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Abstract

Thioalkalivibrio thiocyanoxidans strain ARh 2T is a sulfur-oxidizing bacterium isolated from haloalkaline soda lakes. It
is a motile, Gram-negative member of the Gammaproteobacteria. Remarkable properties include the ability to grow
on thiocyanate as the sole energy, sulfur and nitrogen source, and the capability of growth at salinities of up to
4.3 M total Na+. This draft genome sequence consists of 61 scaffolds comprising 2,765,337 bp, and contains 2616
protein-coding and 61 RNA-coding genes. This organism was sequenced as part of the Community Science Program
of the DOE Joint Genome Institute.
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Introduction
Soda lakes are found in many arid zones across the world,
such as the Kulunda Steppe in Russia, North-Eastern
China, the Rift Valley in Africa, and in arid parts of North
America, i.e. California and Nevada. The defining char-
acteristics of these lakes are the abundance of carbon-
ate/bicarbonate anions rather than chloride and their
moderate to high salinities. This makes soda lakes a
unique habitat with stable, alkaline pH values above
nine and up to 11 [1]. Despite the high salinity and
alkalinity, soda lakes harbor a rich microbial diversity
that is responsible for highly active elemental cycles.
Aside from the carbon cycle, the sulfur cycle is of great
importance in these lakes [2], yet little is known about
their precise biogeochemistry and dynamics [3]. A bet-
ter understanding of these processes will lead to im-
proved insights into the ecology and biogeochemical
cycling in soda lakes. Additionally, sulfur-cycling extre-
mophilic prokaryotes have important applications in
bioremediation [4] and more detailed knowledge of
their physiology may improve industrial waste process-
ing. For these reasons, we have sequenced more than

70 strains belonging to the genus Thioalkalivibrio, a
dominant cultivated group of chemolithoautotrophic
haloalkaliphilic sulfur-oxidizing bacteria in soda lakes
worldwide. Here we present the partial genome se-
quence of Thioalkalivibrio thiocyanoxidans ARh 2T.

Organism information
Classification and features
T. thiocyanoxidans ARh 2T forms motile vibrio-like cells
of approximately 0.5–0.6 by 0.8–1.4 μm (basic properties
are summarized in Table 1). The cells grown with thio-
cyanate as electron source have a remarkably extended
periplasm (Fig. 1). It is a Gram-negative bacterium
belonging to the Gammaproteobacteria (Fig. 2). The
species description is based on four strains (ARh 2,
ARh 3, ARh 4 and ARh 5) that were isolated from sedi-
ment samples of South-Western Siberian, Kenyan and
Egyptian soda lakes. Strain ARh 2 is a type strain of the T.
thiocyanoxidans species. As a chemolithoautotroph, ARh
2T derives energy from the oxidation of inorganic sulfur
compounds, such as sulfide, thiosulfate, thiocyanate,
elemental sulfur and polysulfides. The most interesting
properties are its ability to grow on thiocyanate as the
sole source of energy, sulfur and nitrogen and its ability
to grow in saturated soda brines brines with thiosulfate
as energy source [5].
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Genome sequencing information
Genome project history
Thioalkalivibrio thiocyanoxidans ARh 2T was sequenced
as part of a project aimed at sequencing a large number
of Thioalkalivibrio isolates. The goal of this project is to
enable the study of the genomic diversity of the domin-
ant genus of sulfur-oxidizing bacteria in soda lakes. T.
thiocyanoxidans ARh 2T was selected for its ability to
grow in salt-saturated brines (4.3 M Na+) and for its
ability to grow on thiocyanate as the sole energy, sulfur
and nitrogen source. The permanent draft genome we
present here consists of approximately 2.8 million base-
pairs divided over 61 scaffolds. Sequencing was performed
at the Joint Genome Institute under project 1008667. The

genome sequence was released in Genbank on December
25, 2014. An overview of the project is given in Table 2.

Growth conditions and genomic DNA extraction
T. thiocyanoxidans ARh 2T (DSM 13532) was cultured
in a standard buffer containing sodium carbonate and
bicarbonate at pH 10. The total salt concentration was
0.6 M Na+ [6]. The energy source was thiosulfate, at a
concentration of 40 mM. After harvesting, the cells were
stored at −80 °C for further processing. Genomic DNA
was extracted using a chloroform-phenol-isoamylalcohol
mixture and precipitated with ethanol. After vacuum
drying, the pellet was dissolved in water and the quantity
and quality of the DNA determined using the JGI-
provided Mass Standard Kit.

Genome sequencing and assembly
This strain was sequenced as part of the Community
Science Program of the US Department of Energy Joint
Genome Institute. The Illumina HiSeq 2000 platform
was used for sequencing, with a depth of 1819X. More
details regarding the library construction and sequencing
are available at the JGI website. Reads were filtered using
DUK and assembled using Velvet 1.1.04 [7]. Pseudoreads
(1–3 Kb) were generated from the Velvet output using
wgsim and reassembled using ALLPATHS-LG r42328
[8]. The final assembly consists of 61 scaffolds.

Genome annotation
Genes were predicted using Prodigal [9], followed by a
round of manual curation using GenePRIMP [10] to de-
tect pseudogenes. The resulting predicted genes were

Table 1 Classification and general features of Thioalkalivibrio
thiocyanoxidans ARh 2T [12]

MIGS ID Property Term Evidence
codea

Classification Domain Bacteria TAS [13]

Phylum Proteobacteria TAS [14, 15]

Class Gammaproteobacteria TAS [15, 16]

Order Chromatiales TAS [15, 17]

Family Ectothiorhodospiraceae TAS [18]

Genus Thioalkalivibrio TAS [19]

Species Thioalkalivibrio
thiocyanoxidans

TAS [5]

Type strain: ARh 2T

(DSM 13532)

Gram stain Negative TAS [5, 19]

Cell shape Vibrios TAS [5]

Motility Motile TAS [5]

Sporulation Non-sporulating NAS

Temperature range Mesophilic TAS [5]

Optimum temperature 35–37 °C TAS [5]

pH range; Optimum 8.5–10.5 TAS [5]

Carbon source Inorganic carbon TAS [5]

MIGS-6 Habitat Soda lakes TAS [5]

MIGS-6.3 Salinity 0.3–4.3 M Na+ TAS [5]

MIGS-22 Oxygen requirement Aerobe TAS [5]

MIGS-15 Biotic relationship Free-living NAS

MIGS-14 Pathogenicity Non-pathogenic NAS

MIGS-4 Geographic location Kenya TAS [5]

MIGS-5 Sample collection 1999 TAS [5]

MIGS-4.1 Latitude Not reported

MIGS-4.2 Longitude Not reported

MIGS-4.4 Altitude Not reported
aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author
Statement (i.e., a direct report exists in the literature); NAS: Non-traceable
Author Statement (i.e., not directly observed for the living, isolated sample, but
based on a generally accepted property for the species, or anecdotal evidence).
These evidence codes are from the Gene Ontology project [20]

Fig. 1 Thin section electron microscopy photograph of cells of strain
ARh 2T grown with thiocyanate in batch culture at pH 9.8 and 0.6 M
total Na+. OM - outer cell membrane; CM - cytoplasmic membrane;
P - periplasm; C - cytoplasm
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translated and annotated using the NCBI NR database
in combination with the UniProt, TIGRFam, Pfam,
KEGG, COG and InterPro databases and tRNAScanSE
[11] for tRNA prediction. Ribosomal RNAs were de-
tected using models built from SILVA. Further annota-
tion was performed using the Integrated Microbial
Genomes platform. All annotation data is freely available
there, with IMG submission ID 12214.

Genome properties
The final draft of the genome comprises 2.8 million base
pairs in 61 scaffolds, with a G + C percentage of 66.18 %.
The gene calling and annotation pipeline detected 2677
genes, of which 2616 code for proteins. Basic statistics
concerning the genome sequence are shown in Table 3.
In total, 70 % of the genes could be assigned functional
categories based on COGs (see Table 4).

Table 3 Genome statistics

Attribute Value % of Total

Genome size (bp) 2,765,337 100.00

DNA coding (bp) 2,496,809 90.29

DNA G + C (bp) 1,829,984 66.18

DNA scaffolds 61 100.00

Total genes 2677 100.00

Protein coding genes 2616 97.72

RNA genes 61 2.28

Pseudo genes Not determined Not determined

Genes in internal clusters Not determined Not determined

Genes with function prediction 2230 83.30

Genes assigned to COGs 1885 70.41

Genes with Pfam domains 1799 78.94

Genes with signal peptides 217 8.11

Genes with transmembrane helices 655 24.47

CRISPR repeats 1 100.00

Thioalkalivibrio thiocyanodenitrificans ARhDT (AY360060)

Thioalkalivibrio denitrificans ALJDT (AF126545)

Thioalkalivibrio sulfidophilus HL-EbGr7T (EU709878)

Ectothiorhodospira haloalkaliphila (FN293052)

Ectothiorhodosinus mongolicum M9T (AY298904)

Thiorhodospira sibirica ATCC 700588T (AJ006530)

Thioalkalivibrio nitratireducens ALEN2T (AY079010)

Thioalkalivibrio paradoxus ARh1T (AF151432)

Thioalkalivibrio halophilus HL17T (AY34664)

Thioalkalivibrio thiocyanoxidans ARh2T (AF302081)

Thioalkalivibrio nitratis ALJ12T (126547)

Thioalkalivibrio jannaschii ALM2T (AF329083)

Thioalkalivibrio versutus AL2T (AF126546)

Alkalilimnicola ehrlichii MLHE-1T (AF406554)

Halorhodospira halophila SL1T (CP000544)

Thiohalospira halophila HL3T (DQ469576))

Thiohalospira alkaliphila ALgr 6spT (EU169227)

Fig. 2 Phylogenetic tree based on 16S rRNA sequences comprising the Thioalkalivibrio type strains and several other members of the Ectothiorhodospiraceae
family. Black dots mark nodes with a bootstrap value between 90 and 100 %. 16S rRNA sequences of members of the Alphaproteobacteria
were used as the outgroup, but pruned from the tree. The tree was constructed using ARB [21] and bootstrap values calculated using MEGA6 [22]

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Improved high-quality draft

MIGS-28 Libraries used Illumina standard fragment,
270 bp

MIGS 29 Sequencing platforms Illumina HiSeq 2000

MIGS 31.2 Fold coverage 1819

MIGS 30 Assemblers Velvet 1.1.04 [7], ALLPATHS
R39750 [8]

MIGS 32 Gene calling method Prodigal [9], GenePRIMP [10]

Locus Tag G372

Genbank ID ARQK00000000

GenBank Date of Release 2014-12-25

GOLD ID Gp0025980

BIOPROJECT PRJNA185302

IMG submission ID 12214

MIGS 13 Source Material Identifier DSM 13532

Project relevance Biotechnology
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Conclusions
Sequencing of the genome of Thioalkalivibrio thiocya-
noxidans ARh 2T is an important step towards a more
comprehensive understanding of the mechanism by
which this organism can adapt to extremely high salinity.
In addition, it will provide important information on the
role of this organism in the carbon and sulfur cycles of
natural and engineered environments, in particular in
the degradation of thiocyanate.
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