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High-quality draft genome sequence of
Effusibacillus lacus strain skLN1T, facultative
anaerobic spore-former isolated from
freshwater lake sediment
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Abstract

Effusibacillus lacus strain skLN1T is the type strain of the type species in the genus Effusibacillus which is the one of
the genera in the family Alicyclobacillaceae within the phylum Firmicutes. Effusibacillus lacus strain skLN1T is a Gram-
positive, spore-forming thermophilic neutrophile isolated from freshwater lake sediment. Here, we present the draft
genome sequence of strain skLN1T, which consists of 3,902,380 bp with a G + C content of 50.38%.
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Background
The family Alicyclobacillaceae consists of four genera;
Alicyclobacillus, Kyrpidia, Tumebacillus and Effusibacillus.
Alicyclobacillus spp. are known as the significant causative
microorganisms of fruit juice spoilage [1, 2] Kyrpidia
tusciae, a sole characterized species of the genus Kyrpidia
is a thermoacidophile which grows best under autotrophic
conditions [3, 4]. Members of the genus Tumebacillus are
mesoneutrophile which are derived from various environ-
ments, such as the Arctic permafrost, wastewater and and
soil [5–7]. Genus Effusibacillus was established in this
family together with the reclassification of Alicyclobacillus
pohliae as Effusibacillus pohliae and Alicyclobacillus
consociatus as Effusibacillus consociatus [8]. Effusibacillus
lacus strain skLN1T is a facultative anaerobic, Gram-
positive bacterium isolated from freshwater lake sediment.
Here, we descibe draft genome sequence of the type strain
of this genus, Effusibacillus lacus strain skLN1T. In this
study, we summarize the features of E. lacus strain
skLN1T and show an overview of draft genome sequence
and annotation of this strain.

Organism information
Classification and features
E. lacus strain skLN1T was isolated from sediments of a
freshwater lake, Lake Yamanashi, Japan [8]. Cell wall struc-
ture of this strain is Gram-positive type. Cells of this strain
are spore-forming rods varied from 5 to 100 μm in length
(Fig. 1, Table 1). The major cellualr fatty acids of this strain
are iso-C 14:0, iso-C 15:0 and iso-C 16:0. Respiratory qui-
nones of this strain are MK-7 (99.5%) and MK-8 (0.5%).
The cell-wall peptidoglycan of this strain consists of meso-
diaminopimelic acid, alanine and glutamic acid, indicating
the presence of A1γ-type polymer. This bacterium is facul-
tative anaerobe and is capable of respiration and fermenta-
tion. Sugars, organic acids, peptides and amino acids are
used for fermentative growth of this strain. Strain skLN1T

reduce nitrate to nitrite under anaerobic conditions in the
presence of lactate. This strain cannot grow lithoautotro-
phically with elemental sulfur or thiosulfate under oxic/an-
oxic conditions in the presence nitrate.
The phylogenetic position of E. lacus strain skLN1T

among the members of the family Alicyclobacillaceae is
shown in the phylogenetic tree based on the 16S rRNA
gene sequence (Fig. 2). Strain skLN1T, E. consociatus and
E. pohliae are classified into an independent cluster in
the family Alicyclobacillaceae.
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Genome sequencing information
Genome project history
E. lacus strain skLN1T was selected for genome sequen-
cing on the basis of its 16S rRNA gene-based phylogenetic
position in the family Alicyclobacillaceae (Fig. 2). Table 2
shows a summary of the genome sequencing project
information and its association with MIGS version 2.0
compliance [9]. The genome consists of 127 contigs,
which has been deposited at DDBJ/EMBL/GenBank under
accession number BDUF01000000.

Growth conditions and genomic DNA preparation
E. lacus strain skLN1T (DSM 27172) was grown aerobically
on TSB liquid medium (Daigo) at 50 °C without shaking.
Genomic DNA was extracted from collected cells using
Wizard® genomic DNA purification kit (Promega).

Genome sequencing and assembly
The genome sequence of strain skLN1T was determined
using paired-end Illumina sequencing at Hokkaido
System Science Co., Ltd. (Japan). The 11,205,386 reads
were generated from a library with 100 bp inserts. After
trimming of the reads, a total of 11,009,340 high-quality
filtered paired end reads with a hash length of 95 bp
were obtained. Reads were assembled de novo using
Velvet version 1.2.08 into 127 scaffolds.

Genome annotation
vhThe genome sequence of strain skLN1T was automatic-
ally annotated and analyzed through the MiGAP pipeline
[10]. In this pipeline, RNAmmer [11] and tRNAscan-SE
[12] were used to identify rRNA and tRNA genes,
respectively. MetaGene Annotator [13] was used for
prediction of open reading frames likely to encode pro-
teins (coding sequences), and functional annotation was
performed based on reference databases, including

Reference Sequence, TrEMBL, and Clusters of Ortholo-
gous Groups. Manual annotation was performed using
IMC-GE software (In Silico Biology; Yokohama, Japan).
Putative CDSs possessing BLASTP matches with more
than 70% coverage, 35% identity and E-values less than
1 × e−5 were considered potentially functional genes. The
CDSs were annotated as hypothetical proteins when these

Table 1 Classification and general features of Effusibacillus lacus
strain skLN1T according to MIGS recommendations

MIGS ID Property Term Evidence
codea

Classification Domain Bacteria TAS [9]

Phylum Firmicutes TAS [18,
19]

Class Bacilli TAS [20]

Order Bacillaceae TAS [21,
22]

Family Alicyclobacillales TAS [3,
23]

Genus Effusibacillus TAS [8]

Species Effusibacillus lacus TAS [8]

Type strain: skLN1T

(BDUF00000000)

Gram stain Variable TAS [8]

Cell shape Rod TAS [8]

Motility Motile TAS [8]

Sporulation Spore-forming TAS [8]

Temperature
range

28–60 °C TAS [8]

Optimum
temperature

50–52 °C TAS [8]

pH range;
Optimum

7.0–8.5; 7.25–7.5 TAS [8]

Carbon source Organic acids, sugars,
peptones, amino acids

TAS [8]

MIGS-6 Habitat freshwater lake sediment TAS [8]

MIGS-6.3 Salinity 0% NaCl (w/v) TAS [8]

MIGS-22 Oxygen
requirement

Facultatively anaerobic TAS [8]

MIGS-15 Biotic
relationship

Free-living NAS

MIGS-14 Pathogenicity None NAS

MIGS-4 Geographic
location

Yamanashi, Japan TAS [8]

MIGS-5 Sample
collection

March 2009 NAS

MIGS-4.1
MIGS-4.2

Latitude-
Longitude

not reported NAS

MIGS-4.4 Altitude not reported NAS
aEvidence codes - TAS Traceable Author Statement (i.e., a direct report exists in
the literature), NAS Non-traceable Author Statement (i.e., not directly observed
for the living, isolated sample, but based on a generally accepted property for
the species, or anecdotal evidence). NA not avairable

Fig. 1 Photomicrograph of cells of Effusibacillus lacus strain skLN1T.
Cells were grown on aerobic R2A liquid medium at 50 °C for 1 day
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standard values were not satisfied. Transcription start sites
of predicted proteins were corrected based on multiple
sequence alignments. The protein-coding genes in the
genome were also subjected to analysis on WebMGA [14]
for the COGs and Protein family annotations.

Transmembrane helices and signal peptides were pre-
dicted by using Phobius [15]. CRISPR loci were
distinguished using the CRISPR Recognition Tool
[16]. General features of Effusibacillus lacus strain
skLN1T and the MIxS mandatory information were
show in Table 1.

Genome properties
The total genome of E. lacus strain skLN1T was
3,902,380 bp in size with a GC content of 50.38% (Table 3).
It was predicted to contain 3733 genes including 3683
protein-coding genes and 50 RNA genes (for tRNA).
Approximately 77.5% of the predicted genes were assigned
to COG functional categories. The distribution of genes
into COGs functional categories is presented in Table 4.

Insights from the genome sequence
E. lacus strain skLN1T possesses genes of key enzymes
for dissimilatory nitrate reduction, i.e. napA (locus
tag: EFBL_1421), narGHJI (EFBL_3070–3073), nirK
(EFBL_0113), norB (EFBL_3053), nrfA (EFBL_2499)
and related genes. Both genes for membrane-bound
and periplasmic nitrate reductases (narG and napA)

Fig. 2 Phylogenetic tree showing the relationship of Effusibacillus lacus strain skLN1T and related representatives. The maximum-likelihood tree was
constructed with MEGA version 7.0.20 [24] based on ClustalX version 2.1 [25] aligned sequences of 16S rRNA gene. Bootstrap values (percentages of
1000 replications) of ≥50% are shown at nodes

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality High-quality draft

MIGS-28 Libraries used TruSeq Nano DNA library prep kit

MIGS 29 Sequencing platforms Illumina Hiseq paired-end

MIGS 31.2 Fold coverage 282×

MIGS-30 Assemblers Velvet version 1.2.08

MIGS 32 Gene calling method MetaGene

Locus Tag EFBL

Genbank ID BDUF00000000

Genbank Date of Release September 13, 2017

GOLD ID NA

BIOPROJECT PRJDB5819

MIGS 13 Source Material Identifier SAMD00081395, DSM 27172

Project relevance Ecology and evolution
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were identified in the genome. A protein coded in the
61,298–63,379 bp region of contig095 showed high
amino-acid sequence similarity (≤ 74%) to nitrous-
oxide reductase (NosZ), although the region was not
annotated as nosZ gene because of the internal
assembly gaps. Genome of E. lacus strain skLN1T

contains the genes for complete denitrification to N2

gas (nirK, norB and nosZ) and dissimilatory ammoni-
fication (nrfA), although end product of nitrate reduc-
tion identified in the previous study was nitrite [8].
The reduction of nitrate to nitrite was reported in
several species in the family Alicylobacillaceae, but
denitrifying organisms have not been reported in this
family. Genetic components involved in dissimilatory
nitrate reduction were not found in the genome of
Effucibacillus pohliae strain DSM 22757T. Kyrpidia
tusciae DSM 2912T possesses norB gene, but genes
for the other denitrification enzymes were not found
in the genome of this strain [17]. Additionally, genes
for dissimilatory sulfur oxidation were not identified
in the genome of E. lacus strain skLN1T, although
this organism was isolated from a sulfur-oxidizing
enrichment culture [8].

Conclusions
This study contributed to the knowledge of genome
sequences of the genus Effusibacillus within the
family Alicyclobacillaceae. The genome of E. lacus
strain skLN1T consists of 3683 protein-coding genes
and 50 RNA genes. Genes involved in dissimilatory
nitrate reduction were identified in the genome of
this organism.

Abbreviations
CRISPR: Clustered regularly interspaced short palindromic repeat;
MiGAP: Microbial genome annotation pipeline; nap: Periplasmic nitrate
reductase; nar: Respiratory nitrate reductase; nir: Nitrite reductase; nor: Nitric
oxide reductase; nos: Nitrous oxide reductase; nrf: Ammonia-forming
cytochrome c nitrite reductase subunit c552

Acknowledgements
This study was supported by a grant-in-aid for Research Fellow of Japan
Society for the Promotion Science to MW and JSPS KAKENHI Grant Number
22370005 to MF.

Authors’ contributions
MF and HK designed and supervised the study. MW characterized the strain.
RT and MW carried out all the bioinformatics analysis. MW and HK drafted
the manuscript. All authors discussed the data and read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Table 4 Number of genes associated with general COG
functional categories

Code count %age description

J 165 4.42 Translation, ribosomal structure and biogenesis

A 0 0.00 RNA processing and modification

K 243 6.51 Transcription

L 146 3.91 Replication, recombination and repair

B 1 0.03 Chromatin structure and dynamics

D 42 1.13 Cell cycle control, cell division, chromosome
partitioning

V 30 0.80 Defense mechanisms

T 194 5.20 Signal transduction mechanisms

M 178 4.77 Cell wall/membrane/envelope biogenesis

N 76 2.04 Cell motility

U 69 1.85 Intracellular trafficking, secretion, and vesicular
transport

O 125 3.35 Posttranslational modification, protein turnover,
chaperones

C 241 6.46 Energy production and conversion

G 176 4.71 Carbohydrate transport and metabolism

E 341 9.13 Amino acid transport and metabolism

F 74 1.98 Nucleotide transport and metabolism

H 165 4.42 Coenzyme transport and metabolism

I 153 4.10 Lipid transport and metabolism

P 177 4.74 Inorganic ion transport and metabolism

Q 83 2.22 Secondary metabolites biosynthesis, transport and
catabolism

R 402 10.77 General function prediction only

S 271 7.26 Function unknown

– 840 22.50 Not in COGs

Table 3 Genome statistics

Attribute Value % of Total

Genome size (bp) 3,902,380 100

DNA coding (bp) 3,237,729 82.97

DNA G + C (bp) 1,966,019 50.38

DNA scaffolds 127 –

Total genes 3733 100

Protein coding genes 3683 98.66

RNA genes 50 1.34

Pseudo genes NA NA

Genes in internal clusters NA NA

Genes with function prediction 2588 69.33

Genes assigned to COGs 2893 77.50

Genes with Pfam domains 3111 83.34

Genes with signal peptides 434 11.63

Genes with transmembrane helices 799 21.40

CRISPR repeats 2 –

NA not avairable
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