
SHORT GENOME REPORT Open Access

Genome sequence and overview of
Oligoflexus tunisiensis Shr3T in the eighth
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Abstract

Oligoflexus tunisiensis Shr3T is the first strain described in the newest (eighth) class Oligoflexia of the phylum
Proteobacteria. This strain was isolated from the 0.2-μm filtrate of a suspension of sand gravels collected in the
Sahara Desert in the Republic of Tunisia. The genome of O. tunisiensis Shr3T is 7,569,109 bp long and consists of
one scaffold with a 54.3% G + C content. A total of 6,463 genes were predicted, comprising 6,406 protein-coding
and 57 RNA genes. Genome sequence analysis suggested that strain Shr3T had multiple terminal oxidases for
aerobic respiration and various transporters, including the resistance-nodulation-cell division-type efflux pumps.
Additionally, gene sequences related to the incomplete denitrification pathway lacking the final step to reduce
nitrous oxide (N2O) to nitrogen gas (N2) were found in the O. tunisiensis Shr3T genome. The results presented
herein provide insight into the metabolic versatility and N2O-producing activity of Oligoflexus species.
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Introductions
The phylum Proteobacteria traditionally comprises five
classes of Alphaproteobacteria, Betaproteobacteria,
Gammaproteobacteria, Deltaproteobacteria and Epsilon-
proteobacteria [1, 2], with two additional classes ‘Zeta-
proteobacteria’ and Acidithiobacillia proposed by
Emerson et al. [3] and Williams and Kelly [4], respect-
ively. Proteobacteria hosts the greatest number of iso-
lates and sequenced genomes among the prokaryotic
phyla [5] and contains members exhibiting extremely di-
versified metabolisms relevant to global carbon, nitrogen,
and sulfur cycles [2]. This phylum recently gained the
eighth (or seventh if yet-to-be-validated ‘Zetaproteobac-
teria’ is excluded) class Oligoflexia with the cultured spe-
cies Oligoflexus tunisiensis type strain Shr3T [6]. The class
Oligoflexia includes environmentally-derived 16S rRNA
gene sequences, otherwise known as environmental clones

or phylotypes, recovered from a variety of habitats includ-
ing soils, the Taklamakan Desert, glacial ice, lake water,
seawater, human skin, and the guts of earthworms [6]. In
contrast to their wide distribution, Oligoflexia-affiliated
clones have rarely been found in clone libraries [7];
accordingly, it has been suggested that the Oligoflexia
members show a small population size, belonging to the
so-called rare biosphere [8].
At the time of writing, O. tunisiensis Shr3T was the

only cultured species within the class Oligoflexia.
Physiological and biochemical features of strain Shr3T

could not be fully characterized because of restrictive
culture conditions owing to the slow-growing nature of
this strain [6]. The phenotypic information is essential
for understanding its ecological role and biotechno-
logical potentials. Here, we compensated for the limited
knowledge regarding Oligoflexia members by conducting
genomic analysis of strain Shr3T.
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Organism information
Classification and features
During a study of ultramicro-sized bacteria that
could pass through 0.2-μm pore-size filters, which
are generally used for sterile filtration to remove mi-
croorganisms, we isolated the bacterium designated
isolate Shr3 [9]. The isolation source of this bacter-
ium was a 0.2-μm filtrate of the suspension of sand
gravels collected in December 2008 in Matmata (33°
31’ N 9° 57’ E) on the eastern margin of the Sahara
Desert in the Republic of Tunisia. Isolate Shr3 was
thereafter described as the type strain of Oligoflexus
tunisiensis, the first cultured representative of the
novel class Oligoflexia [6].

Figure 1 shows the phylogenetic position of O.
tunisiensis and related environmental clones in a
16S rRNA-based evolutionary tree. The sequence
of the three 16S rRNA gene copies in the
genome was 100% identical to the previously
published 16S rRNA gene sequence (DDBJ/EMBL/
GenBank accession no. AB540021 [6]). The data-
base search showed that seven environmen-
tal clones had a >97% high similarity with the O.
tunisiensis 16S rRNA gene sequence [7]. The
seven clones were from rice paddy soil, cyanobac-
terial blooms in a hypereutrophic lake, a microal-
gal photobioreactor, a bio-filter, and human skin
[7]. Strain Shr3T has been deposited in the Japan

rice paddy soil clone TSNIR001_J18 (AB487112)

grassland soil clone FCPS531 (EF516682)

anaerobic ammonium oxidation reactor clone Dok52 (FJ710772)

surface of marine macro-alga clone UA24 (DQ269039)

surface seawater clone SHWH night1 16S 626 (FJ744863)

glacier ice clone glb342c (EU978830)

trembling aspen clone Elev 16S 1354 (EF019970)

glacier ice clone glb351c (EU978839)

earthworm gut clone A02-05D (FJ542822)

Taklamakan Desert soil clone T5CLN43 (AB696523)

skin, volar forearm clone ncd2100g03c1 (JF181808)

rice paddy soil clone TSBAR001_G23 (AB486128)

cyanobacterial blooms clone E21 (HQ827927)

skin, popliteal fossa clone ncd2130c10c1 (JF183716)

biofilms in a full-scale vermifilter clone V201-58 (HQ114073)

concrete clone H-169 (HM565023)

Aquifex pyrophilus Kol5aT (M83548)

Thermotoga maritima MSB8T (NC_000853)
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Fig. 1 Phylogenetic relationships between O. tunisiensis Shr3T and related environmental clones in the phylum Proteobacteria based on 16S rRNA
gene sequences. At the time of writing, strain Shr3T was the only cultured species within the class Oligoflexia. The tree, generated with MEGA 6.0
[34] using the neighbor-joining method [35], is based on a comparison of approximately 1130 nucleotides. Bootstrap values >50%, expressed as
percentages of 1000 replicates, are shown above and below branches. Bar: 0.02 substitutions per nucleotide position
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Collection of Microorganisms and the National
Collection of Industrial, food and Marine Bacteria
under accession numbers JCM 16864Tand NCIMB
14846T, respectively. The general features of
strain Shr3T are reported in Table 1.
O. tunisiensis Shr3T is a Gram-negative, aerobic, non-

motile, filamentous bacterium of 0.4–0.8 μm in width
when cultivated under the experimental culture condi-
tions [6]. Some cells exhibited a spiral, spherical (or
curled), or curved rod morphology [7]. Although the fac-
tors controlling the cell shapes are still unclear, the mor-
phological flexibility is likely associated with their ability
to pass through 0.2-μm filters. Strain Shr3T grows in the
R2A medium [6]. The cells showed slow growth, with
3–5 days required before colonies could be seen by the
naked eye [6]. The growth occurs at NaCl concentra-
tions <1.0% (w/v), 20–37 °C (optimum 25–30 °C), and
pH 7.0–9.5 (optimum pH 7.0–8.0) [6]. Enzyme activities

of esterase lipase, leucine arylamidase, trypsin, naphthol-
AS-BI-phosphohydrolase and α-mannosidase are posi-
tive [6]. Transmission electron microscopy revealed that
cells contained many low electron-dense particles (Fig. 2).
Some, but not all, particles were stained by Sudan black
B upon staining PHB or lipophilic particles. Because
cells swollen by accumulated PHB were not observed
when grown on PHB-containing medium [6], the parti-
cles stained with Sudan black B are likely lipophilic
granules.

Chemotaxonomy
The major respiratory quinone was menaquinone-7
(MK-7) [6]. The dominant cellular fatty acids were C16 :

1ω5c (65.7%) and C16 :0 (27.5%), the major hydroxy fatty
acid was C12 :0 3-OH (1.3%), and the minor fatty acids
included C10:0, C12:0, C15:0, C17:0, C18:0 and C18:1ω5c [6].
The fatty acid, C16 :1ω5c, was also detected in

Table 1 Classification and general features of Oligoflexus tunisiensis type strain Shr3T according to MIGS standards [30]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [31]

Phylum Proteobacteria TAS [32]

Class Oligoflexia TAS [6]

Order Oligoflexales TAS [6]

Family Oligoflexaceae TAS [6]

Genus Oligoflexus TAS [6]

Species Oligoflexus tunisiensis TAS [6]

Type strain: Shr3T TAS [6]

Gram stain negative TAS [6]

Cell shape filamentous-shaped TAS [6, 7]

Motility non-motile TAS [6]

Sporulation none TAS [6]

Temperature range 20–37 °C TAS [6]

Optimum temperature 25–30 °C TAS [6]

pH range; Optimum 7.0–9.5; 7.0–8.0 TAS [6]

Carbon source heterotrophic TAS [6]

MIGS-6 Habitat desert TAS [6]

MIGS-6.3 Salinity 0–0.5% (w/v) NaCl TAS [6]

MIGS-22 Oxygen requirement aerobic TAS [6]

MIGS-15 Biotic relationship free-living TAS [6]

MIGS-14 Pathogenicity not reported

MIGS-4 Geographic location Matmata, Republic of Tunisia TAS [6]

MIGS-5 Sample collection December 2008 TAS [6]

MIGS-4.1 Latitude 33.53 TAS [6]

MIGS-4.2 Longitude 9.96 TAS [6]

MIGS-4.4 Altitude not determined
aEvidence codes – IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement
(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are
from the Gene Ontology project [33]
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myxobacteria of Cystobacterineae in the class Deltapro-
teobacteria, but at only 15–39% [10].

Genome sequencing information
Genome project history
Phenotypic features of strain Shr3T are described above,
but could not be fully tested because of restrictive cul-
ture conditions [6]. Therefore, this organism was se-
lected for genome sequencing to investigate the basis of
its ecological role and biotechnological potentials. The
genome project is deposited in the Genomes OnLine
Database [11] under the accession number Gp0139475.
The information genome sequence is available from the
DDBJ/EMBL/GenBank database. A summary of this
genome project is shown in Table 2.

Growth conditions and genomic DNA preparation
A culture of O. tunisiensis Shr3T grown aerobically in
R2A broth (DAIGO; Nihon Pharmaceutical Co., Ltd.,

Tokyo, Japan) at 30 °C was used to prepare genomic
DNA. The genomic DNA was extracted using Qiagen
Genomic-Tip 500/G columns according to the manufac-
turer’s instructions. The quantity and purity of the ex-
tracted DNA was checked by spectrophotometric
measurement at 260 nm and agarose gel electrophoresis.

Genome sequencing and assembly
The genome sequence was generated using paired-end
sequencing (2 × 90 bp) on an Illumina HiSeq 2000 plat-
form at the BGI with the pair-end library and mate-pair
library of two different insert sizes, 456 to 496 bp and
6310 to 6350 bp. After trimming of low quality reads,
1130 Mb was obtained and assembled into 19 contigs in
one scaffold using SOAPdenovo version 2.04 [12]. The
assembly result was locally optimized according to the
paired-end and overlap relationship via mapping reads
to obtained contigs. A summary of this genome se-
quence is shown in Table 3.

Genome annotation
Gene sequences were identified via the Prodigal
V2.6.3 [13] as part of the DOE-JGI genome annota-
tion pipeline in the Integrated Microbial Genomes–
Expert Review (IMG-ER) system [14]. Gene functional
annotation as well as data visualization was conducted
within the IMG-ER [15]. The predicted coding se-
quences were translated and used to search the Na-
tional Center for Biotechnology Information non-
redundant, UniProt, TIGR-Fam, Pfam, KEGG, COG,
and InterPro databases. Identification of RNA gene
sequences and miscellaneous features were carried
out using HMMER 3.1b2 [16] and INFERNAL 1.0.2
and 1.1.1 [17]. Additional functional prediction was
performed with the RAST server [18] under accession

Fig. 2 Transmission electron micrograph of O. tunisiensis Shr3T. Many
low electron-density particles were observed. Cells were grown on
R2A medium for 7 days at 25 °C. Scale: 1 μm

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality High-quality draft

MIGS-28 Libraries used Pair-end library and mate-pair library

MIGS 29 Sequencing platforms Illumina HiSeq 2000

MIGS 31.2 Fold coverage 149 ×

MIGS 30 Assemblers SOAPdenovo version 2.04

MIGS 32 Gene calling method Prodigal

Locus Tag Ga0118670 (IMG-ER)

GenBank ID BDFO01000001

GenBank Date of Release 30 June 2016

GOLD ID Gp0139475

BIOPROJECT PRJDB4872

MIGS 13 Source Material Identifier JCM 16864, NCIMB 14846

Project relevance ecology, biotechnology
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number 708132.3. Candidate CRISPR regions were de-
tected using the CRISPRFinder program [19].

Genome Properties
The genome of O. tunisiensis Shr3T consists of a
7,569,109 bp long chromosome with a 54.3% G + C con-
tent (Table 3). Of the 6463 predicted genes, 6406 were
protein-coding genes and 57 were RNA genes (three
rRNA operons, 46 tRNAs, and two miscRNAs). The ma-
jority of the protein-coding genes (62.7%) were assigned
to a putative function. The remaining ones were anno-
tated as hypothetical proteins. The distribution of genes
classified into COGs functional categories is shown in
Table 4 and Fig. 3.

Insights from the genome sequence
The genome of O. tunisiensis Shr3T encoded genes for
ABC transporters of amino acid, oligopeptide/dipeptide,
and phosphonate, ammonium and nitrate/nitrite trans-
porters, as well as RND-type efflux pumps. One of the
amino acid sequences (Ga0118670_114686) classified as
an RND pump showed a high similarity (67% identity
and 99% coverage) to sequences of the pathogenic

Table 3 Genome statistics

Attribute Value % of Total

Genome size (bp) 7,569,109 100.00

DNA coding (bp) 6,849,121 90.49

DNA G + C (bp) 4,113,347 54.34

DNA scaffolds 1 100.00

Total genes 6,463 100.00

Protein coding genes 6,406 99.12

RNA genes 57 0.88

Pseudogenes not determined not determined

Genes in internal clusters 1,494 23.12

Genes with function prediction 4,051 62.68

Genes assigned to COGs 2,938 45.46

Genes with Pfam domains 4,268 66.04

Genes with signal peptides 1,084 16.77

Genes with transmembrane
helices

1,393 21.55

CRISPR repeats 8

Table 4 Number of genes associated with general COG functional categories

Code Value %age Description

J 228 6.91 Translation, ribosomal structure and biogenesis

A 1 0.03 RNA processing and modification

K 154 4.67 Transcription

L 103 3.12 Replication, recombination and repair

B 1 0.03 Chromatin structure and dynamics

D 31 0.94 Cell cycle control, Cell division, chromosome partitioning

V 87 2.64 Defense mechanisms

T 314 9.52 Signal transduction mechanisms

M 229 6.94 Cell wall/membrane biogenesis

N 125 3.79 Cell motility

U 44 1.33 Intracellular trafficking and secretion

O 159 4.82 Posttranslational modification, protein turnover, chaperones

C 172 5.21 Energy production and conversion

G 142 4.30 Carbohydrate transport and metabolism

E 264 8.00 Amino acid transport and metabolism

F 73 2.21 Nucleotide transport and metabolism

H 170 5.15 Coenzyme transport and metabolism

I 193 5.85 Lipid transport and metabolism

P 156 4.73 Inorganic ion transport and metabolism

Q 100 3.03 Secondary metabolites biosynthesis, transport and catabolism

R 337 10.22 General function prediction only

S 153 4.64 Function unknown

- 3,525 54.54 Not in COGs

The total is based on the total number of protein coding genes in the genome
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bacteria Achromobacter xylosoxidans and Pseudomonas
aeruginosa. The RND-type efflux system is widely dis-
tributed in Gram-negative bacteria and known to pro-
mote resistance to various kinds of antimicrobial
substances, termed as multidrug resistance [20].
In support of its aerobic growth, gene sequences

assigned to different terminal oxidases including aa3- and
cbb3-type cytochrome c oxidases (COG0843 and
COG3278) and cytochrome bd-type quinol oxidase
(COG1271 and COG1294) were found in the Shr3T

genome.
The Shr3T genome contained a nirK gene coding

for a copper-dependent nitrite reductase (Nir)
(Ga0118670_114712) involved in denitrification, a major
component of the nitrogen cycle [21]. Denitrification is
the dissimilatory reduction of nitrate or nitrite to nitrogen
gas (NO3

− → NO2
− → NO → N2O → N2) [22] that usually

occurs under oxygen-limiting conditions [21]. The key
steps releasing gaseous products NO, N2O, and N2 are
catalyzed by Nir, nitric-oxide reductase (Nor) and nitrous
oxide reductase (Nos), respectively [23, 24]. There are two
structurally different nitrite reductases among denitrifiers:

a copper-containing type (Cu-Nir) encoded by the nirK
gene and a cytochrome cd1-containg one (cd1-Nir)
encoded by the nirS gene [24]. The nirS gene was absent
from the O. tunisiensis Shr3T genome.
The NirK deduced amino acid sequence of O. tunisien-

sis Shr3T was most closely related to that of Bdellovibrio
bacteriovorus of the class Deltaproteobacteria, with 70%
identity and 96% coverage. B. bacteriovorus has an incom-
plete denitrifying pathway with a Cu-Nir, a cytochrome c–
dependent Nor (cNor), and no Nos [25, 26]. O. tunisiensis
Shr3T also had a partial pathway containing the Cu-Nir
described above, a quinol-dependent Nor (qNor), and no
Nos inferred from the genome data. Strain Shr3T has two
copies of the gene encoding qNor (Ga0118670_112818
and Ga0118670_114769). NorR protein is known to regu-
late Nor expression in response to NO [27, 28]. The tran-
scription regulator norR gene (Ga0118670_114771) was
nearly adjacent to one of two copies of the qNor-encoding
gene in the genome.
Our results suggest that the Oligoflexus species has the

capability to produce N2O as a final product of the in-
complete denitrification lacking the last step (reduction

Oligoflexus tunisiensis Shr3T

7,569,109 bp

0

1 Mb

2 Mb

3 Mb

4 Mb

5 Mb

6 Mb

7 Mb

Fig. 3 Graphical circular map of the chromosome of O. tunisiensis Shr3T. From outside to the center: genes on forward strand (color by COG
categories), genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew
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of N2O to N2). N2O is known as a strong greenhouse
gas, as well as an ozone-depleting substance [29].
Accordingly, future studies should examine the N2O-
producing phenotype of strain Shr3T.

Conclusions
In this study, we characterized the genome of O. tunisien-
sis Shr3T, the first cultured representative of the novel pro-
teobacterial class Oligoflexia. The genome sequence gives
us insight into the metabolic versatility and incomplete
denitrification pathway of Oligoflexus species. The genome
information will facilitate future systematics and compara-
tive genomics studies within the phylum Proteobacteria.
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