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Abstract

Background: Microorganisms in rivers and lakes are essential for nutrient recycling in aquatic ecosystems.
Understanding the ecological processes shaping microbial communities is of crucial importance for aquatic microbial
ecology and biogeography. However, the diversity of microorganisms and the forces that control this diversity are
poorly understood. This is particularly true within the framework of the river-lake continuum in arid regions.

Results: Using a whole catchment-sampling effort, we explored biogeographical patterns and mechanisms of microbial
community (bacteria and archaea) assembly within the catchment of the largest inland once freshwater lake (Lake Bosten)
in China. Water samples from headstream tributaries, the mainstream of the River Kaidu to downstream Lake Bosten were
characterized using amplicon sequencing of 16S rRNA genes. Higher α-diversity was found in mainstream of River Kaidu and
in the tributaries compared with Lake Bosten. And the microbial community composition was also significantly different
between the lake and its connected river habitats. Canonical correspondence analysis demonstrated that salinity and total
suspended solids were the most important environmental factors shaping the community variations. Overall, pure
environmental and pure spatial factors explained 13.7 and 5.6% of the community variation, respectively, while 32.0% of the
variation was explained by combined environmental and spatial variables. These observations suggested that spatially
structured environmental variations mainly shaped the microbial biogeography in this region. Both deterministic and
stochastic processes influenced the microbial community assembly in river and lake habitats, and the stochastic pattern was
particularly pronounced for microbiome in river habitat. Co-occurrence network analysis revealed more abundant and
complicated correlations among frequently occurred taxa in lake habitat compared with the river habitat, implying that
ecological multispecies interactions (e.g., competition) shaped lake microbial community structures.

Conclusions: Our findings demonstrate an ecological succession along the river-lake continuum of microbial communities
across the largest inland once freshwater lake basin in China, and highlight the effects of spatially structured environmental
factors on regional microbial β-diversity and species interactions on local community assembly.

Keywords: Microbial community assembly, Species and functional diversity, Deterministic and stochastic processes, Salinity,
Biotic interactions, Lake Bosten
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Background
Inland aquatic ecosystems are facing increasing pressures
from various anthropogenic impacts and/or climate
changes in their watersheds [1]. One of the major prob-
lems is freshwater salinization [2]. For example, Lake Bos-
ten located in the arid central Asia, which used to be the
largest inland freshwater lake in China, has evolved to be
an oligosaline lake during the past 60 years with the salin-
ity increased from 0.38 g/L to 1.5 g/L [3]. As the most
abundant, diverse and functionally important organisms
on Earth [4], microorganisms in aquatic ecosystems can
response to environmental changes quickly, and have a
key role in ecological processes including the biodegrad-
ation of pollutants that impact water quality [5].
Streams and rivers link terrestrial, lotic and lentic sys-

tems with their lake counterparts and supply numerous
ecosystem services such as material transport, biogeo-
chemical nutrient cycling and habitats for biota (including
microbes). They also provide potable water for public con-
sumption and supply water for irrigation and industry,
which is important in arid and semi-arid regions (occupy-
ing nearly 40% of the Earth’s land surface). Rivers and
lakes have traditionally been studied as separate entities,
particularly in studies of aquatic microbial ecology. Spatial
and temporal patterns of bacterial diversity and biogeog-
raphy have been demonstrated in several large rivers, such
as the Thames River [6], the Danube River [7] and the
Yangtze River [8], as well as a few lakes or freshwater res-
ervoirs [9–11]. However, streams and rivers change con-
stantly as they move from headwaters to the downstream
lakes, thus rivers and lakes can only truly be understood
as a continuum [12–14]. At present, there is a knowledge
gap concerning the relationships between microbial com-
munities in lakes and their input rivers in arid and semi-
arid regions. How and to what extend do freshwater
streams and rivers affect microbial communities in their
salinized downstream lakes have still not been compre-
hensively investigated. This limits our understanding of
ecosystem structures and functions and hindering effective
predicting the responses of lake ecosystems to environ-
mental change.
Disentangling the drivers of microbial community struc-

ture and function in response to environmental change are
a central issue in microbial ecology [15]. With the increas-
ing pressures by anthropogenic activities and climate
change, understanding ecological mechanisms that govern
the specific local adaptations of microbiomes at both com-
munity assembly and function levels are of a surge of inter-
est [16]. Currently, it has been accepted that both niche-
based deterministic and neutral-based stochastic processes
occur simultaneously during the assembly of local commu-
nities [15, 17–21]. Niche-based deterministic theories sug-
gest that environmental filtering, biotic interactions and
interspecific trade-offs largely determine patterns of species

diversity and composition. In contrast, stochastic theories
emphasize the importance of chance colonization, demo-
graphic randomness and ecological drift [22]. Based on this
perspective, various theoretical models and practical algo-
rithms quantifying the importance of both deterministic
and stochastic processes have been developed and applied
[23–29].
The species-abundance distribution (SAD), which is

defined as the distribution of abundances across species
in a community, is one of the most important patterns
in macroecology and biogeography [4, 30]. Since the
1930s, more than 20 models that predict the SAD have
been developed [31]. Among these models, niche-based
broken-stick (BS) [32] and geometric-series (GS, i.e.,
niche preemption) [33], neutrality-based Volkov [34], as
well as purely statistical Poisson lognormal (PLN) and
log-series models have been frequently used in predict
macrobial SADs. While the SAD is central to macroecol-
ogy and biodiversity theory, microbiologists have largely
neglected the connection of the SAD to the mechanisms
of microbial community assembly [4].
While the temporal and spatial variations of microbial

community composition in Lake Bosten and its up-
stream tributaries have been examined recently [35, 36],
little is known about the differences in microbial diver-
sity and the mechanisms of underlying community as-
sembly of river-lake continuum between Lake Bosten
and its linked streams and rivers. In this study, we used
the Lake Bosten watershed (Additional file 1: Fig. S1) as
a model ecosystem to investigate the microbial diversity
and the community assembly mechanisms in both river
and lake systems simultaneously based on null model
[28, 29], SAD models and co-occurrence network ana-
lysis [37, 38]. We hypothesized that (i) the river system
has higher species diversity than the lake system because
of spatial heterogeneity and closer link with terrestrial
ecosystems; (ii) deterministic assembly is vital to form
microbial communities in lake system because of the fil-
tering effects of salinity and biotic interaction. This study
is the first attempt to explore the microbial diversity pat-
terns and the community assembly mechanisms in a
river-lake continuum in the arid central Asia. Therefore,
it makes fundamental contribution to the mechanism
understanding for a predictive microbial ecology in
river-lake continuum under the circumstances of a fu-
ture increasing tendency of lake salinization in arid and
semi-arid regions.

Results
Microbial diversity, community structure and taxonomy
After demultiplexing, quality filtering, denoising, remov-
ing of chimera, chloroplast and low abundance of unique
sequences (< 10 reads), we generated a total of 1,231,890
high-quality reads (average length = 263 bp), averaging
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43,996 reads per sample, which were classified into 5049
amplicon sequence variants (ASVs) across the 28 sam-
ples, taken from Lake Bosten catchment. For the com-
parison of α- and β-diversity among different sampling
types (i.e., upstream tributaries, the River Kaidu and
Lake Bosten), same number of reads in each sample
were chosen at random based on the smallest sample
(23,965 reads). The rarefaction curves of richness
approached an asymptote after 80% reads were calcu-
lated, which indicated that our sequencing depth was
sufficient (Additional file 2: Fig. S2). Species richness
and Chao1 in the mainstream of the River Kaidu
(mean = 2476 and 3195, respectively) were significantly
higher than those of in upstream tributaries (mean =
1955 and 2477, respectively; P < 0.05) and in Lake Bosten
(mean = 510 and 726, respectively; P < 0.001) (Fig. 1a).
There were no significant differences (P > 0.05) of Shan-
non diversity and Simpson index in upstream and main-
stream of the River Kaidu. However, both of them were
significantly higher than those in Lake Bosten (P < 0.01).
Spearman correlation analysis showed that the four mi-
crobial α-diversity indices were significantly positively
correlated to total suspended solids (TSS), total phos-
phorus (TP) and dissolved oxygen (DO), and signifi-
cantly negatively correlated to total dissolved solids
(TDS), water temperature (WT), pH and dissolved or-
ganic carbon (DOC) (Additional file 3: Fig. S3).
Unconstrained principal coordinates analysis (PCoA)

of Bray–Curtis distance was performed to evaluate β-di-
versity among different sampling types (Fig. 1b). The re-
sults showed that the first two axis explained 47.4% of
the microbial community variation. Adonis revealed that
microbial communities in Lake Bosten was significantly
separated from those in upstream and mainstream of
the River Kaidu (P < 0.001), while no significant differ-
ences were recorded between the latter two communi-
ties (P > 0.05, Fig. 1b).
For the taxonomy, among the 5049 ASVs only 64

ASVs with 4298 reads were assigned to archaea, repre-
senting 0.35% of the total reads (Additional file 4: Table
S1). All of these 64 ASVs were presented in the up-
stream tributaries and mainstream of the River Kaidu,
while only 17 (26.6%) of them were presented in Lake
Bosten with relative low abundance (accounted for 0.9%
of the total archaea reads). Euryarchaeota and Thau-
marchaeota were the predominant phylum among the
kingdom of archaea, accounting for 40.6 and 57.8% of
the total archaea’s ASVs, respectively. In the phylum of
Thaumarchaeota, 97.3% of the ASVs belong to genus of
Nitrososphaera.
Overall, the reads belong to the kingdom of bacteria were

classified and grouped under 21 phylum-level taxonomic
groups. A dramatic shift in bacterial community compos-
ition was observed from upstream tributaries to Lake Bosten

(Fig. 1c; Additional file 5: Fig. S4). The most common phyla
of bacteria were Proteobacteria (average 34.8%), Acidobac-
teria (12.4%), Verrucomicrobia (11.5%), Candidatus Sacchar-
ibacteria (8.4%), Bacteroidetes (6.7%), Actinobacteria (6.2%)
and Parcubacteria (6.0%) in upstream tributaries; while the
most dominated bacterial phylum in the mainstream of the
River Kaidu was also Proteobacteria (25.6%), followed by
Verrucomicrobia (19.1%), Acidobacteria (13.1%), Planctomy-
cetes (10.2%), Candidatus Saccharibacteria (7.4%), Actino-
bacteria (5.7%) and Bacteroidetes (5.3%). In Lake Bosten,
however, the predominant bacterial phyla were Verrucomi-
crobia (58.9%), Proteobacteria (12.1%), Candidatus Sacchari-
bacteria (7.6%), Planctomycetes (7.6%) and Actinobacteria
(5.4%). At class-level, the most common bacteria were Spar-
tobacteria, Betaproteobacteria, Verrucomicrobiae, Alphapro-
teobacteria, Planctomycetia, Actinobacteria, Acidobacteria
Gp6 and Bacilli across all sampling types; while at genus-
level, the most common bacteria were Spartobacteria genera
incertae sedis, Saccharibacteria genera incertae sedis, Gp6,
Limnohabitans, Parcubacteria genera incertae sedis, Polaro-
monas, Rhodopirellula and Sphingorhabdus.

SAD pattern, microbial community and predicted
function between river and lake habitats
Species rank-abundance curves for all samples were plot-
ted using raw richness data and normalized data (Fig. 2a,
b). The data set exhibited a very similar pattern between
tributary and the River Kaidu samples, which were quite
different from Lake Bosten samples. Because of similar
community compositions (Fig. 1b) and SAD pattern (Fig.
2a, b) between samples from upstream tributaries and
mainstream of the River Kaidu, we combined tributary
and river samples representing river habitat. Samples A03
and C01 (in the river mouth of Lake Bosten) were ex-
cluded for subsequent analysis because of abnormal com-
munities (Fig. 1b). In total, 26 samples were divided into
two groups representing river (n = 15) and lake (n = 11)
habitats, respectively. SAD plot of lake habitat exhibited a
very strong dominance by low abundance species (rare
species: reads < 10) compared with river habitat with the
relative proportions of rare ASVs of 54 and 12%, respect-
ively (Fig. 2c, d). Lake habitat has a much higher propor-
tion of rare species, but also higher individuals of
common species. We estimated SADs of river and lake
habitats using BS, GS, Volkov and PLN models (Fig. 2e, f).
Both niche-based BS and GS models as well as neutrality-
based Volkov model were rejected by Kolmogorov-
Smirnov (K-S) test, which suggested that none of deter-
ministic and stochastic processes could explain the micro-
bial assembly solely in river and lake ecosystems.
However, the statistical PLN model fitted the SADs very
well for both river and lake habitats.
To designate the specialized microbial lineages for each

type of habitat, linear discriminant analysis effect size

Tang et al. Environmental Microbiome           (2020) 15:10 Page 3 of 17



(LEfSe) was implemented with default parameters in order
to find microbial groups with statistical differences at dif-
ferent taxonomic levels. A total of 97 microbial taxa were
found to be significantly different between river and lake
habitats (Fig. 3). Generally, the mean proportions of Bac-
teroidetes (from phylum to genus levels) and Proteobac-
teria (including β- and γ-Proteobacteria) were significantly
higher in river habitat, while Chloroflexi (from phylum to
genus levels), Candidatus Saccharibacteria (from phylum
to genus levels), Planctomycetes (from phylum to family
levels), Verrucomicrobia and a kind of unassigned mi-
crobes were significantly higher in lake habitat. Notably,

in the phylum of Verrucomicrobia, Verrucomicrobiae
(from class to genus levels) were enriched in river habitat,
while Spartobacteria (from class to genus levels) were
enriched in lake habitat. In addition, the ubiquitous
SAR11 clade (a9) of Alphaproteobacteria was also found
to be enriched in lake habitat (Fig. 3).
Overall, microbial communities between river and lake

habitats shared considerable proportions of ASVs (i.e.,
1727 shared ASVs), representing 36.1 and 86.5% of the
entire ASVs in river and lake habitats, respectively.
While the top 10 ASVs in river habitat were presented
in lake habitat with low relative abundances, the top 10

Fig. 1 Diversity and taxonomy of microorganisms in the upstream tributaries, River Kaidu and Lake Bosten. a Comparison of α-diversity indexes of
microbial communities. Diversity indexes were calculated using subset of 23,965 reads per sample. Horizontal bars in the box plots indicate
median proportional values. Lower and upper edges of the boxes represent the approximate 1st and 3rd quartiles, respectively. The upper and
lower whiskers extend to data no more than 1.5 times the interquartile range from the upper edge and lower edge of the box, respectively.
Kruskal-Wallis test was performed to examine differences among the three sampling types. Different lower-case letters indicate significant
differences (P < 0.05) among sampling types. b Unconstrained PCoA with Bray–Curtis distance showing that the microbial community in Lake
Bosten separate from those in River Kaidu and the upstream tributaries using adonis analysis. Ellipses cover 80% of the data for each sampling
type. c Phylum-level distribution of microbial communities of each sampling site
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ASVs in lake habitat were seldom appeared in river habi-
tat (Additional file 6: Table S2). For example, we found
the top 10 ASVs in lake habitat accounted for 49.95% of
the entire microbial community, while they represented
only 0.06% of the total reads in river habitat. In Lake
Bosten, 9 of the top 10 ASVs belong to the class of Spar-
tobacteria and the other one belongs to the clade of
SAR11.

Functional annotation of ASVs revealed a rich repertoire
of metabolic function groups in the river and lake microbial
communities. In total, 989 out of 5049 ASVs (19.6%) were
assigned to at least one functional group, representing 44
out of 90 functional groups in the functional annotation of
prokaryotic taxa (FAPROTAX) 1.1 database. There were 44
annotated functional groups in river habitat while only 32
of them were founded in lake habitat (Additional file 7: Fig.

Fig. 2 The patterns of species-abundance distributions (SADs) in microbial communities of this study. a A rank abundance distribution plot for all
samples. b Normalized rank abundance distributions (NRADs) with the lowest species (350) sample for samples from upstream tributary (red),
River (green) and Lake Bosten (blue). Bold lines and their shaded regions are mean NRADs and the 95% confidence intervals, respectively. SADs of
grouped data (binned) from river (c, combination of upstream tributary and River Kaidu) and lake (d, Lake Bosten) habitats with the predicted
values linked as red lines. Observed and fitted SADs for the river e and lake f microbial communities. Observed values are shown as open circles
and fitted models are shown as lines. BS, GS, Volkov and PLN represent broken-stick, geometric-series, Volkov’s neutral community distribution
and Poisson log-normal distribution models, respectively. The model was rejected when Kolmogorov-Smirnov (K-S) test P < 0.05 and the smaller
the Akaike’s information criterion (AIC) value, the more robust the fit. *** K-S test P < 0.001. In both habitats, the PLN clearly provide a superior fit
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S5), indicating higher functional diversity in river habitat
compared with lake habitat. Principal component analysis
(PCA) of functional profiles showed no distinct separation
between river and lake habitats, but the functional variation
in river habitat was much higher than that in lake habitat
(Fig. 4a). Among the putative functions, chemoheterotrophy
and aerobic chemoheterotrophy were the most abundant
groups in both habitats. Functions related to methanogen-
esis (contributed by the phylum of Euryarchaeota in Ar-
chaea), aerobic ammonia oxidation (contributed by the
genus of Nitrososphaera in Thaumarchaeota) and celluloly-
sis (contributed by the genus of Blastocatella in Acidobac-
teria) were only founded in river habitat (Additional file 7:
Fig. S5). Using White’s non-parametric t-test, we found that
the functional groups of nitrogen related functions, metha-
nol oxidation, methylotrophy, Chitinolysis, dark hydrogen
oxidation, plant pathogen and xylanolysis were significantly
enriched in the river habitat, while the mean proportion of
intracellular parasites was higher in lake habitat (Fig. 4b).

Effects of geographic distance on microbial community
composition in river and lake habitats
Our results revealed that the similarity in microbial
community composition decreased with increasing geo-
graphic distance (Fig. 5). The Spearman’s correlation

between the Bray–Curtis community similarity and geo-
graphic distance showed significantly negative correla-
tions for the microbial community with a correlation
coefficient (ρ) of − 0.78 and − 0.55 (P < 0.001) for the en-
tire and river habitat communities, respectively. Within
lake habitat, however, microbial community similarity
did not exhibit significant relationship with the geo-
graphic distance (ρ = − 0.20, P = 0.15; Fig. 5). The dis-
tance decay patterns suggest that geographical distance
could be of importance in structuring the microbial
community assembly and determining the spatial dis-
similarity between different sites along the River Kaidu
to Lake Bosten, but not within Lake Bosten.

Influential factors on microbial community compositions
Mantel test demonstrated that the microbial community
composition showed significant correlations with envir-
onmental parameters (Mantel r = 0.887, P < 0.001) and
geographical distance (Mantel r = 0.768, P < 0.001). In
addition, environmental matrix also showed significant
correlation with geographic matrix (Mantel r = 0.749,
P < 0.001), indicating a strong interaction between spatial
scale and environmental variables.
The forward selection procedure in canonical corres-

pondence analysis (CCA) revealed that the variation of

Fig. 3 LEfSe results showing the taxonomically differences of microbial communities between rive and lake habitats. Green circles represent
those microbes significantly enriched in river habitat and red circles represent those microbes significantly enriched in lake habitat, respectively,
whereas the yellow circles represent the taxa with nonsignificant differences between the two types of habitats. Statistics was performed using
log linear discriminant analysis (LDA) with LDA > 3.5 and P < 0.05 after correction by the Benjamini and Hochberg false discovery rate (FDR) test.
The diameters of the circles are proportional to relative abundance
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microbial communities among Lake Bosten catchment
are related to four environmental variables, i.e., TDS,
TSS, WT and total nitrogen (TN) (Fig. 6a; Additional file
8: Table S3). TDS was found to be the most important
factor in structuring the microbial community assem-
blages, explaining 28.4% of the total variations solely.
Principal coordinates of neighbor matrices (PCNM) ana-
lysis showed that 57.7% of the variation in the microbial
communities could be explained by environmental pa-
rameters, linear trend and spatial scale (Fig. 6b). Pure
environmental and pure spatial factors accounted for
13.7 and 5.6% of the microbial community variation, re-
spectively, while 32.0% could be attributed to the inter-
action between environmental and spatial variables,
indicating the strong interactions between them.

Stochastic process on microbial community assembly
To disentangle the relative importance of stochastic
mechanisms from deterministic mechanisms in shaping
the microbial community structure, the stochastic ratio
(SR) was calculated using the null model analysis. Our re-
sult demonstrated that the stochastic processes contrib-
uted to considerable portions of the community variations
(Fig. 6c). The much higher value of SR on community
variation in river habitat (64.1 ± 8.6%) than that in lake
habitat (31.0 ± 11.9%) suggested that stochastic process
could play more important roles in shaping riverine
microbiome.

Co-occurrence networks of microbial sub-communities in
river and lake habitats
Co-occurrence networks of microbial communities in
river and lake habitats were constructed separately to re-
veal the ecological interactions among different micro-
bial species. Based on correlation analysis, 189 nodes

with 460 edges and 115 nodes with 2104 edges were
captured in the networks of river and lake microbial
communities, respectively (Fig. 7; Table 1). The higher
value of average clustering coefficient (avgCC) and
modularity in river and lake networks than those in their
related random networks indicate “small-world” proper-
ties and modular structure of our constructed networks.
It was verified by the value of small-world coefficients
(σ) of the river (3.2) and lake (1.4) networks with σ > 1
indicate “small-world” properties [39].
The average degree (AD) and graph density (GD) in

the lake network were about 7.5 and 12.3 times, respect-
ively, as high as those in river network (Table 1), indicat-
ing more interactions among the species in the lake
network. Moreover, the co-occurrence network in river
habitat was mostly positively structured (96.3%), indicat-
ing ecological mutualistic relationships or cooperation
among the riverine microbiome, while much higher pro-
portion of negative correlations among edges was found
in the lake network (32.7%), highlighting the effect of
competition in lake community assembly.
Most of the nodes in the two networks were associated

to seven dominant phyla, i.e., Proteobacteria, Verrucomi-
crobia, Acidobacteria, Actinobacteria, Bacteroidetes,
Candidatus Saccharibacteria and Planctomycetes (Fig. 7).
Among them, Proteobacteria (29.6%) was the most dom-
inant phylum in the riverine network, whereas Verruco-
microbia (36.5%) was the most dominant phylum in the
lake network. Furthermore, ASVs from the same phyla
were more likely to co-occur. Based on topological roles
analysis of each ASVs, we found that river network had
much stronger clustered topology (modularity). And
modularity analysis revealed that all of the ASVs in the
lake network were peripherals, while 4 nodes (ASVs)
were found to be module hubs and 5 ASVs could be

Fig. 4 Putative function profiles of microbial communities in river and lake habitats. a PCA plots comparing the whole function profiles.
b Functional categories differing significantly between the river and lake habitats
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classified as connectors in the river network (Additional
file 9: Fig. S6). Among the four module hubs, two of
them belonged to Verrucomicrobia, the third hub
belonged to the genus Limnohabitans and the last one
was assigned to Actinobacteria. Among the five connec-
tors, 4 of them were classified as genus Gp6 of Acido-
bacteria, and the other was Luteolibacter yonseiensis,
within Verrucomicrobia phylum.

Discussion
Different microbial community diversities between river
and lake habitats
In this study, we found the microbial α-diversity in the
mainstream of the River Kaidu was much higher than
that in Lake Bosten (Fig. 1). There are several possible
explanations for this result. On the one hand, the high
richness found in the river habitat are likely resulted
from the massive immigration of terrestrial, sediment
and periphyton microbiome [40–42]. It is well recog-
nized that terrestrial soil normally contains highly di-
verse microbes that serves as regional microbial pool for
its connected aquatic ecosystems [42]. This notion is
supported by the fact that all diversity indices were sig-
nificantly and positively correlated to TSS (Additional
file 3: Fig. S3), an indicator of surrounding soil erosion.
Shao et al. [43] found that the soil microbial community
in this alpine grassland were dominated by Thaumarch-
aeota, Chloroflexi, Acidobacteria, Planctomycetes and
Proteobacteria, most of which were also enriched in the
river habitat in this study. In addition, we found the
closest relatives in GenBank of the most abundant ASVs
(i.e., ASV_13 and ASV_5) were mostly isolated from soil,
periphyton, biofilm or sediment (Additional file 10:
Table S4). This indicates a more dynamic coupling be-
tween local river community and the surrounding re-
gional metacommunities than the lake habitat does.
On the other hand, the high environmental and spatial

heterogeneity among different headwater tributaries and
different locations of the main river could attribute differ-
ent niches for diverse microbes inhabiting. This environ-
mental heterogeneity includes gradients of water
temperature (ranged from 4.5 to 17.5 °C), TP (0.064–
1.180mg/L) as well as TN (0.17–2.72mg/L), which was
hardly to be found in the lake habitat (Additional file 11:
Fig. S7). Previous researched have proposed that network
modules (or clusters) could be interpreted as overlapping
niches in which groups of taxa are more densely intercon-
nected than with others [38, 44, 45]. In this study, network
topology analysis revealed that the modularity of the river
microbial network was notably higher than lake network
(Table 1), suggesting more ecological niches in river habi-
tat for diverse microorganisms to perch.
Except for species diversity, we also observed higher

functional diversity in river habitat compared with the
lake habitat (Fig. 5; Additional file 7: Fig. S5). For ex-
ample, significant enrichment of genes associated with
nitrogen metabolism and methanogenesis were found in
the river habitat due to higher abundance of Nitroso-
sphaera and Euryarchaeota in this habitat. This was
consistent with previous results suggesting that small
streams and rivers play crucial roles in denitrification
and nitrogen uptake, as well as export over nitrogen to
downstream lakes [1, 46, 47]. However, it should be

Fig. 5 Spearman’s rank correlations between the Bray–Curtis
similarity of microbial communities and geographical distance in all
samples, river habitat samples and lake habitat samples. Note: n, ρ,
and P refer to the number of comparisons, rank correlations and
statistical significances, respectively
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Fig. 6 Drivers of microbial community composition. a CCA ordination showing the bacterial community composition in relation to significant
local environmental variables and regional geographical factors (P < 0.05). TDS, total dissolved solids; WT, water temperature; TN, total nitrogen;
TSS, total suspended solids. Both the two CCA axes are statistically significant (P < 0.05). b Venn diagram presenting the variation partitioning
results for microbial communities by environmental variables (Env.) and the spatial factors including linear trend and PCNM variables. The fraction
values displayed are computed from adjusted R-squares. c Relative importance of stochastic mechanism on community assembly in river and lake
habitats. The significance differences of the actual communities from those of the related null expectation are indicated as ***P < 0.001 based on
PERMANOVA test

Fig. 7 The correlation-based networks of abundant and frequent ASVs (relative abundance > 0.05% and occurred in > 50% samples) for the rive a
and lake b habitats. The size of each node is proportional to the number of connections (i.e., degree), and the nodes are colored according to
different phyla. Numbers inside parentheses following names of each phylum represent relative proportion of nodes belonging to the phylum.
Red and green edges indicate positive and negative correlations
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noted that the predicted functional profile was limited
by the proportion of robust ASVs which can be anno-
tated by FAPROTAX. In our study, there are about 80%
ASVs could not be assigned to any functional group,
suggesting that massive of unclassified taxa with un-
known functions inhabit at this inland aquatic ecosystem
[3, 35].

Different microbial community assembly mechanisms
between river and lake habitats
One novel finding of this study is that stochastic process
is the main factor controlling the community assembly
in river ecosystem, while deterministic process (such as
environmental filtering and species interaction) domi-
nated in lake ecosystem (Figs. 6 and 7). In riverine habi-
tat, microorganisms showed strong biogeographic
patterns, i.e., distance-decay (Fig. 5), which is evidence
for dispersal limitation. Since waterflow has direction,
microorganisms in upstream tributaries are likely to be
transferred to the mainstream by passive dispersal,
which is evidenced by higher α-diversity in the main-
stream of the River Kaidu compared with upstream
tributaries (Fig. 1a). However, microorganisms in main-
stream of the River Kaidu are hardly to be transferred
back to upstream tributaries, resulting in dispersal limi-
tation. The distance decay of similarity can be caused by
either limit to dispersal or by a decrease in environmen-
tal similarity with distance. High proportion (32%) of the
microbial community variation explained by the inter-
action between environmental and spatial variables (Fig.
6b) highlight the environmental gradients in shaping the
distance decay pattern. Although dispersal can be either
deterministic, stochastic, or both [15, 21], potential
strong dispersal limitation could be largely viewed as
stochastic in river habitat in this study.
Except dispersal limitation, ecological drift may be an-

other important process that contribute the high proportion
of stochastic ratio since low density of microorganism was
typically found in upstream tributaries (mean = 7.7 ± 8.8 ×
105 cells/ml) as well as in mainstream of the River Kaidu
(9.4 ± 6.9 × 105 cells/ml) compared with Lake Bosten

(13.8 ± 3.5 × 105 cells/ml) (Additional file 11: Fig. S7). It is
believed that communities are more susceptible to eco-
logical drift when selection is weak, and the local species
abundance is low [22].
In the lake ecosystem, the relative importance of stochas-

tic process on the microbial community variation was small
(Fig. 6c), indicating that deterministic process was more im-
portant. Local environmental sorting, e.g., salinity, could be
one of the main deterministic processes [20]. Salinity has
been identified as the most important environmental deter-
minant in shaping microbial communities on global scale
[48] and regional or local lakes [9, 49]. In this study, we
found that salinity (i.e., TDS) was the most important envir-
onmental factor accounted for 28.4% of the total commu-
nity variations solely (Fig. 6a; Additional file 8: Table S3).
Salinity may provide a physiological barrier for some fresh-
water microbes and favor certain bacteria to thrive [50].
The PCoA plot (Fig. 1b) showed clear separation of micro-
bial community similarity in Lake Bosten from riverine
habitat as well as low variations within lake habitat (except
the estuary), which consistent with the fact that the open
lake constitutes a far more constant and buffered environ-
ment than river water, and indicate the existence of an au-
tochthonous community uniquely adapted to the
environmental conditions prevailing in this brackish envir-
onment. For instance, among the top 10 ASVs in the brack-
ish Lake Bosten, 9 of them belong to class Spartobacteria
of phylum Verrucomicrobia (Additional file 6: Table S2).
This is consistent with a report that Spartobacteria com-
prise an important component in the brackish surface
water of the Baltic Sea, constituting up to 28.9% of the total
bacterial reads [51]. Although Spartobacteria could be
found in freshwater environment, it seems that members of
Spartobacteria are more adaptable to brackish habitat,
where they are presumably involved in the utilization of
phytoplankton-derived organic matter [52]. This fits the ob-
servation that significant higher concentrations of chloro-
phyll-a (Chl-a) and DOC in the brackish water of Lake
Bosten compared with those in river habitat (Additional file
11: Fig. S7). In addition, the fourth most abundant ASV
(Additional file 6: Table S2) in lake habitat assigned to the

Table 1 Topological properties of the abundant (relative abundance > 0.05%) and frequent ASVs (occurred in > 50% samples) co-
occurrence networks and their identically sized Erdős-Rényi random networks in different habitats (river vs. lake)

Empirical network Random network

N E Modularity avgCC APL ND AD GD σ Modularity avgCC APL

Positive Negative

River 189 443 (96.3%) 17 (3.7%) 0.653 0.376 7.07 17 4.87 0.026 3.2 0.412 0.056 3.33

Lake 115 1417 (67.3%) 687 (32.7%) 0.211 0.549 1.70 3 36.59 0.321 1.4 0.086 0.397 1.69

N: No. of nodes; E: No. of edges; avgCC: Average clustering coefficient; APL: Average path length; ND: network diameter; AD: Average degree; GD: Graph density;
σ: small-word coefficient
σ = (avgCC/avgCCr)/(APL/APLr) and σ > 1 indicates “small-world” properties, i.e., high interconnectivity and high efficiency [39]. Subscript r indicates the properties
of the random network
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freshwater SAR11 (i.e., LD12) had 100% sequence identity
over the 263 bp v4 region of the 16S rRNA gene with the
strain LSUCC0530, which was isolated from Lake Borgne
with a salinity of 2.39 g/L [53]. It could grow at salinities be-
tween 0.36 and 4.7 g/L with the optimal salinity of 1.45 g/L,
which is near the mean salinity of Lake Bosten (Additional
file 11: Fig. S7). LD12 bacterioplankton are characterized as
small cell volumes and are adapted to oligotrophic habitats
with obligate aerobic chemoorganoheterotrophic lifestyle. It
seemed that Lake Bosten could provide proper environ-
ment for bacteria like LD12 to thrive, as reported in previ-
ous studies [3, 35]. In summary, the communities in Lake
Bosten experiencing salinization process during the last 60
years were much more similar due to niche selection im-
posed by salinity. The salinization of Lake Bosten is the re-
sult of both human activity (such as agricultural
reclamation and construction of sluices and pumping sta-
tions to change the flow pattern) and regional climate
warming [35]. This result highlighted the impact of an-
thropogenic activities on lake microbial community via the
increment of lake salinity in arid area.
Except the high selection pressure by the increased

salinity, water residence time (WRT) was expected to be
another important local environmental filter shaping the
microbial community in Lake Bosten. Niño-García et al.
[41] have been shown that bacterial community compos-
ition was predominantly structured by hydrology in sam-
ples with WRT shorter than 10 days. Moreover, lakes
that have WRT > 200 days were characterized by signifi-
cant dissimilarities in bacterial community composition
between the lake water and the inlet [54]. The mean
WRT in Lake Bosten is about 970 d [55]. With the long
WRT in Lake Bosten, the influence of river communities
has impacts only in the river mouth (such as the Site
C01, Fig. 1b) through mass effects with large amount of
inflow events. In other area of Lake Bosten, however,
homogeneous physiochemical environment including
much higher salinity applies similar niche for microor-
ganisms differed from river habitat to harbor.
Prior studies that have noted that when WRT is rela-

tively long, many inlet microbial species disappeared or
persist in very low abundance, and species sorting ap-
pears to be the predominant mechanism shaping the pe-
lagic community within the lake [11, 56]. In line with
this, we found much more interactions and competitions
among organisms (i.e., species sorting) in the lake com-
munity assembly using co-occurrence network analysis
(Fig. 7; Table 1). In addition, predation of microbes by
protists in the pelagic of Lake Bosten supposed to be
more common than that in river habitat since the diver-
sity of microbial eukaryotes in river habitat was much
lower than that in lake habitat [57]. With 26 protists
taxa and 34 rotifers taxa in Lake Bosten [58], severe
competition exclusion and/or predation may partially

explain the low species diversity and functional diversity
in this lake compared with river habitat (Fig. 1; Add-
itional file 7: Fig. S5). On the other hand, under the con-
dition of limited resources in the surface water of Lake
Bosten, biotic interactions (e.g., competition) could
maintain multiple species coexistence via differentiating
the capacity of microbes to finely partition niche axes
(i.e., narrowed niche breadth) with small population
sizes (i.e., increased proportion of rare species) [59]. This
was supported by the fact that much higher proportion
(54%) of rare ASVs was found in lake habitat compared
with river habitat (12%) (Fig. 2). The evidence presented
here supports the hypothesis that species interactions
are extremely important in shaping community assembly
in brackish Lake Bosten.
The SAD within a community reflects resource use by

the species individually which can be conceptualized in
terms of niche or stochastic processes of population dy-
namics [60]. In this study, the shapes of SADs in river
and lake habitats are quite different. Compared with
river habitat, in lake habitat a few species were relatively
more dominant (higher number of sequences) while
many species become proportionally rare. The strong
role of salinity (Fig. 6; Additional file 8: Table S3) and
geographic factors (Fig. 5) implies that niche processes
(e.g., niche division) and stochastic processes (e.g., dis-
tance decay) may leave imprints on the SADs in either
lake or river habitat. However, the statistical Poisson log-
normal, a lognormal model with Poisson-based sampling
error, fitted the data better than both the fits from
niche-based and neutrality-based models (Fig. 2e, f). This
is consistent with Shoemaker et al. [4], who found that
the lognormal had provided the most accurate predic-
tions for microbial SADs. This is in contrast to re-
searches from macroorganisms with overwhelmingly
log-series distribution [61, 62]. Due to the disparity in
sampling scales between microbial and macrobial com-
munities [63], microbial species are generally affected by
bewildering multiplicative processes, such as population
fluctuations, dimensional axes of the environment, and
limited or ‘realized’ niche space by biotic interactions [4,
60]. The fitted Poisson lognormal pattern of SADs may
reflect the simultaneous effects of both deterministic
and stochastic processes on microbial communities.

Conclusions
By means of a cross-catchment survey, our results re-
vealed significant differences in both microbial α-diver-
sity and functional diversity between lake and its
connected riverine ecosystems. Here we showed that
dramatically decline of microbial diversity and functions
related to nitrogen metabolic and methanogenesis oc-
curred during the transition between river and lake habi-
tats. In addition, we found stochastic processes (such as
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distance decay and spatial heterogeneity) dominated
community assembly in riverine habitat, while determin-
istic niche-based processes (such as anthropogenic in-
duced lake salinization and biotic interactions) were the
leading mechanism controlling assembly in lake habitat.
This study is the first attempt to explore the microbial
diversity patterns and the community assembly mecha-
nisms in a river-lake continuum in the arid central Asia.
We propose that deterministic processes, especially sal-
inity filtering and biotic interactions, may overwhelm the
influences of stochastic processes on community assem-
bly in lake ecosystems under the circumstances of a fu-
ture intensified human activities with increased tendency
of lake salinization in arid and semi-arid regions.

Methods
Sampling and contextual environmental variables
Lake Bosten (86°40′–87°26′ E and 41°56′–42°14′ N) was
previously the largest inland freshwater lake in China. It
is located in the lowest area of Yanqi Basin in arid
northwestern China [64]. It has a surface area of 950
km2 (1046 m above sea level), a maximum depth of 16 m
and an average depth of 7 m [35]. The River Kaidu is the
sole perennial river supplied about 85% of average an-
nual water inflow runoff (about 3.5 × 109 m3) into Lake
Bosten. Originated in the snow- and glacier-covered
Tianshan mountains, the River Kaidu has a total length
of 560 km with numerous branches and a catchment
area of 47,900 km2. The lake’s watershed lies in the cen-
ter of the Eurasian continent with an inland desert cli-
mate, in which the mean annual precipitation is 64 mm
and mean annual evaporation is 1881 mm [65]. Due to
anthropogenic activities and climate warming, dramatic
changes in water level and salinity during the last 50
years have led to this freshwater lake evolved to oligosa-
line lake with an average salinity of 1.5 g/L.
Samples were collected from 28 monitoring sites dur-

ing July 16–21, 2014, including 8 sampling sites from
upstream tributaries (A01-A08), 8 sites along the main-
stream of the River Kaidu (B01-B08), and 12 sites in
Lake Bosten (C01-C12) (Additional file 1: Fig. S1). All
sampling sites from upstream tributaries and most sam-
pling sites (B01-B06) from mainstream of the River
Kaidu locate in the Bayinbuluke alpine grassland with an
elevation ranging from 2385m to 2950m and an annual
mean temperature of − 4.0 °C [66].
Surface water (top 50 cm) was collected with a 2 L

water sampler. Subsamples of 300–500ml water for 16S
rRNA gene analysis were filtered on 0.2 μm pore-size
polycarbonate filter (Millipore) using a hand-driven vac-
uum pump in the field. The filters were stored at − 20 °C
in a vehicle-mounted refrigerator during transportation,
and subsequently stored at − 80 °C in the laboratory
until DNA was extracted. The remaining water samples

were preserved at 4 °C and then transported to labora-
tory for immediate chemical analysis.

Physicochemical analysis
Water temperature, pH, electrical conductivity (EC),
total dissolved solids (TDS), salinity, and dissolved oxy-
gen (DO) were determined in situ using a multi-
parameter water quality sonde (YSI 6600 v2, Yellow
Springs Instruments Inc., USA). Concentrations of total
nitrogen (TN), total phosphorus (TP), total suspended
solids (TSS), chlorophyll-a (Chl-a) and dissolved organic
carbon (DOC) were determined in the laboratory ac-
cording to standard methods [55]. The physicochemical
parameters were shown in Additional file 11: Fig. S7.

Flow cytometry of bacterial abundance
To count total bacterial abundance, a subsample aliquot
(10 mL) of each sample was fixed using freshly prepared
formaldehyde with a final concentration of 2% for 1 h at
room temperature and stored in the dark at 4 °C over-
night for the following analysis. An aliquot of 0.5 ml
from each sample was stained with SYBR Green I
(Sigma-Aldrich, UK) diluted using dimethyl sulphoxide
at a final concentration of 1:10000 for 20 min at room
temperature in the dark. An addition of 2.5 ml of 1.0
mm diameter beads (Life Technologies, UK) to each
sample was used as a calibration and counting standard.
Each sample was run for 1 min at a low flow rate (< 1000
events per second) on a FACSJazz flow cytometer
(Becton Dickinson) equipped with 488-nm excitation
laser according to previous protocol [67]. Bacteria
were detected using a combination of side scatter
light (related to cell size) vs green fluorescence (FL1,
530/40 nm, due to SYBR Green staining of nucleic
acids). Samples were measured in triplicate.

DNA extraction and Illumina sequencing
DNA was extracted using FastDNA® Spin Kit for Soil
(MP Biomedicals) according to the manufacturer’s in-
struction. The 16S rRNA genes were amplified by poly-
merase chain reaction (PCR) was performed using the
universal primers U789F (5′-TAGATACCCSSGTA
GTCC-3′) and U1068R (5′-CTGACGRCRGCCATGC-
3′) targeting the V5-V6 region of most bacterial and ar-
chaeal 16S rRNA genes [68, 69]. Based on the Silva data-
base (https://www.arb-silva.de/), the coverages of the
forward and reverse primer for archaea were 96.6 and
99.2%, respectively, while the coverages of both primers
for bacteria was 98.0%.
The PCR amplification was performed using a touch-

down program as described previously [36]. Triplicate
amplified 16S rRNA genes for each sample were pooled
after purification. After quantification of amplicon con-
centration, equimolar amounts of barcoded amplicons
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for each sample were sequenced on an Illumina MiSeq
PE300 platform by Majorbio Bio-pharm Technology Co.
(Shanghai, China).

Data processing, denoise and taxonomy assignment
Paired-end sequencing reads were merged using FLASH
(Fast Length Adjustment of Short reads, v1.2.11) [70].
Adapters and primers were trimmed off all reads using
Cutadapt (v1.9.1) [71]. Low quality reads (total expected
errors > 1) were discarded using USEARCH (v10.0.240)
[72]. Filtered reads were input into VSEARCH (v2.12.0)
to generate all the unique sequences and their abun-
dance (abandon unique sequences with abundance < 10).
Then, denoise amplicon read including chimera filter
were performed using USEARCH’s unoise3 command
[73]. Chimeras were further detected and removed based
on SILVA database (release 123). Finally, representative
amplicon sequence variants (ASVs) were generated using
VSEARCH’s usearch_global command with 97% similar-
ity [74]. The representative ASVs were subsequently an-
notated using the SILVA database to identify the
taxonomy of each ASV. The ASVs affiliated with chloro-
plasts and mitochondria were excluded from down-
stream analysis. The ASVs are similar with traditional
operational taxonomic units (OTUs) except for higher
accuracy.

Microbial diversity and functional annotation
To normalize the sequencing depth of different samples,
we randomly selected a subset of 23,965 reads per sam-
ple based on the sample with the lowest number of se-
quences. This resampled ASVs summary table was used
for subsequent statistical analyses. Then, α- and β-
diversity of the bacterial communities were measured
using the USEARCH pipeline (http://www.drive5.com/
usearch/manual/pipe_diversity.html). Four indices, i.e.,
richness, Chao1 (a nonparametric species richness esti-
mator), Shannon index (a combination of richness and
evenness) and Simpson diversity were calculated, re-
spectively, to measure the α-diversity [75–77]. Statistical
differences of α-diversity indices among upstream tribu-
tary, main channel of the River Kaidu and Lake Bosten
were performed using Kruskal-Wallis test. A comparison
of microbial communities with Bray–Curtis distance in
different sampling types was performed by an adonis()
function in the vegan package using R 3.5.3 (https://
www.r-project.org) and RStudio 1.1.463 platform.
Functional annotation of taxa was performed using the

package FAPROTAX on the normalized ASV table [78,
79]. FAPROTAX is a manually constructed database that
maps prokaryotic taxa (e.g., species or genus) to putative
functions based on available literature on cultured repre-
sentatives, which focuses on marine and lake biogeo-
chemistry. In this study, each taxonomically annotated

OTU was compared against FAPROTAX_1.1 database
(including 7820 annotations and covering 4724 taxa)
automatically in a Linux system.

Comparison of SAD pattern, taxonomy and function
between river and lake habitats
To compare the differences of SADs, taxonomy and
function between river and lake habitats, samples from
upstream tributaries and mainstream of the River Kaidu
were grouped together as river habitat while samples
from Lak Bosten were grouped together as lake habitat.
Then, the BS, GS, Volkov and PLN models were fitted
to the SAD of river and lake data, respectively. To test
their goodness-of-fit, we used the Kolmogorov-Smirnov
(K-S) test and Akaike’s information criterion (AIC). The
model was rejected when K-S test P < 0.05 and the
smaller the AIC value, the more robust the fit [62]. The
analyses were conducted using R platform with the
package RADanalysis, gambin and sads.
Taxonomy profiles from phylum to genus level (summa-

rized from ASVs with > 0.1% relative abundance) between
river and lake habitats were compared using linear dis-
criminate analysis (LDA) effect size (LEfSe) [80]. The pre-
dicted functional profile from FAPROTAX annotation on
the basis of raw ASV tables were compared between river
and lake habitats. It is defined as significant when using
two-sided White’s non-parametric t-test with Benjamini–
Hochberg false discovery rate (FDR) P-value < 0.05 and
LDA > 3.5. The comparisons were visualized on the soft-
ware STAMP v2.1.3 [81].

Environmental and spatial factors associated with
patterns of microbial community
The distance-decay model was fitted with spatial distance
(calculated by geographical coordinates using SoDA pack-
age in R) and microbial community Bray-Curtis similarity
among samples [82]. Mantel tests were carried out using
the vegan package to examine the Spearman’s rank correl-
ation between the geographic distance matrix and the bac-
terial community similarity using Bray-Curtis distance
matrices with 999 permutations.
The roles of spatial factors were estimated by the

method of PCNM [83]. A forward selection procedure
[84] was performed to select significant environmental
variables and linear trend factors. Then, the variation of
the community composition was partitioned between the
selected square root transformed environmental variables
and the extracted PCNM spatial variables, as well as linear
trend factors using a partial redundancy analysis (pRDA)
in the vegan package [85, 86]. This pRDA allows the total
explanations of microbial community variation to be
decomposed into fractions that indicate the relative im-
portance of pure environmental variables, pure spatial var-
iables, spatially structured environmental variation (shared
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fraction) and unexplained variation. Then, a variation par-
titioning approach (VPA) was used to test the relative im-
portance of environmental variables and spatial factors in
structuring microbial communities. Mantel tests were also
performed to calculate the Spearman’s rank correlations
among environmental Euclidean distance matrix, geo-
graphic distance matrix and microbial communities Bray-
Curtis distance matrix with 999 permutations using the
vegan package in R.
CCA was used to explore the significant environmental

variables and PCNM spatial variables that associated with
microbial community compositions because detrended
correspondence analysis (DCA) showed the length of the
first axis > 4 [87]. Before the analysis, ASVs data were log
(y + 1) transformed to reduce the effect of highly abundant
ASVs. Environmental variables that produced significant
correlation (nonparametric) with microbial community
Bray-Curtis similarities were selected as explanatory vari-
ables for subsequent CCA analysis. Such variables were
square root transformed to improve the distributions be-
fore the analysis of forward selection [88]. The significance
of the CCA model was tested using ANOVA with 999
permutations.

Ecological processes govern the microbial community
assembly
The null model analysis using abundance-based β-diver-
sity matrices [22, 27–29] was further performed to assess
the relative importance of deterministic and stochastic
processes driving microbial community assembly using
the R code described by Zhang et al. [26]. In general, the
difference between the observed similarity matrices and
the null model expectation was used to quantitatively esti-
mate the strength of stochastic ratio in shaping microbial
community variation. And the significance of P value was
calculated by comparing the observed F value with those
from 1000 randomized data sets using permutational
multivariate analysis of variance (PERMANOVA).

Network construction and analysis
Microbial interaction is one of the main drivers that
contributes to deterministic process of community as-
sembly. In order to gain more insight into the import-
ance of interspecies interaction on community assembly,
the species co-occurrence patterns of both river and lake
habitats were constructed using network theory [15, 37,
89]. To simplify the dataset (resampled ASVs table),
ASVs with relative abundance > 0.05% in river/lake sam-
ples were selected. Subsequently, those ASVs only de-
tected in more than 50% of the samples were used for
network construction. The network analyses were per-
formed based on the online Molecular Ecological Net-
work Analysis (MENA) pipeline (http://ieg4.rccc.ou.edu/
mena/) using the recommended Pearson correlation

coefficient and a random matrix theory (RMT) modeling
for threshold identification [37]. Modules were detected
by fast greedy modularity optimization [90]. According
to the within-module connectivity (zi) and among-
module connectivity (Pi), the nodes (ASVs) in a network
could be divided into four subcategories, i.e., peripheral
nodes, connectors, module hubs and network hubs [37,
91]. Topological properties of 100 random networks
with equal numbers of nodes and edges of the real net-
works were calculated [92]. Network visualization was
conducted using the interactive platform Gephi 0.9.2.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40793-020-00356-9.

Additional file 1: Fig. S1. Overview map of the River Kaidu catchment
showing the sampling sites in upstream tributaries (A01~A08), River
Kaidu (B01~B08) and Lake Bosten (C01~C12).

Additional file 2: Fig. S2. Rarefaction curves of species richness along
the percentage of normalized reads based on the smallest sample
(23,965 reads) for samples in the upstream tributaries, the Kaidu River and
Lake Bosten. Each vertical bar represents standard error. The curves reach
saturation stage with increasing sequencing depth, indicating that the
population capture most microbial (bacteria and archaea) members from
each sampling type.

Additional file 3: Fig. S3. The Spearman correlations between
microbial α-diversity indices and environmental parameters. Red color
means highly positive correlation and blue color means highly negative
correlation. The numbers in each plot are the correlation coefficient (ρ)
and the significance levels (**P < 0.01; ***P < 0.001). The environmental
parameters include concentrations of total suspended solids (TSS), total
phosphorus (TP), dissolved oxygen (DO), total dissolved solids (TDS),
water temperature (WT), water pH value (pH), dissolved organic carbon
(DOC), total nitrogen (TN) and chlorophyll-a (Chl-a).

Additional file 4: Table S1. The amplicon sequence variants (ASVs)
table for all sample.

Additional file 5: Fig. S4. Taxonomy composition of main microbial
communities in each sampling type at a phylum-level, b class-level
and c genus-level.

Additional file 6: Table S2. The top 10 ASVs in river and lake habitats
and their taxonomic classification.

Additional file 7: Fig. S5. Mean proportions of predicted functional
groups across samples from river habitats (upstream tributaries and
mainstream of the Kaidu River, n = 15) to lake habitats (Lake Bosten, n =
11).

Additional file 8: Table S3. Summary of CCA results using forward
selection procedure on square root transformed environmental variables.

Additional file 9: Fig. S6. Plot showing the distribution of ASVs based
on their topological roles. Each symbol represents an ASV from microbial
communities in river or lake habitat. The topological role of each ASV
was determined according to the scatter plot of within-module connect-
ivity (zi) and among-module connectivity (Pi). According to the zi and Pi
values, the nodes in a network could be divided into the following four
subcategories: (1) peripheral nodes (zi < 2.5, Pi < 0.62), (2) connectors (zi <
2.5, Pi ≥ 0.62), (3) module hubs (zi≥ 2.5, Pi < 0.62), and (4) network hubs
(zi ≥ 2.5, Pi ≥ 0.62).

Additional file 10: Table S4. The top 2 ASVs in the river habitat with
their closest 5 relatives in NCBI GenBank database showing the source of
them.

Additional file 11: Fig. S7. Comparison of principal environmental
parameters in the upstream tributaries, the Kaidu River and Lake Bosten.
Horizontal bars in the box plots indicate median proportional values.
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Lower and upper edges of the boxes represent the approximate 1st and
3rd quartiles, respectively. The upper and lower whiskers extend to data
no more than 1.5 times the interquartile range from the upper edge and
lower edge of the box, respectively. Kruskal-Wallis test was performed to
examine differences among the three sampling types with P-value pre-
sented at the top of each panel. WT, water temperature; EC, electrical
conductivity; TDS, total dissolved solids; DO, dissolved oxygen; DOC, dis-
solved organic carbon; TN, total nitrogen; TP, total phosphorus; Chl-a,
chlorophyll-a; TSS, total suspended solids; BA, bacterial abundance.
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