified Enterobacteriaceae. Members of the family 
Enterobacteriaceae found in edible plants may contain 
taxa associated with food health and safety [92, 93]. 
Interestingly, genera like Serratia and Pseudomonas, 
which are potentially beneficial for plant health and 
growth [35, 94], were also identified in diseased fruits. 
The presence of these beneficial taxa in diseased fruits 
could be due to accumulation of antagonists against 
Botrytis which was found to be predominant in dis-
eased fruits. The fungal community in ripe and stored 
fruits was characterized by differences in the composi-
tion of Mycosphaerella and Alternaria in accordance to 
earlier observations [27]; however, higher abundances 
were observed in stored fruits.

The similarity between the aboveground and below-
ground compartiments was low, and only a low pro-
portion of the microbiome was shown to be potentially 
transferred from soil via the rhizosphere to the phyllo-
sphere. Moreover, direct microbiome transfer from soil 
to the phyllosphere compartments was equally low, but 
much lower in comparison to the  rhizosphere-phyllo-
sphere route. The identified unexpected high difference 
in microbial diversity between soil and the rhizosphere 
in this study could be attributed to differences between 
environmental soil and soil associated with seedlings 
from the plant nursery. Overall, our study highlights the 
compartment-specificity of microbial communities and 
the simultaneous strong connectivity between them. 
Moreover, it shows that the fruit microbiome assembly 
mainly depends on precursor stages of fruit development 
with lower implications of other compartments. The 
plant microbiome, shaped by biotic and abiotic factors, 
accompanies the plant throughout its whole life cycle 
[95]. Particularly in the phyllopshere, the microbiome 
has been found to be influenced by plant genetics, solar 
radiation, temperature, and humidity which can partially 
explain the observed spatio-temporal variations [8, 91]. 
Plant communities are critical to plant health; however, 
microbial communities on freshly consumed produce, 
such as strawberries, are also of interest in terms of their 
relationship to human health [93]. Altogether, calcula-
tion of abundance revealed approximately 2 billion of 
microorganisms in fresh ripe fruits of average weight. We 
note that this was based on qPCR amplifications without 
specific blockers for plant organelle DNA. In addition, 
FISH-CLSM visualization of bacteria revealed some bac-
teria resident in the fruit pulp; however, owing to techni-
cal challenges, our effort to visualize bacteria belonging 
to classes Firmicutes and Gammaproteobacteria were 
not successful. We demonstrated that freshly harvested 

strawberries have higher microbial diversity compared 
to stored and diseased strawberries, although the fungal 
community diversity was not significantly different. This 
indicates a potential health benefit of consuming freshly 
harvested produce in terms of enriching the gut micro-
biome and stimulating the immune system. Microbiome 
shifts induced by cold storage might reduce such effects.

Conclusions
A deep understanding of plant microbiome assembly 
could further provide the basis to enhance fruit micro-
bial communities already while they are formed, as well 
as facilitate the development of potential postharvest 
biocontrol agents. Healthier and more diverse fruit 
microbiomes could potentially decrease disease suscep-
tibility as well as increase storability of fruits. Investiga-
tion of the strawberry plant microbiome revealed that 
significant microbial fractions are transferred between 
different compartments during developmental stages; 
particularly within the phyllosphere compartments. 
During fruit development, the microbiome was grad-
ually enriched from precursor stages to ripe fruits. 
While postharvest storage only induced minor shifts 
in the fruit microbiome, disease occurrence resulted in 
substantial shifts mainly characterized by a reduction 
in microbial diversity and an increase of potentially 
pathogenic taxa. Future applications such as phyllo-
sphere application of bioinoculants could make use of 
these findings to introduce microbiome shifts already 
during fruit development to obtain better storable and 
healthier fruits.
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