
EXTENDED GENOME REPORT Open Access

The draft genome sequence of “Nitrospira
lenta” strain BS10, a nitrite oxidizing
bacterium isolated from activated sludge
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Abstract

The genus Nitrospira is considered to be the most widespread and abundant group of nitrite-oxidizing bacteria in
many natural and man-made ecosystems. However, the ecophysiological versatility within this phylogenetic group
remains highly understudied, mainly due to the lack of pure cultures and genomic data. To further expand our
understanding of this biotechnologically important genus, we analyzed the high quality draft genome of “Nitrospira
lenta” strain BS10, a sublineage II Nitrospira that was isolated from a municipal wastewater treatment plant in Hamburg,
Germany. The genome of “N. lenta” has a size of 3,756,190 bp and contains 3968 genomic objects, of which 3907 are
predicted protein-coding sequences. Thorough genome annotation allowed the reconstruction of the “N. lenta” core
metabolism for energy conservation and carbon fixation. Comparative analyses indicated that most metabolic features
are shared with N. moscoviensis and “N. defluvii”, despite their ecological niche differentiation and phylogenetic
distance. In conclusion, the genome of “N. lenta” provides important insights into the genomic diversity of the
genus Nitrospira and provides a foundation for future comparative genomic studies that will generate a better
understanding of the nitrification process.
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Introduction
Nitrification, the two-step oxidation of ammonia to ni-
trate via nitrite, is a key process of the biogeochemical
nitrogen cycle. Nitrite-oxidizing bacteria (NOB) are che-
molithoautotrophic microorganisms that catalyze the
oxidation of nitrite to nitrate, the second step of the ni-
trification process. For decades NOB where considered
as metabolically restricted microorganisms solely associ-
ated with nitrification. However, experimental findings
contradict this opinion, indicating a versatile ecophysiol-
ogy of many NOB [1–4] and highlighting their import-
ant role in and possibly outside of the nitrogen cycle [5].
The genus Nitrospira is the most diverse known NOB

genus and is divided in six different phylogenetic subli-
neages [6–8]. Members of the genus are ubiquitously
present in different natural and engineered ecosystems [5,
9–11]. Despite their high abundance, only eleven

representative species, distributed within the six Nitros-
pira sublineages, have been obtained in enrichment or
pure culture so far [7, 8, 12–15]. Sublineage I and II
Nitrospira are considered to be the dominant NOB in
most wastewater treatment plants (WWTPs), playing a
key role in the efficient removal of nitrogen via nitrifica-
tion [6, 16]. Besides their widespread distribution and cru-
cial role, the physiology of Nitrospira species is highly
understudied, mainly due to the lack of pure cultures and
genomic data [3, 17, 18]. The recent identification of
complete ammonia-oxidizing (comammox) Nitrospira
[15, 19] not only redefined the nitrification process, but
also further indicated the importance of the genus and
emphasized our poor understanding of the metabolic ver-
satility present within this phylogenetic group.
“Nitrospira lenta” strain BS10 was isolated from a muni-

cipal WWTP [13] and it is the fourth isolate belonging to
the sublineage II Nitrospira, besides N. moscoviensis [20],
“N. japonica” [14], and the comammox organism “N. ino-
pinata” [12]. Thus, insights into the “N. lenta” genome
will shed light onto the genomic flexibility and metabolic
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diversity of the genus Nitrospira and aid further compara-
tive studies between Nitrospira species.

Organism information
Classification and features
“N. lenta” strain BS10 is a Gram negative, aerobic NOB
isolated from activated sludge of a municipal WWTP in
Hamburg, Germany (basic properties are summarized in
Table 1) [13]. Based on 16S rRNA gene-based phylogen-
tic analysis, “N. lenta” is affiliated with Nitrospira subli-
neage II but is only distantly related to the sublineage II
type strain, N. moscoviensis (Fig. 1).

A pure culture of “N. lenta” was obtained after applying
a combination of standard isolation methods (density gra-
dient centrifugation and serial dilutions) with an optical
tweezer system for the sorting of single cells [13]. “N.
lenta” grows mainly planktonic and forms helical-shaped
cells. Cells are 1.0–2.3 μm in length and 0.2–0.3 μm in
diameter (Table 1, Fig. 2). As shown by Nowka et al. [13],
“N. lenta” is able to grow at lower temperatures (10 °C)
than N. moscoviensis. Interestingly, while “N. lenta” is not
able to tolerate high concentrations of nitrite, it exhibits a
lower affinity for nitrite compared to N. moscoviensis and
“N. defluvii”, which indicates a clear niche differentiation
among these Nitrospira species [21].

Genome sequencing information
Genome project history
“N. lenta” was selected for whole genome sequencing on
the basis of its relevance within the nitrogen cycle as well
as due to the general lack of genomic information for
Nitrospira species. Furthermore, because “N. lenta” was
isolated from activated sludge, its genome was expected to
yield insights that allow optimization and stabilization of
the nitrification process in wastewater treatment. The
draft genome sequence of “N. lenta” BS10 was completed
on 27/07/2013. The high-quality draft genome is available
in the European Nucleotide Archive (ENA) under study
accession number PRJEB26290. An overview of the gen-
ome sequencing project is given in Table 2.

Growth conditions and genomic DNA extraction
“N. lenta” was cultivated as described by Nowka et al. [13]
in mineral salt medium amended with 0.02 g L− 1 NaNO2

−

as energy source. The cultures were incubated in the dark
at 28 °C, with moderate stirring (100–300 rpm). The gen-
omic DNA was extracted following the hexadecyltri-
methylammoniumbromide (CTAB) protocol provided by
the DOE Joint Genome Institute (JGI, https://jgi.doe.gov/
user-program-info/pmo-overview/protocols-sample-prepa
ration-information/) as described elsewhere [22].

Genome sequencing and assembly
High-throughput sequencing was performed at GATC
Biotech (Constance, Germany) using Roche GS FLX tech-
nology. The final draft genome of “N. lenta” was obtained
using the GS De Novo Assembler (Newbler) and com-
prised 3.8Mb on 22 contigs. Genome completeness was
evaluated with CheckM [23]. Similarly to the complete ge-
nomes of “N. defluvii” (98% completeness, 2.3% contamin-
ation) and N. moscoviensis (96% completeness, 6.6%
contamination), the “N. lenta” genome was estimated to
be 96% complete with 3.2% contamination.

Table 1 Classification and general features of “Nitrospira lenta”
strain BS10 [34]

MIGS ID Property Term Evidence
codea

Classification Domain Bacteria TAS [35]

Phylum Nitrospirae TAS [36]

Class “Nitrospira” TAS [36]

Order “Nitrospirales” TAS [36]

Family “Nitrospiraceae” TAS [36]

Genus Nitrospira TAS [32]

Species Nitrospira lenta TAS [13]

Strain: BS10 TAS [13]

Gram stain Negative TAS [13]

Cell shape Spiral-shaped rods TAS [13]

Motility Non-motileb TAS [13]

Sporulation Not reported NAS

Temperature range 10–32 °C TAS [13]

Optimum
temperature

28 °C TAS [13]

pH range; Optimum 7.4–8.0; 7.4–7.6 TAS [13]

Carbon source Carbon dioxide TAS [13]

MIGS-6 Habitat Wastewater treatment plant TAS [13]

MIGS-6.3 Salinity 0,5% w/v TAS [13]

MIGS-22 Oxygen requirement Aerobic TAS [13]

MIGS-15 Biotic relationship Free-living TAS [13]

MIGS-14 Pathogenicity Non-pathogen NAS

MIGS-4 Geographic location Germany/Hamburg TAS [13]

MIGS-5 Sample collection 12/12/2006 TAS [13]

MIGS-4.1 Latitude 53° 31′ 8″ N TAS [13]

MIGS-4.2 Longitude 9° 54′ 53″E TAS [13]

MIGS-4.4 Altitude – NAS
aEvidence codes – IDA Inferred from Direct Assay, TAS Traceable Author
Statement (i.e., a direct report exists in the literature), NAS Non-traceable
Author Statement (i.e., not directly observed for the living, isolated sample,
but based on a generally accepted property for the species, or anecdotal
evidence). These evidence codes are from the Gene Ontology project [37]
bGenes encoding for a flagellum were identified in “N. lenta” BS10 genome
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Fig. 1 Phylogenetic analysis of selected representatives from the genus Nitrospira. A 16S rRNA gene-based maximum likelihood tree is shown.
Sequences of cultured representatives are printed in bold, “N. lenta” in red. The tree was constructed using sequences ≥1165 bp and a 50%
conservation filter, resulting in 1463 valid alignment positions. Leptospirillum ferriphilum (AF356829) and L. ferrooxidans (X86776) were used as
outgroup, which is indicated by the arrow. Scale bar indicates 1% estimated sequence divergence

Fig. 2 Electron micrographs of “N. lenta” strain BS10. The cells, in accordance to most of the bacteria belonging to the genus Nitrospira, feature a
characteristic spiral shape and an enlarged periplasm. The individual cell components are indicated. OM, outer membrane; P, periplasm; CM,
cytoplasmic membrane; Cyt, cytoplasm
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Genome annotation
The draft genome of “N. lenta” was annotated using the
MicroScope platform [24] as described in detail else-
where [17]. The automatic annotation was manually
checked and curated using the MicroScope Web inter-
face MaGe [25]. The genomic features of “N. lenta” were
compared to N. moscoviensis and “N. defluvii”, the type
strains of the Nitrospira sublineages II and I, respect-
ively, using the OrthoVenn web service [26] for the
identification and comparison of orthologous gene
groups. Sequence similarities were calculated using an
E-value of 1e-05. An inflation value of 1.5 was applied to
generate the orthologous clusters.

Genome properties
The “N. lenta” draft genome consists of 22 contigs and
has a total size of 3,756,190 bp with an overall G + C

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality High quality draft

MIGS-28 Libraries used 1

MIGS 29 Sequencing platforms Roche GS FLX

MIGS 31.2 Fold coverage 40

MIGS 30 Assemblers GS De Novo Assembler

MIGS 32 Gene calling method AMIGene [24]

Locus Tag NITLEN

GenBank ID OUNR00000000.1

GenBankDate of Release 4 June 2018

GOLD ID –

BioProject PRJEB26290

MIGS 13 Source Material Identifier BS10

Project relevance Microbiology, Biotechnology

Fig. 3 Circular representation of the “N. lenta” genome. From inside out the circles display: (1) G + C content (red < 50%, green > 50%), (2) CDS
on reverse strand, (3) CDS on forward strand, (4) contig organization. The tick marks correspond to 20 kbp. CDS colors indicate COG classification
(blue, cellular processes and signaling; green, information storage and processing; red, metabolism, grey; poorly characterized). Contigs are ordered by
size, and their arrangement in the figure may not reflect the positions of the respective regions on the chromosome. The graphical circular map of
“N. lenta” chromosome was generated using the CIRCOS software [33]
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content of 57.9% (Fig. 3, Table 3). From a total of 3968
predicted genes, 3907 (98.5%) and 61 (1.5%) are protein
and RNA coding sequences, respectively. The genome en-
codes for 1 complete rRNA operon and 46 tRNAs, with 1
to 5 copies for each tRNA type. Moreover, 66.8% of the
predicted genes were assigned into to Clusters of Ortholo-
gous Groups (COG) functional categories (Table 4).

Insights from the genome sequence
Nitrospira species belonging to sublineages I and II are
the most abundant NOB in many environments and play
a key role in N-cycling in engineered ecosystems [6, 10].
Recent experimental data indicates a clear niche differ-
entiation between sublineage I and II Nitrospira [21, 27].
More specifically, “N. lenta”, like other members of sub-
lineage II, exhibits a lower maximum activity [21, 27]
and could be outcompeted by sublineage I Nitrospira at
higher nitrite concentrations [28]. Despite their ecophys-
iological differences, sublineage I and II Nitrospira ex-
hibit substantial genomic similarities. More specifically,
“N. lenta” shares a core genome including 2223 ortholo-
gous protein clusters with N. moscoviensis and “N. deflu-
vii”. This corresponds to 67.3% of the pan-genome of
the Nitrospira species included in this analysis (Fig. 4).
Moreover, “N. lenta” features the lowest number of
unique genes (1100, of which 51 are grouped in 18 par-
alogous protein clusters). Most of these unique genes
lack any function prediction (Fig. 4).

In accordance with its ability to oxidize nitrite to ni-
trate [13], “N. lenta” encodes all proteins required for ni-
trite oxidation (Fig. 5), for which the key enzyme is a
membrane-associated nitrite oxidoreductase (NXR) [29].
This protein complex belongs to the type II dimethyl
sulfoxide reductase family of molybdopterin-binding en-
zymes and consists of three subunits [17, 29]. The “N.
lenta” genome contains two paralogous copies of nxrA
and nxrB, encoding the NXR α and β subunits, respect-
ively, and two copies of nxrC for the candidate γ sub-
unit. Like all Nitrospira genomes analyzed to date, the
“N. lenta” genome contains nirK, encoding the
copper-dependent NO-forming nitrite reductase. While
the function of NirK in Nitrospira is still unclear, a role
in dissimilatory nitrite reduction is unlikely as no other
genes involved in denitrification were identified in “N.
lenta” or any other Nitrospira. One cannot exclude the
possibility that NO plays a regulatory role in Nitrospira,
for example in the regulation of forward versus reverse

Table 3 Genome statistics

Attribute Value

Genome size (bp) 3,756,190

DNA coding (bp) 3,487,097

DNA G + C (%) 57.9

DNA scaffolds 22

Total genes 3968

Protein coding genes 3907

RNA genes 61

rRNA genes 3

tRNA genes 46

Pseudo genes 0

Genes in internal clusters –

Genes with function prediction 1990

Genes assigned to COGs 2609

Genes with Pfam domains 3868

Genes with signal peptidesa 196

Genes with transmembrane helices 965

CRISPR repeats 0
aOnly signal peptides with a prediction probability greater 70% were taken
into consideration

Table 4 Number of genes associated with general COG functional
category prediction

Code Value %agea Description

J 163 4.17 Translation, ribosomal structure and biogenesis

A 0 0 RNA processing and modification

K 148 3.79 Transcription

L 142 3.64 Replication, recombination and repair

B 1 0.03 Chromatin structure and dynamics

D 48 1.23 Cell cycle control, Cell division, chromosome
partitioning

V 44 1.13 Defense mechanisms

T 256 6.55 Signal transduction mechanisms

M 303 7.76 Cell wall/membrane biogenesis

N 114 2.92 Cell motility

U 119 3.05 Intracellular trafficking and secretion

O 151 3.87 Posttranslational modification, protein turnover,
chaperones

C 205 5.25 Energy production and conversion

G 133 3.40 Carbohydrate transport and metabolism

E 198 5.07 Amino acid transport and metabolism

F 59 1.51 Nucleotide transport and metabolism

H 136 3.48 Coenzyme transport and metabolism

I 76 1.95 Lipid transport and metabolism

P 156 3.99 Inorganic ion transport and metabolism

Q 77 1.97 Secondary metabolites biosynthesis, transport
and catabolism

R 389 9.96 General function prediction only

S 221 5.66 Function unknown

– 1298 33.22 Not in COGs
aThe total is based on the total number of protein coding genes in the genome
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electron flow as proposed for Nitrobacter [30]. More-
over, “N. lenta” exhibits the genetic capacity for nitrogen
assimilation from nitrite as its genome features nirA en-
coding the ferredoxin-dependent nitrite reductase. Inter-
estingly, NirA is conserved in “N. defluvii”, but not the
other genome-sequenced sublineage II Nitrospira, which
either encode an octaheme nitrite reductase [3, 18], or, in
the case of the comammox Nitrospira, lack assimilatory
nitrite reduction pathways [15, 19, 31]. Interestingly, the
“N. lenta” BS10 genome also features an ure operon en-
coding a functional urease (UreC), as well as a complete
gene set (urtABCDE) for a high affinity urea ABC trans-
porter. This implies that “N. lenta” is able to hydrolyse
urea to ammonium and CO2, facilitating nitrogen and car-
bon assimilation from urea and reciprocal feeding be-
tween “N. lenta” and urease-negative ammonia-oxidizing
bacteria [3, 4]. The “N. lenta” urease is closely related to
the enzyme of N. moscoviensis, but significantly differs
from known ureases of ammonia-oxidizing bacteria [3].
“N. lenta” conserves energy by nitrite oxidation with

oxygen as terminal electron acceptor. During nitrite
oxidation catalyzed by NXR, two electrons are shuttled
(putatively via cytochrome c) towards a putative novel
bd-like terminal oxidase [17]. The proton motive force
established through active proton pumping by this novel
complex IV and/or the release of scalar protons during ni-
trite oxidation drives ATP synthesis by a FOF1-type
ATPase (complex V). The other respiratory complexes

(complexes I to III) will not contribute to energy conser-
vation during lithoautotrophic growth on nitrite, but will
operate in reverse to provide reducing equivalents for car-
bon fixation [17]. Moreover, the complete gene repertoire
for the oxidative and reductive tricarboxylic acid (TCA)
cycle is present in “N. lenta” for pyruvate oxidation via
acetyl-CoA and CO2 fixation, respectively. Moreover, the
complete glycolysis/gluconeogenesis and pentose phos-
phate pathways were identified. The observed presence of
glycolysis and the oxidative TCA cycle might indicate that
“N. lenta” can benefit from a mixotrophic lifestyle in the
presence of organic carbon, as has been reported for other
Nitrospira representatives [6, 16, 32].
Finally, the “N. lenta” genome contains various defense

mechanisms against heavy metals, antibiotics, and the
antibacterial agent acriflavine. “N. lenta” encodes a super-
oxide dismutase for defense mechanisms against oxidative
stress, as well as several bacterioferritins, which can par-
ticipate in oxidative stress resistance mechanisms [17].

Conclusions
Together with N. moscoviensis and “N. japonica”, “N.
lenta” represents only the third cultured species of canon-
ical nitrite-oxidizing Nitrospira from sublineage II. In this
study, the genome of “N. lenta” was analyzed, demonstrat-
ing that “N. lenta” shares a significant amount of genomic
features with other representatives of the genus. However,

A B

Fig. 4 Genome comparison of “N. lenta” with representatives of Nitrospira sublineages I and II. (a) Total number of inferred orthologous protein
clusters for each species. (b) Venn diagram depicting the distribution of orthologous clusters among the genomes of “N. lenta”, “N. defluvii” and
N. moscoviensis. The numbers indicate orthologous protein clusters; numbers in brackets depict the unique, unclustered proteins of each genome
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physiological differences observed by Nowka et al. regard-
ing growth conditions and nitrite affinities [13, 21] clearly
suggest a niche differentiation between different species.
The “N. lenta” genome will facilitate a better understand-
ing of the metabolic versatility of the genus Nitrospira and
will be useful for future comparative studies, especially
those with a focus on species obtained from engineered
systems.

Abbreviations
NOB: Nitrite-oxidizing bacteria; NXR: Nitrite oxidoreductase; WWTP: Wastewater
treatment plant
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