Manzoor et al. Standards in Genomic Sciences (2015) 10:99
DOI 10.1186/s40793-015-0092-z

@Vl Standards in
SIGS Genomic Sciences

SHORT GENOME REPORT Open Access

Working draft genome sequence of the

@ CrossMark

mesophilic acetate oxidizing bacterium
Syntrophaceticus schinkii strain Sp3

Shahid Manzoor'?, Bettina Maller”’,

Adnan Niazi', Anna Schntrer? and Erik Bongcam—RudIoff1

Abstract

properties of the type strain Sp3.

Methane production

Syntrophaceticus schinkii strain Sp3 is a mesophilic syntrophic acetate oxidizing bacterium, belonging to the Clostridia
class within the phylum Firmicutes, originally isolated from a mesophilic methanogenic digester. It has been shown to
oxidize acetate in co-cultivation with hydrogenotrophic methanogens forming methane. The draft genome shows a
total size of 3,196,921 bp, encoding 3,688 open reading frames, which includes 3,445 predicted protein-encoding
genes and 55 RNA genes. Here, we are presenting assembly and annotation features as well as basic genomic
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Introduction

During anaerobic degradation of organic material, acet-
ate is formed as a main fermentation product, which is
further converted to methane. Two mechanisms for me-
thane formation from acetate have been described: The
first one is carried out by aceticlastic methanogens con-
verting acetate to methane and CO, under low ammonia
conditions [1]. The second mechanism, dominating under
high ammonia conditions, occurs in two steps, and is per-
formed by acetate-oxidizing bacteria oxidizing acetate to
H, (formate) and CO, and a methanogenic partner using
the hydrogen (formate) to reduce CO, to methane [2-4].
Most fascinating on this syntrophic relationship is, that
the overall reaction operates with a AG®” of -36 kJ x mol ™
close to the thermodynamic equilibrium.

The number of isolated and characterized SAOB is
restricted most likely due to their considerable differ-
ences in substrate utilization abilities and cultivation
requirements. To date three mesophilic SAOB, namely
Clostridium ultunense (5], Syntrophaceticus schinkii [6],
“Tepidanaerobacter  acetatoxydans” [7] and two
thermophilic SAOB, namely Thermacetogenium phaeum
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[2] and Thermotoga lettingae [8] currently renamed to
Pseudothermotoga lettingae have been isolated and charac-
terized. Among those, two complete genome sequences of
T. phaeum [9], “T. acetatoxydans” [10] and one draft gen-
ome sequence of C. ultunense [11] have been published,
the later two by this working group. Here, we are present-
ing the draft genome sequence of the third mesophilic
SAOB Syntrophaceticus schinkii strain Sp3. To date,
strain Sp3 is the only isolated and characterized repre-
sentative of the species S. schinkii and was recovered
from an up flow anaerobic filter treating wastewater
from a fishmeal factory [6]. This process was character-
ized by high ammonium concentration (6.4 g 171 NH2).
S. schinkii shows the least narrow substrate spectrum
compared to all known SAOB, when growing heterotro-
phically [6]. The main end product formed is acetate, what
allocates the species to the physiological group of
acetogens.

Since the recovery of S. schinkii we found it at high
abundance in all mesophilic large scale and lab scale bio-
gas producing process we have investigated so far. Gen-
ome analysis and comparative genomics might help us
to understand general features of syntrophy in particular
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Fig. 1 Image. Phase-contrast micrograph of Syntrophaceticus
schinkii strain Sp3

\ J

energy conservation and electron transfer mechanisms
during syntrophic acetate oxidation.

The present study summarizes genome sequencing,
assembly and annotation as well as general genomic
properties of the Syntrophaceticus schinkii strain Sp3
genome.
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Organism information

Classification and features

Syntrophaceticus schinkii Sp3 (Fig. 1) is an obligate an-
aerobic, endospores forming bacterium, whose cells were
found to be Gram variable with changing shapes
dependent on the growth condition (Table 1, [6]). No
flagella have been observed under any condition tested.
It can grow up to 0.6 M NH,CI in pure culture between
25 °C and 40 °C. A more detailed physiological descrip-
tion can be found in Westerholm et al. [6]. Minimum
Information about the Genome Sequence (MIGS) of S.
schinkii strain Sp3 is provided in Table 1 and Table S1
(Additional file 1).

Phylogentic analysis of the single 16S rRNA gene copy
affiliates S. schinkii strain Sp3 to the Clostridia class
within the phylum Firmicutes. The RDP Classifier ([12]
2015-08-05) confirmed further the affiliation to Thermo-
anaerobacteraceae as published by [6] in 2011 (Table 1).
The comparison of the 16S rRNA gene sequence with the
latest available databases from GenBank (2015-08-05) using
NCBI BLAST [13] under default settings identified the
thermophilic SAOB T. phaeum (NR_074723.1) as the clos-
est characterized relative sharing 92.12 % identity (Fig. 2). S.
schinkii is only distantly related to the characterized meso-
philic SAOB C. ultunense ( 82.54 % identity), and “T.
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Fig. 2 Phylogentic tree. Phylogenetic tree highlighting the relationship of Syntrophaceticus schinkii Sp3 relative to known SAOB, acetogens, and
other syntrophic operating bacteria. The 16S rRNA-based alignment was carried out using MUSCLE [32] and the phylogenetic tree was inferred
from 1,521 aligned characteristics of the 165 rRNA gene sequence using the maximum-likelihood (ML) algorithm [33] with MEGA 6.06 [34, 35].
Bootstrap analysis [36] with 100 replicates was performed to assess the support of the clusters
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Table 1 Classification and general features of Syntrophaceticus schinkii strain Sp3 according to the “minimum information about a

Genome Sequence” (MIGS) specification [22]

MIGS ID Property Term Evidence code®
Classification Domain Bacteria TAS [23, 24]
Phylum Firmicutes TAS [25]
Class Clostridia TAS [26, 27]
Order Thermoanaerobacterales TAS [26] (p132), [28]
Family Thermoanaerobacteraceae TAS [26] (p132), [29]
Genus Syntrophaceticus TAS [6, 30]
Species Syntrophaceticus schinki TAS [6, 30]
Strain Sp3 TAS [6]
Gram stain Variable TAS (6]
Cell shape Variable P TAS [6]
Motility Non motile TAS [6]
Sporulation Terminal endospores TAS [6]
Temperature range Mesophilic TAS [6]
Optimum temperature 37-40 °C TAS [6]
Carbon source Heterotroph TAS [6]
Energy source Chemoheterotroph TAS [6]
MIGS-6 Habitat Anaerobic sludge TAS [6]
MIGS-6.3 Salinity Up to 0.6 M NH,CI TAS [6]
MIGS-22 Oxygen Obligate anaerob TAS [6]
MIGS-15 Biotic relationship Syntrophy (beneficial) TAS [6]
MIGS-14 Pathogenicity Not reported NAS
MIGS-4 Geographic location Spain NAS
MIGS-5 Sample collection time 1992 NAS
MIGS-4.1 Latitude 42851329 NAS
MIGS-4.2 Longitude —8475933 NAS
MIGS-4.3 Depth Not reported NAS
MIGS-4.4 Altitude Not reported NAS

®Evidence codes—TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement (i.e., not directly observed for
the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). Evidence codes are from the Gene Ontology project [31].
PShape of cells varies between cocci and straight or slightly curved rods depend on NH,CI concentration [6]

acetatoxydans” (84.1 % identity) and the thermophilic P.
lettingae (79.64 %). Although S. schinkii has been physiolo-
gically affiliated to the group of acetogens, Fig. 2 illustrates a
distant relationship to this group, as represented by e.g. the
model acetogen Moorella thermoacetica (89.15 % identity).

Genome sequencing information

Genome project history

Syntrophaceticus schinkii strain Sp3 was sequenced and
annotated by the SLU-Global Bioinformatics Centre at
the Swedish University of Agricultural Sciences, Uppsala,
Sweden. The genome project is deposited in the Ge-
nomes OnLine Database [14] with GOLD id Gi0035837
and the working draft genome is deposited in the Euro-
pean Nucleotide Archive database with accession num-
ber ERP005192. The SAOB was selected for sequencing

on the basis of environmental relevance to issues in global
carbon cycling, alternative energy production, and bio-
chemical importance. Table 2 contains the summary of pro-
ject information.

Growth conditions and genomic DNA preparation

Since isolation by our research group, the strain has been
kept in liquid cultures and a live culture and medium have
been sent to DSMZ, (DSM21860). For DNA isolation batch
cultures were grown in basal medium supplemented with
20 mM betaine as described by Westerholm et al. [6]. Cells
were grown for 4 weeks at 37 °C without shaking and har-
vested at 5000 x g. DNA was isolated using the Blood &
Tissue Kit from Qiagen (Hilden, Germany) according to
the standard protocol recommended by the manufacturer.


http://dx.doi.org/10.1601/nm.21111
http://dx.doi.org/10.1601/nm.21368
http://dx.doi.org/10.1601/nm.4534
http://dx.doi.org/10.1601/nm.21368
http://www.standardsingenomics.org/index.php/sigen/article/view/sigs.4458283/1018#t2
http://doi.org/10.1601/strainfinder?urlappend=%3Fid%3DDSM21860

Manzoor et al. Standards in Genomic Sciences (2015) 10:99

Table 2 Genome sequencing project information for the
Syntrophaceticus schinkii Sp3 genome

MIGS ID Property Term
MIGS-31 Finishing quality Draft
MIGD-28 Libraries used lon Torrent single end reads
MIGS-29 Sequencing platform lon Torrent PGM Systems
MIGS-31.2 Sequencing coverage 35%
MIGS-30 Assemblers Newbler 2.8 and MIRA 4.0
MIGS-32 Gene calling method PRODIGAL and AMIGene
Locus Tag SSCH
Genbank ID CDRZ00000000
GenBank Data of release March 21, 2014
GOLD ID Gi0035837
BIOPROJECT PRINA224116
MIGS 13 Source Material Identifier DSM 21860

Project relevance Biogas production

Genome sequencing and assembly

The genome of Syntrophaceticus schinkii was sequenced
at the SciLifeLab Uppsala, Sweden using Ion torrent PM
systems with the mean length of 206 bp, longest read
length 392 bp and a total of final library reads of
2,985,963 for single end reads. All general aspects of se-
quencing performed can be found at Scilifelab website
[15]. The FastQC software package [16] was used for
reads quality assessment. After preassembly quality
checking, the reads were assembled with MIRA 4.0 and
Newbler 2.8 assemblers. Possible miss-assemblies were
corrected manually by using Tablet, a graphical viewer
for visualization of assemblies and read mappings [17].

Table 3 Genomic statistics for the Syntrophaceticus schinkii
strain Sp3 genome

Attribute Value % of total
Genome size (bp) 3,196,921 100.00
DNA Coding (bp) 2,399,289 75.05
DNA G + C content (bp) 1,489,445 46.59
Number of scaffolds 215 -
Total genes 3,441 100.00
Protein coding genes 3,281 95.35
RNA genes 55 1.59
Pseudo gene 90 261
Genes in internal clusters 2,086 60.62
Genes with function prediction 2,099 61.00
Genes assigned to COGs 2,583 75.07
Genes with Pfam domains 2,749 79.88
Genes with signal peptides 57 1.65
CRISPR repeats 8 23
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A comparison of two assemblies obtained from both of
the assemblers was used to fill the gaps between contigs.
The multiple genome alignment tool Mauve was used
for this purpose [18]. The working draft genome se-
quence of S. schinkii Sp3 contains 3,196,921 bp based on
the analysis done with the tools summarized above.

Genome annotation

Automated gene modeling was completed by MaGe [19]
a bacterial genome annotation system. Genes were iden-
tified using Prodigal [20] and AMIGene [21] as part of
MaGe genome annotation pipeline. The predicted CDSs
were translated and used to search the NCBI non-
redundant database, UniProt, TIGRFam, Pfam, PRIAM,
KEGG, COG, and InterPro databases using BLASTP.
Predicted coding sequences were subjected to manual
analysis using MaGe web-based platform, which also
provides functional information of proteins, and which
was used to assess and correct genes predicted through
the automated pipeline. The predicted functions were
also further analyzed by the MaGe annotation system
(Fig. 4).

Genome properties
The working draft genome comprises 301 contigs in 215
scaffolds with a total size of 3,196,921 bp and a calcu-
lated GC content of 46.59 %. The genome shows a pro-
tein coding density of 75.21 % with an average intergenic
length of 230.2 bp. The genome encodes further 50
tRNA genes and 5 rRNA genes, more precisely three 5S
genes, one 16S and one 23S rRNA gene (Table 3, Fig. 3).
The genome of S. schinkii genome contains 3,441 pre-
dicted protein-encoding genes, of which 2,099 (61 %)
have been assigned tentative functions. The remaining
1,346 ORFs are hypothetical / unknown proteins. 2,586
(app. 75 %) of all predicted protein-encoding genes
could be allocated to the 22 functional COGs. This is in
the same range as described for other acetogenic bacteria
such as Acetobacterium woodii WB1 and M. thermoace-
tica ATCC39073, acetate oxidizing sulfate reducers such
as Desulfobacterium autotrophicum HRM2 and Desulfoto-
maculum kuznetsovii, and the SAOB P. lettingae TMO.
Analysis of COGs revealed that ~28 % of all protein-
encoding genes fall into four main categories: amino acid
transport and metabolism (9.8 %), replication, recombin-
ation and repair (6.6 %), energy metabolism (5.9 %), and
coenzyme transport and metabolism (4.9 %) (Table 4).

Insights from the genome sequence

Synteny-based analyses with all bacterial genomes
present in the NCBI Reference Sequence database con-
firmed again that T. phaeum is the closest relative of S.
schinkii having approximately 50 % of the total genome
size in synteny (Fig. 4). A comparison of all inferred
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Fig. 3 Circular map. Circular map of the Syntrophaceticus schinkii Sp3 genome (from the outside to the center): (1) GC percent deviation (GC
window—mean GC) in a 1000-bp window. (2) Predicted CDSs transcribed in the clockwise direction. (3) Predicted CDSs transcribed in the
counterclockwise direction. (4) GC skew (G + C/G-C) in a 1000-bp window. (5) rRNA (blue), tRNA (green), misc_RNA (orange), Transposable elements

proteins of S. schinkii with all proteins collected in the
NCBI RefSeq database revealed the highest number of
orthologous (1788: 51.90 %) with T. phaeum. Both S.
schinkii and T. phaeum, are known as syntrophic acetate
oxidizing bacteria able to oxidize acetate in co-culture
with a hydrogenotrophic methanogenic partner, but dif-
fer clearly in their substrate utilization patterns [2, 6]
Moreover, in contrast to the thermophilic 7. phaeum, S.
schinkii possess mesophilic characteristics and cannot
switch to a chemolithoautotrophic lifestyle.

The genome has been analyzed regarding general
phenotypic features such as sporulation, oxygen toler-
ance, secreted and selenocystein-containing proteins and
motility. The genome contains the master regulator
Spo0A (SSCH_630004) needed for sporulation but lacks
genes encoding the phosphorelays SpoOF and SpoOB as
it has been observed in other clostridia. All the
sporulation-specific sigma factors SigE (SSCH_460001),
SigG (SSCH_1070017), and SigK (SSCH_700028) were

predicted except for SigF. Two putative manganese con-
taining catalases (SSCH_1760003, SSCH_2560004) and
two putative rubrerythrin encoding genes (SSCH_590006,
SSCH_180042) identified within the genome give reasons
to believe, that this organism posses the ability to tolerate
small amounts of oxygen. According to the observed im-
mobility S. schinkii does not harbor any flagellum related
genes including hook-associated proteins (FIgE, FlgK,
Flgl), basal and hook proteins (FIgE), capping proteins
(FIiD), biosynthesis secretory proteins (FIhA, FIhB, FIiF,
FliH and Flil), flagella formation proteins, motor proteins
(FIiG and FliM) and the basal proteins (FlgC and FlgB).
Genes encoding key components of the selenocysteine-
decoding (SelA, SelB, SelC, SelD) machinery are widely
distributed in bacterial genomes. Also S. schinkii appears
to have the ability to express selenocysteine proteins:
The genome contains a single copy of the L-
selenocysteinyl-tRNA®® transferase (selA: SSCH_110005/
6), monoselenophosphate synthase (selD: SSCH_970007),
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Table 4 Number of genes associated with the general COG functional categories

Code Value % age Description
J 156 453 Translation, ribosomal structure and biogenesis

0 0.00 RNA processing and modification
K 21 6.12 Transcription
L 230 6.68 Replication, recombination and repair
B 1 003 Chromatin structure and dynamics
D 59 1.71 Cell cycle control, cell division, chromosome partitioning
Y 0 0.00 Nuclear structure
\Y 117 339 Defense mechanisms
T 136 395 Signal transduction mechanisms
M 169 490 Cell wall/membrane/envelope biogenesis
N 37 1.07 Cell motility
z 1 0.02 Cytoskeleton
W 1 0.03 Extracellular structures
U 61 177 Intracellular trafficking, secretion, and vesicular transport
(@) 101 293 Posttranslational modification, protein turnover, chaperones
C 204 592 Energy production and conversion
G 138 400 Carbohydrate transport and metabolism
E 339 9.84 Amino acid transport and metabolism
F 70 203 Nucleotide transport and metabolism
H 172 4.99 Coenzyme transport and metabolism
I 52 1.51 Lipid transport and metabolism
P 206 5.98 Inorganic ion transport and metabolism
Q 54 1.57 Secondary metabolites biosynthesis, transport and catabolism
R 369 10.71 General function prediction only
S 219 6.36 Function unknown

342 9.93 Not in COGs

Syntrophaceticus schinkii Sp3

Thermaci

Fig. 4 Synteny comparison. Synteny comparison of S. schinkii genome with the closely related genome of 7. phaeum. Linear comparison of all
predicted gene loci from S. schinkii with T. phaeum was perfomed using built-in tool in MaGe Platform with the synton size of > = 3 genes. The
lines indicate syntons between two genomes. Red lines show inversions around the origin of replication. Vertical bars on the boarder line indicate
different elements in genomes such as pink: transposases or insertion sequences: blue: rRNA and green: tRNA
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the selenocysteinyl-tRNA specific elongation factor (selB:
SSCH_110004) and potential selenocysteine-specific
tRNAS (selC: SSCH_tRNA31). We found two potential
selenocysteine containing glycine/sarcosine/betaine reduc-
tase complexes encoded by the genome (SSCH_440002-8,
SSCH_960012-15) consisting of selenoprotein subunit A,
the substrate specific selenoprotein subunit B and acetyl
phosphate forming subunit C. Since S. schinkii can only
grow on betaine but not on glycine or sarcosine [6], this
reductase complex might be specifically involved in beta-
ine utilization. 57 CDSs were predicted to encode surface
associated or secreted proteins identified by putative N-
terminal signal peptides (signal peptide I and II).

Conclusions

Acetate oxidation under anoxic conditions is thermo-
dynamically unfavorable and requires the metabolic co-
operation of a partner organism in order to make
endergonic reactions more exergonic through the efficient
removal of the products. S. schinkii oxidizes acetate to
hydrogen and/or formate, which is directly used by a
hydrogenotrophic methanogen. Since the methanogenic
partner has been isolated and sequenced S. schinkii ap-
pears to have great potential to serve as a model organism
for studying methane producing syntrophic relationships.
The working draft genome sequence presented here will
open the door for understanding the preferred habitats,
the metabolism behind different life styles, and the mecha-
nisms initiating syntrophy. This knowledge will help us to
trigger SAOB towards an efficient and stable hydrogen/
biogas production in engineered anaerobic digestion pro-
cesses suffering high ammonia release.

Additional file

Additional file 1: Table S1. Associated MIGS record for Syntrophaceticus
schinkii strain Sp3. (DOCX 111 kb)
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