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Abstract

Background: Sequencing of 16S rRNA genes has become a powerful technique to study microbial communities
and their responses towards changing environmental conditions in various ecosystems. Several tools have been
developed for the prediction of functional profiles from 16S rRNA gene sequencing data, because numerous
questions in ecosystem ecology require knowledge of community functions in addition to taxonomic composition.
However, the accuracy of these tools relies on functional information derived from genomes available in public
databases, which are often not representative of the microorganisms present in the studied ecosystem. In addition,
there is also a lack of tools to predict functional gene redundancy in microbial communities.

Results: To address these challenges, we developed Tax4Fun2, an R package for the prediction of functional
profiles and functional gene redundancies of prokaryotic communities from 16S rRNA gene sequences. We
demonstrate that functional profiles predicted by Tax4Fun2 are highly correlated to functional profiles derived from
metagenomes of the same samples. We further show that Tax4Fun2 has higher accuracies than PICRUSt and
Tax4Fun. By incorporating user-defined, habitat-specific genomic information, the accuracy and robustness of
predicted functional profiles is substantially enhanced. In addition, functional gene redundancies predicted with
Tax4Fun2 are highly correlated to functional gene redundancies determined for simulated microbial communities.
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Conclusions: Tax4Fun2 provides researchers with a unique tool to predict and investigate functional profiles of
prokaryotic communities based on 16S rRNA gene sequencing data. It is easy-to-use, platform-independent and
highly memory-efficient, thus enabling researchers without extensive bioinformatics knowledge or access to high-
performance clusters to predict functional profiles. Another unique feature of Tax4Fun2 is that it allows researchers
to calculate the redundancy of specific functions, which is a potentially important measure of how resilient a
community will be to environmental perturbation. Tax4Fun2 is implemented in R and freely available at https://
github.com/bwemheu/Tax4Fun2.

Keywords: Metagenomics, Functional predictions, 16S rRNA gene, Bioinformatics, Microbiome, Multifunctional
redundancy, Ecosystem functioning

Background
Microorganisms are key players in ecosystem func-
tioning [1, 2]. For example, host-associated microor-
ganisms significantly contribute to the health of their
host organism, e.g., by providing essential nutrients or
by enhancing the host’s resilience to pathogens or
pests [3–5]. High-throughput sequencing of 16S
rRNA genes is a powerful and widely used tool to
study the taxonomic or phylogenetic composition of
microbial communities in a variety of marine [6–8],
terrestrial [9, 10] and host-associated [11–13] envi-
ronments. However, numerous questions in biogeo-
chemistry and ecology require knowledge of microbial
community function, rather than, or in addition to,
the taxonomic or phylogenetic composition [14]. In-
vestigating the composition of microbial communities
and their functional capabilities is of particular im-
portance when the effect of changing environmental
conditions or anthropogenic perturbations on ecosys-
tem services is being assessed [15].
Many ecosystems are threatened by environmental per-

turbations. A key question in microbial ecology is
whether, and to what degree, microbial communities con-
tain functionally redundant members that may provide
stability to ecosystem processes in the face of these pertur-
bations [8, 16–18]. It has been proposed that the evalu-
ation of multiple functions provide a more comprehensive
picture on the role of biodiversity for maintaining ecosys-
tem functions [19]. However, the simultaneousness assess-
ment of multiple functions is time-consuming [20]. Some
researchers have started to address this question by devel-
oping metatranscriptome-based [20] or metagenome-
based [21] approaches for quantifying the multifunctional
redundancy of microbial communities [20, 21]. To the
best of our knowledge, no tools are currently available to
provide a standardized method for the simultaneous cal-
culation of functional redundancy for multiple functions.
In past years, several freely available tools including

PICRUSt [22], Tax4Fun [23], Piphillin [24], Faprotax
[25] and paprica [26] have been developed for the

prediction of functional profiles inferred from 16S rRNA
gene sequence data. Although these tools cannot replace
the functional assessment via metagenomic shotgun se-
quencing, they have provided unique insights into func-
tional capabilities of prokaryotic communities in diverse
habitats, such as microbial mats [27], soil [28–31], mar-
ine seawater [25, 26, 32, 33], sediment [8, 34], rumen
[35, 36] and the plant endosphere [37, 38].
The predictive power of these tools relies on func-

tional information derived from genomes available in
public databases. This information is used to predict
functional profiles even if no close reference genomes
are present in these databases. However, available ge-
nomes do not necessarily represent the functional diver-
sity present in the ecosystem investigated. This problem
has motivated the development of predictive tools spe-
cific for the rumen microbiome [35] or marine microor-
ganisms [25]. Given the rapidly increasing number of
available genomes, in particular through metagenome-
assisted genome binning [39], and that many research
groups have access to unpublished, habitat-specific gen-
omic information, the incorporation of such data is
likely to enhance the accuracy of functional inferences.
Here, we introduce Tax4Fun2, a new and improved ver-

sion of Tax4Fun [23]. Tax4Fun2 is platform-independent,
user-friendly and highly memory-efficient. It can incorporate
habitat-specific and user-defined data. Although Tax4Fun2
focuses on prokaryotic data, eukaryotic data can also be in-
corporated. We show that the incorporation of habitat-
specific data improves the practical utility of Tax4Fun2 for
microbiome datasets from a wide range of ecosystems. Com-
parative analysis further shows that Tax4Fun2 has a higher
accuracy than PICRUSt [22] and Tax4Fun [23]. Another
unique feature of Tax4Fun2 is that it enables researchers to
calculate the functional redundancy of multiple functions,
which is critical for the prediction of how likely a specific
ecosystem function is to be lost during environmental per-
turbation. This information might be important in ecosystem
biomonitoring and the prioritisation of environmental man-
agement actions.
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Implementation
Tax4Fun2 is provided as an R [40] package with a
current default reference dataset build from 12,377 ar-
chaeal and bacterial genomes available through the
NCBI RefSeq database. The current version is 1.1.5.
Tax4Fun2 is platform-independent and enables re-
searchers without extensive bioinformatics knowledge to
predict functional profiles in an efficient and user-
friendly manner. In the following sections, we provide
further details in the generation of the reference data
and the technical implementation of Tax4Fun2.

Tax4Fun2 reference data
Tax4Fun2 is supplied with two reference datasets
(Ref99NR and Ref100NR) referring to the similarity
threshold used during clustering of the 16S rRNA gene
sequences. Each dataset consists of an association matrix
with 16S rRNA gene reference sequences associated with
functional reference profiles (number of entries in the
full association matrix: 4584 and 18,479 for Ref99NR
and Ref100NR, respectively). Due to its smaller size, the
Ref99NR database is less hardware-demanding and pre-
dictions are generated faster compared to the Ref100NR.
In order to obtain the default reference data, we in-
cluded the function buildReferenceData, which will auto-
matically download and build the reference data.
The reference datasets were generated as follows: we

downloaded all complete genomes and all genomes with
the status ‘chromosome’ from NCBI RefSeq (assessed on
18 August 2018), resulting in 275 archaeal and 12,102
bacterial genomes. Barrnap version 0.9 (https://github.
com/tseemann/barrnap) was used to identify and extract
all 16S rRNA gene sequences. All rRNA gene sequences
were subsequently concatenated into a single file, sorted
by decreasing length and clustered using the UCLUST
algorithm implemented in USEARCH version 10.240
[41] at 99 and 100% sequence similarity, respectively.
The longest sequence of each cluster serves as the 16S
rRNA reference sequence. Functional profiles for each
genome were generated as follows: open-reading-frames
were predicted with prodigal version 2.6.3 [42]. Func-
tional profiles were calculated based on obtained protein
sequences with UProC version 1.2.0 [43] using the
KEGG Orthology (KO) database for prokaryotes (July
2018 release; [44]) as reference. To account for differ-
ences in rRNA copy numbers, functional profiles were
normalized by the number of 16S rRNA genes identified
in each genome. Due to the heterogeneity of 16S rRNA
genes within a genome, the functional reference profile
for each 16S rRNA reference sequence was generated
based on the 16S rRNA clustering results; a single func-
tional reference profile is the average normalized func-
tional profile of each genome with at least one 16S
rRNA gene affiliated to the cluster. If more than one 16S

rRNA gene sequence of a genome was assigned to a
cluster, the normalized profile of the genome was multi-
plied by the number of 16S rRNA genes affiliated to the
cluster before calculating the mean profile. To calculate
phylogenetic distances, two phylogenetic trees (one tree
for each reference dataset) are included in the reference
data. These were generated as follows: all 16S rRNA refer-
ence sequences were aligned with SINA version 1.2.11
[45] against the latest Silva ARB release (SILVA_132_
SSUREF_NR99) [46]. The phylogenetic tree was subse-
quently calculated using RaxML version 8.2.11 [47] under
a GTRGAMMA model and a random seed of 12,345.

Extending the reference data of Tax4Fun2 using specific
genomes
The predictive power of available tools, such as PICRUSt
or Tax4Fun, is limited by the number of genomes avail-
able in public databases that also need frequent updates.
Moreover, available genomes do not necessarily repre-
sent the functional diversity present in the ecosystem in-
vestigated. In Tax4Fun2, we address these issues by
allowing users to build their own habitat-specific refer-
ence data sets (Fig. 1). In order to build such a dataset,
the user needs to provide a set of genomes. To assist
with the extraction of 16S rRNA sequences and the
functional annotation of these genomes, we imple-
mented two functions in the Tax4Fun2 package: extra-
ctSSU and assignFunctions. Ribosomal RNA sequences
(16S rRNA or 18S rRNA) are identified by BLAST
search using the SILVA SSURef database version 132
[46] (preclustered at 90% with uclust). Functional pro-
files are generated by BLASTp with diamond against the
KEGG KO database [48]. Protein sequences are pre-
dicted prior to functional annotation using prodigal ver-
sion 2.6.3 [42]. Currently, the functional annotation is
only available for prokaryotes but will be extended to eu-
karyotes in later versions. The extracted rRNA se-
quences and functional profiles are subsequently used to
build reference data sets using the addUserDataByClus-
tering or addUserData functions (Fig. 1). vsearch is re-
quired to use the first function [49]. vsearch is freely
available at https://github.com/torognes/vsearch and in-
cluded in Tax4Fun2 as part of the reference data. The
latter function bypasses the clustering step with vsearch
and is recommended if only a small number of distinct
genomes shall be used as reference data.

Predicting functional profiles with Tax4Fun2
In the initial step of Tax4Fun2, user-supplied 16S rRNA
gene sequences (operational taxonomic units or exact
sequence variants [50], also known as zero-radius OTUs,
but here simply referred to as OTUs) are searched
against the 16S rRNA reference sequences by BLAST
using the runRefBlast function (Fig. 1). Other tools, such
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as paprica [26], use algorithms to place query sequences
into phylogenetic trees. These algorithms usually provide
a very accurate phylogenetic placement. However, pla-
cing sequences is very hardware intensive and most al-
gorithms are restricted to Unix or Unix-like operating
systems. Due to these limitations, we decided to use a
BLAST-based approach, because we only need to
identify the closest match in the database. If user data
is supplied, the next-neighbour search is repeated
using the user-generated reference data. Following the
assumption that users provide habitat or site-specific
data, user-generated data is preferred to the default
reference data. Specifically, if the next neighbour

search for one OTU against both the default refer-
ence database and the user-generated database re-
sulted in significant hits, the user data is incorporated
in the functional prediction.
Functional predictions are subsequently calculated

using the makeFunctionalPrediction function (Fig. 1).
During this step, the OTU table supplied by the user is
summarized based on the results of the next neighbour
search. A specific association matrix in the summarized
table is generated containing only the functional refer-
ence profiles of the next neighbours. For each sample,
the abundance information from the OTU table and the
functional information stored in the specific association

Fig. 1 The Tax4Fun workflow. 16S rRNA gene sequences are initially aligned against the reference sequences provided with Tax4Fun2 to identify
the nearest neighbour. If user-defined data is supplied, the 16S rRNA gene sequences are additionally aligned against the sequences added by
the user. Nearest neighbours in the user data will be preferred if both search attempts result in significant hits. The OTU abundances for each
sample are summarized based on the results from the nearest neighbour search. An association matrix (AM) containing the functional profiles of
those references identified in the 16S rRNA search is generated. The summarized abundances and the functional profiles stored in the AM are
merged and a metagenome is predicted for each sample. FTU and FSU values are provided as a log file. To include user data and generate a
habitat-specific data set, Tax4Fun2 provides functions to functionally annotate prokaryotic genomes and to extract 16S rRNA gene sequences.
User-defined reference data sets are subsequently generated and can be included in the prediction. If large amounts of genomes are provided,
extracted 16S rRNA gene sequences can be optionally clustered using the uclust algorithm
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matrix are converted into a sample-specific functional
profile. Predicted profiles are later summarized based on
KEGG pathways. Only OTUs passing a defined similarity
threshold (default = 97%) are considered in the func-
tional prediction. The fraction of OTUs having no close
hit in the reference data and hence are unused in the
subsequent prediction (fraction of taxonomic units un-
used = FTU) as well as the amount of sequences assigned
to these unused taxonomic units (fraction of sequences
unused = FSU) is recorded. FTU and FSU values may
serve as an additional quality indicator for the predicted
metagenomes as high FTU and/or FSU values indicate
that predictions were made only for a small fraction of
the total microbial community.

Calculation and validation of the functional redundancy
index (FRI)
To date, there is no tool available to predict functional
redundancies based on 16S rRNA data. Here, we intro-
duce the functional redundancy index (FRI), which de-
scribes the (multi-) functional redundancy of a
prokaryotic community, i.e., the redundancy of multiple
functions in the investigated community. The FRI incor-
porates the phylogenetic distribution (distance) of com-
munity members harbouring a specific function and
their proportion in the community. In Tax4Fun2, the
functional redundancy index is calculated using the
function calculateFunctionalRedundancy (Fig. 2).
Following next neighbour search, the OTU table is

summarized based on the results of the next neighbour
search and converted to binary data (presence/absence).
The normalized functional profile associated with each
reference sequence is also converted to a binary data
(presence/absence) using a cut-off of 100% meaning that
a function is considered to be present if it was observed
in all genomes assigned to the reference profile. If the
next neighbour search identifies the same neighbour for
several OTUs, then the normalized functional profile as-
sociated with the 16S rRNA reference sequence is multi-
plied by the number of OTUs before it is being
converted to binary data. This is based on the assump-
tion that the probability a specific function present in a
community is higher the more distinct the phylotypes
associated to a single reference are present. The redun-
dancy of any function present in the community is sub-
sequently calculated by multiplying the average
phylogenetic distance of all community members posses-
sing the function with their proportion in the commu-
nity. The product is normalized by the average
phylogenetic distance of the total community. To ac-
count for differences in average phylogenetic distances
between different communities, we provide the possibil-
ity to calculate the absolute and the relative FRI (aFRI
and rFRI). To calculate the aFRI, the average

phylogenetic distance of all species in the full 16S rRNA
reference tree is used for normalization, whereas the
rFRI is normalized by the average phylogenetic distance
of those species in the 16S rRNA reference tree identi-
fied as being present in the surveyed samples during
next neighbour search. The rFRI can be used to compare
samples within one survey, whereas the aFRI allows the
comparison of functional redundancy indices across dif-
ferent ecosystems. The latter is important as multifunc-
tional redundancy comparisons between or among
different environments generate a more robust depiction
of (regional) variation in the resilience/vulnerability of
microbial communities [21].
To test the FRI accuracy, we simulated 1000 prokary-

otic communities each consisting of 100 genomes ran-
domly selected from the 12,377 genomes used to
generate the reference data. To assess the phylogenetic
distance between the genomes, we extracted 63 marker
protein sequences based on hmm profiles derived from
PFAM version 31 [51] and TIGRFAM version 15 [52].
The 63 marker proteins were selected because their cor-
responding genes were present in 90% of all 12,377 ge-
nomes and, if present, were single-copy genes in 99% of
them. These criteria were applied to archaea and bac-
teria independently. The extracted protein sequences of
each hmm profile were aligned using mafft version
7.3.11 [53]. Afterwards, aligned protein sequences for
each genome were concatenated. The phylogenomic tree
was calculated using FastTree version 2.1.10 [54]. Func-
tional profiles for each genome were converted to
presence-absence data and the FRI was calculated for
each function using the genome tree and the presence-
absence data. The 16S rRNA gene sequences present in
each genome subset were separately clustered in oper-
ational taxonomic units (OTUs) at 97% similarity with
UCLUST implemented in USEARCH [41]. An OTU
table was generated based on the clustering. Each OTU
was represented by its longest sequence.

Results and discussion
Tax4Fun2 evaluation
We first applied Tax4Fun2 in comparison to Tax4Fun
[23] and PICRUSt [22] using the same paired samples
(16S rRNA gene and metagenome data), which were
used to validate both tools, i.e. samples derived from the
human microbiome, mammalian guts, soil and from a
hypersaline microbial mat (Table 1), in addition to ten
marine seawater samples taken in the North Sea [7] and
90 kelp-associated samples collected within the Marine
Microbes Framework Data Initiative (http://www.bio-
platforms.com/marine-microbes).
Functional profiles were predicted using the default

workflows. For PICRUSt, processed sequences were clus-
tered using QIIME version 1.8 [55] by closed-reference
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Fig. 2 (See legend on next page.)
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picking against the Greengenes database (version 13_5;
[56]) and normalized prior to functional prediction. For
Tax4Fun, OTU sequences were taxonomically classified
by BLAST search [57] against the SILVA database
(SILVA_123_SSURef_Nr99) [46].
We evaluated the predictive power of each tool by com-

paring the functional profiles predicted from the 16S
rRNA data to functional profiles generated directly from
the metagenomes using Spearman rank correlations.
Comparing the profiles predicted with PICRUSt, Tax4Fun
and Tax4Fun2 with metagenome-derived profiles clearly
showed that Tax4Fun2 outperforms PICRUSt and Tax4-
Fun across all six tested datasets (Fig. 3). In addition,
Tax4Fun2 was more than 20 times faster than Tax4Fun
due to the smaller reference database.
It should be noted that a direct comparison of func-

tional profiles predicted with all three tools is difficult
due to several changes in the KEGG Orthology since
PICRUSt and Tax4Fun were developed (deprecated and
new functional orthologs). Hence, predicted functional
profiles as well as those obtained by metagenomic shot-
gun sequencing were converted to relative abundances
prior to comparison. Only functions present in the

metagenomic profile and in the predicted profile were
considered in each comparison. On average, more than
95% of all functions in the human microbiome as well as
the marine, soil and kelp-derived metagenomes were af-
filiated to these shared KOs. In the microbial mat and
the mammalian gut samples, more than 74 and 78% of
all predicted functions were affiliated to these KOs,
respectively.

Using user-defined data increased the accuracy and
reduced the FTU
Following the assumption that any additional genomic
information specific for the investigated habitat further
enhances the predictive power of Tax4Fun2, we used 68
metagenome-assembled genomes (MAGs) generated
from the 90 kelp-associated metagenomes to build a
kelp-specific reference dataset. These genomes were se-
lected because at least one 16S rRNA gene sequence was
identified in each genome.
Using the default data, the median Spearman correl-

ation coefficient was 0.72. Incorporating the kelp-
specific data substantially increased the power of the
functional prediction (median Spearman correlation

(See figure on previous page.)
Fig. 2 The FRI workflow. 16S rRNA gene sequences are initially aligned against the reference sequences provided with Tax4Fun2 to identify the
nearest neighbour. The OTU abundances for each sample are converted to presence-absence data and subsequently summarized based on the
results from the nearest neighbour search. An association matrix (AM) containing the normalized functional profiles of those references identified
in the 16S rRNA search is generated. The normalized functional profile in the AM is multiplied by the summarized OTU abundance. We assume
that a function is present if the abundance of a function is greater than 50%. For instance, if 5 OTUs were affiliated to one 16S rRNA reference
seqeunce, we would assume that every function with a minimum abundance of 10% in the normalized reference profile would be present in the
AM. The FRI is finally calculated based on those community members possessing the function and their phylogenetic distribution. The amount of
sequences/OTUs unused in the prediction (FSU/FTU) is provided in a log file 16S rRNA gene sequences are initially aligned against the reference
sequences provided with Tax4Fun2 to identify the nearest neighbour. The presence of each OTU are summarized based on the results from the
nearest neighbour search. An association matrix (AM) containing the functional profiles of those references identified in the 16S rRNA search is
generated. The summarized abundances and the functional profiles stored in the AM are multiplied. Functions being present in all genomes are
assumed to be present in the entire cluster. The functional redundancy is subsequently predicted from the average phylogenetic distance of all
community members potentially possessing the function. This distance is subsequently normalized either by the average phylogenetic distance
of the total reference tree (absolute) or by the distance found in the surveyed community (relative). FTU and FSU values are provided as a log
file. The functions performing each step are marked with numbers

Table 1 Accession numbers of samples/studies used to validate Tax4Fun2

Origin Sample
number

Accession numbers

Human
Microbiome

41 SRS011271, SRS011452, SRS011529, SRS011584, SRS011586, SRS013234, SRS013252, SRS013258, SRS013506,
SRS013687, SRS013711, SRS013723, SRS014235, SRS014287, SRS014343, SRS014613, SRS014629, SRS014923,
SRS015133, SRS015190, SRS015425, SRS015450, SRS015574, SRS015578, SRS015762, SRS015782, SRS015854,
SRS015960, SRS016002, SRS016018, SRS016095, SRS016111, SRS016203, SRS016225, SRS016331, SRS016335,
SRS016349, SRS016434, SRS016533, SRS016553, SRS016559

Mammalian Gut 56 4,461,284–301, 4,461,341–55, 4,461,357–58, 4,461,360–80, 4,461,383 (MG-RAST)

Microbial Mat 10 4,440,963–71 (MG-RAST)

Soil 14 4,477,803–5, 4,477,807, 4,477,872–7, 4,477,899, 4,477,902–4 (MG-RAST)

Water 10 SRA060677

Kelp 90 57,884–936, 57,938–56, 87,958–74, 58,019–20 (https://data.bioplatforms.com/organization/about/australian-
microbiome).)

Wemheuer et al. Environmental Microbiome           (2020) 15:11 Page 7 of 12



Fig. 3 Correlations between functional profiles obtained from metagenomic datasets and those predicted from 16 s rRNA data. Predictions were made with
PICRUSt, Tax4Fun, and Tax4Fun2. Predictions with Tax4Fun2 were made using both supplied default reference datasets (Ref99NR and Ref100NR). Note that
PICRUSt did not generate any prediction for the kelp data

Fig. 4 Correlations between functional profiles retrieved from 90 kelp metagenomes and those predicted with Tax4Fun2 without and with user
data added and the fraction of zOTUs and sequences unused in the prediction
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coefficient = 0.86) and reduced the fraction of the se-
quences not used in the prediction (Fig. 4), showing that
a lack of suitable reference genomes did initially limit
Tax4Fun2’s performance. Moreover, using the kelp-
specific dataset enabled us to predict functional profiles
for samples, which failed when using only the default
reference data, because next neighbour search resulted
in no close matches. These results demonstrate the ben-
efits of incorporating user-defined, habitat-specific refer-
ence databases, which distinguishes Tax4Fun2 from all
other published tools.

Functional redundancy index
The simultaneousness assessment of multiple functions
is usually very time-consuming [20]. Previous studies
have focused on a limited number of community func-
tions (e.g., [58–60]). However, the degree of functional
redundancy in any given system depends on the func-
tions considered [14]. In addition, it is difficult to draw
conclusions about functional redundancy based on a
single environmental situation, as species that are func-
tionally redundant in one environment might be pivotal
in another [61]. Hence, the extent of functional redun-
dancy change as the ecological contribution of a species

might change between different environments. None-
theless, a contemporary concern for the conservation of
biodiversity and the development of management strat-
egies is that decision makers require quantitative mea-
sures as part of science-based negotiations and
communications. In order to provide those measures
when assessing natural or human-induced impacts on
an ecosystem, we introduced the FRI with respect to
multiple functions in Tax4Fun2. A high FRI indicates
that a specific function is almost ubiquitous in all com-
munity members, whereas a low FRI suggests that the
function is present in a few closely related species. A
FRI of 0 indicates that a function has been detected in
only one community member or is not present at all.
Consequently, the lower the FRI the higher the prob-
ability that a function gets lost after community shifts
or perturbations.
To test the accuracy, we simulated 1000 microbial

communities and calculated FRI values based on 16S
rRNA gene data using Tax4Fun2. The FRIs calculated
for each function were subsequently compared to the
FRIs calculated directly from the genomes of each simu-
lation by Spearman rank correlation. The comparison
revealed that Tax4Fun2 provides a good estimate of the

Fig. 5 Correlation between predicted and genome-based functional redundancy indices (a) and functional redundancy indices inside and
outside a phytoplankton bloom (b). A log ratio greater than 0 indicates that a function is more redundant outside the bloom. All predictions
were made using a 97% similarity cut off

Wemheuer et al. Environmental Microbiome           (2020) 15:11 Page 9 of 12



functional redundancy present in the microbial commu-
nity (Spearman rank correlation > 90%) (Fig. 5a).
We further calculated FRIs using the marine seawater

samples. Six of these samples were taken inside a phyto-
plankton bloom and three samples were taken outside
the bloom [7]. Nearly 7000 functions displayed a higher
functional redundancy index outside the bloom, whereas
only 1468 functions had higher redundancies inside the
bloom (Fig. 5b). This indicates that the functional redun-
dancy greatly shifts during the phytoplankton bloom.
Phytoplankton blooms are usually characterized by a
substrate-controlled succession, i.e. distinct bacterial
clades dominate the bacterioplankton community at dif-
ferent stages during and shortly after the bloom [62].
Consequently, community members involved in the
turnover of certain substrates at a specific stage are pre-
dominant. For instance, the SAR92 clade, the Roseobac-
ter RCA cluster and the genus Polaribacter were more
abundant in bloom samples [3]. Because we did not ob-
serve significant differences in the phylogenetic diversity
of bacterioplankton communities derived from bloom
and reference samples, functions predominantly associ-
ated with dominant community members are more re-
dundant in the bloom whereas all other functions
display higher redundancies in the reference samples.

Conclusion
With Tax4Fun2, we provide an easy-to-use, platform-
independent R package, which enables researchers to
predict and investigate functional profiles of prokaryotic
communities based on 16S rRNA gene data. We demon-
strate the high predictive power of Tax4Fun2, providing
superior results to any other established tool. The key
strength of Tax4Fun2 is the incorporation of user-
defined and habitat-specific data, which further enhances
the accuracy of the predictions. Another unique feature
of Tax4Fun2 is that it enables researchers to calculate
functionial redundancies, which is a relevant parameter
for ecosystem monitoring and the development of man-
agement strategies to safeguard optimal ecosystem func-
tionality. Nonetheless, functional profiles and functional
redundancies are predictions only and should be treated
with caution.
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