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Abstract

Background: In an effort to identify the best practice for finding genes in prokaryotic genomes and propose it as a
standard for automated annotation pipelines, 1,004,576 peptides were collected from various publicly available
resources, and were used as a basis to evaluate various gene-calling methods. The peptides came from 45 bacterial
replicons with an average GC content from 31 % to 74 %, biased toward higher GC content genomes. Automated,
manual, and semi-manual methods were used to tally errors in three widely used gene calling methods, as evidenced
by peptides mapped outside the boundaries of called genes.

Results: We found that the consensus set of identical genes predicted by the three methods constitutes only about
70 % of the genes predicted by each individual method (with start and stop required to coincide). Peptide data was
useful for evaluating some of the differences between gene callers, but not reliable enough to make the results
conclusive, due to limitations inherent in any proteogenomic study.

Conclusions: A single, unambiguous, unanimous best practice did not emerge from this analysis, since the available
proteomics data were not adequate to provide an objective measurement of differences in the accuracy between
these methods. However, as a result of this study, software, reference data, and procedures have been better matched
among participants, representing a step toward a much-needed standard. In the absence of sufficient amount of
exprimental data to achieve a universal standard, our recommendation is that any of these methods can be used by
the community, as long as a single method is employed across all datasets to be compared.

Background

As of July 13, 2013, more than a third of the 29,183 bac-
terial and archaeal genome sequencing projects listed in
the Genomes On-line Database (GOLD) [1] are attribut-
able to four major sequencing centers: DOE Joint Genome
Institute (JGI, 4,250 projects), The Broad Institute (3,155
projects), J. Craig Venter Institute (JCVI, 1,976 projects),
and Institute for Genome Sciences (IGS, 1,269 projects).
Assuming an average of 3,000 gene predictions per gen-
ome for the 10,650 projects at these sequencing centers,
an estimated 31,950,000 gene predictions will have been
made by the completion of these projects. Given that each
sequencing center has its own automated gene prediction
pipeline, using software that has evolved separately over
more than a decade, the question arises as to best current
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practices in structural genome annotation. In this context
the phrase “structural gene annotation” refers only to find-
ing the loci of protein-coding genes, not to annotating
protein functions or predicting their 3D structure. Imple-
mentation of a single best practice would have the benefit
of producing a single gene locus identifier for ease of
cross-referencing in the scientific literature and for use by
comparative genomics software [2]. A related motivation
for this study was the need to consistently reannotate pub-
lic genomes whose annotations are now more than a dec-
ade old.

Functional genomics data, such as RNA sequencing
(RNA-Seq) and proteomics, provide a useful reference
for evaluating and improving genome annotations [3-8].
A combination of the two is especially powerful, since
RNA-seq data reveals transcript boundaries, whereas
proteomics helps mapping translated sequences (coding
sequences or CDSs). We found very few genomes where
peptide data was available to confirm RNA-seq data, and
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since all available prokaryotic gene finders predict trans-
lated products rather than transcript boundaries, we ex-
plored whether proteomics alone could serve as a tool
to identify a best practice for updating gene calls in out-
dated genome annotations.

A test set of genomes with varying GC% was identified
and the gene calls for GeneMarkS [9], Glimmer3 [10], and
Prodigal [11], which are the three most popular ab initio
methods, were obtained from RefSeq’s public ftp site [12].
Peptides for most of the genomes were compiled from a
PNNL website [8], with other data obtained from the
PRIDE BioMart [13] and the publications of several inde-
pendent research labs [6, 14, 15] (Additional file 1). We
used the peptides to evaluate the accuracy of the Gene-
MarkS, Glimmer3, and Prodigal2.5 gene callers. In addition,
we evaluated gene calling by the gene-finding post proces-
sor GenePRIMP [16] developed by JGI. Notably, the gen-
ome annotation versions of GeneMarkS, Glimmer3,
Prodigal and GenePRIMP correspond to July 2013, when
the work on this project was started. Based on the results of
this work, reannotation of all public genomes integrated in
IMG has begun at the JGI using the Prodigal based gene
calling pipeline.

Results

Comparison of gene predictions

The consensus set of identical genes (same strand, start,
and stop) predicted by the three methods for 45 replicons
(Additional file 1) constitutes only about 67-73 % of the
genes predicted by each individual method, depending on
which gene caller is chosen to provide the total number of
calls on which the percentage is based (Fig. 1). The consen-
sus set of genes, which vary only in their start codon, con-
stitutes 83-96 % of the genes predicted by each individual
method (data not shown). With respect to unique predic-
tions, Glimmer3 made nearly twice as many as Prodigal
and GeneMarkS did. With respect to agreement between
pairs of gene callers, Prodigal and GeneMarkS agreed most
often while Prodigal and Glimmer3 agreed the least.

Peptide coverage of genes

Peptide coverage of predicted genes, which is to say the
percentage of genes in the entire dataset that had at least
one peptide mapping wholly inside of the gene, was on
average approximately 40 % (data not shown). Total
peptide support for gene calls, which is to say the total
number of peptides that fell wholly inside of any gene
prediction, was highest for Prodigal (1,000,574) and low-
est for Glimmer3 (994,973) with GeneMarkS intermedi-
ate between the two (996,336).

Comparison of detectible errors
Among ab initio gene callers, Glimmer3 scored the
most errors in total and in each error category, Prodigal
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Fig. 1 Overlaps between the sets of identical genes predicted by
the three ab initio gene callers for 52 genomes. Gene predictions by
two gene callers coincide only if both of their start and stop codons
are predicted to be in the same positions on the same strand. The
numerator for the percentages reported on the diagram is the
number of relevant calls, which appears above the percentage. The
denominator for the percentages is the total number of calls made
by the gene caller, whose abbreviation appears after the percentage.
Ge, GeneMark; Gl, Glimmer; Pr, Prodigal

scored the fewest, and GeneMarkS scored intermediate
between the two (Fig. 2). The GenePRIMP post-
processor scored fewer total errors than any of the ab
initio gene callers.

In an effort to gain a more detailed understanding of the
summary results, heat maps of wrong, short, and missed
gene calls plotted for each replicon (Figs. 3, 4, 5). Total
wrong gene calls showed this pattern with respect to
number of errors: Glimmer3 > GeneMarkS > Prodigal >
GenePRIMP (Fig. 3). This pattern followed the pattern of
the overall results. That is, GenePRIMP lowered the errors
made by Prodigal and the two methods combine for the
lowest errors. Glimmer3 had the highest number of errors
for wrong gene calls. The results for total short gene calls
follows the same pattern (Fig. 4). The results for total
missed calls shows a different pattern: Glimmer3 > Gene-
MarkS > GenePRIMP > Prodigal (Fig. 5). The reason for
this difference is the presence of genes with interrupted
translation frames, which GenePRIMP identifies as pseu-
dogenes and which is further addressed in the discussion.

Discussion
A number of caveats must be kept in mind when attempt-
ing to estimate gene calling program performance from
peptide data.

1. No proteomic experiment can guarantee expression
of every gene in the genome.
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2. Signal peptides, are often removed from proteins,
making it impossible to guarantee peptide data
pertaining to the true start site of translation.

3. Some peptide sequences, particularly highly
hydrophobic ones, are not amenable to detection by
mass spectrometry.

4. The mapping of peptide mass spectra to genome
sequence may be erroneous and thus presents an
opportunity for false positives.

5. It is impossible to detect “too long” errors in gene
start calling using peptide data, since an error
correcting peptide will never appear upstream of a
predicted start that is already upstream of the true
start. It is important to recognize that it is possible
for a lower “short” gene error rate to be offset by a
higher “long” gene error rate, resulting in a better
overall rate of calling correct gene starts. So the
“short” gene error rate in itself is not an unbiased
measurement of a gene finder’s ability to choose
correct gene start sites. However, considering that
“short” gene errors prevent identification of
functionally important conserved domains and
motifs, and therefore can result in erroneous
functional predictions, we report it here with this
caveat in mind. In addition, we should point out that
some genes have alternative translation initiation
sites. This may have caused some spurious “short”
errors, however all of the gene callers were under
the same handicap in this regard.

6. It is impossible to detect false positive gene calls
using peptide data, since peptides can only confirm
gene calls; they cannot deny them.

In addition to these general caveats, it must also be re-
iterated that the genomes chosen for analysis are not a
random, representative sample. Therefore, the results
presented here must be considered an estimate of gene
calling performance detectable with proteomics, not a
definitive and absolute measurement of true gene call-
ing performance.

At the same time, there is no definitive measurement
of true gene calling performance against a randomly
chosen, fully representative set of genomes. The bio-
logical knowledge to force expression of every protein
in every genome does not exist, nor do high throughput
biochemical methods for detecting every amino acid
residue in every translation product in a cell, even if
such knowledge of expression were available. The
expression rate for this study, as measured by the
peptide coverage reported above, averaged less than half
(~40 %), but there is no reason to assume that this
sample is systematically biased for or against any
particular gene caller. Also, while it is true that peptides
cannot detect false positive gene calls, statistical obser-
vations can give evidence of false positives: Glimmer3
made twice as many unique gene calls as Prodigal or
GeneMarksS, but had the fewest number of confirming
peptides. This does not prove that it makes more false
positive predictions than the other gene callers; it
simply offers some evidence that it might. High
throughput proteomic data is the only option available
for performing a wide survey of gene calling accuracy
for thousands of genes in dozens of genomes. Use of
high throughput proteomics is therefore an operational
necessity if one wishes to perform a survey of gene-
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Org: A ion
Prochlorococcus marinus CCMP1986 NC_005072
Bacillus cereus ATCC 14579 NC_004722
Bacillus anthracis str. Sterne NC_005945
Cyanothece sp. ATCC 51142 NC_010546
Streptococcus pyogenes M1 GAS NC_002737
Clostridium thermocellum ATCC 27405 NC_009012
Methanosarcina barkeri Fusaro, DSM 804 NC_007355
Anabaena variabilis ATCC 29413 NC_007413
Anaplasma phagocytophilum HZ NC_007797
Yersinia pestis KIM10+ NC_004088
Synechocystis sp. PCC 6803 NC_000911
Synechococcus sp. PCC 7002 NC_010475
Escherichia coli str. K-12 substr. MG1655 NC_000913
Cryptobacterium curtum DSM 15641 NC_013170
Thermococcus gammatolerans EJ3 * NC_012804
Geobacter uraniireducens Rf4 NC_009483
Pelobacter carbinolicus DSM 2380 NC_007498
Chlorobium tepidum TLS NC_002932
Chloroflexus aurantiacus J-10-fl NC_010175
Desulfovibrio alaskensis G20 NC_007519
Geobacter metallireducens GS-15 NC_007517
Syntrophobacter fumaroxidans MPOB NC_008554
Halogeometricum borinquense PR3, DSM 11551 | NC_014729
Slackia heliotrinireducens DSM 20476 NC_013165
Roseiflexus castenholzii DSM 13941 NC_009767
Geobacter sulfurreducens PCA NC_002939 .
Halorhabdus utahensis AX-2, DSM 12940 NC_013158 | 63.0 5) 5
Deinococcus deserti VCD115 NC_012526 | 63.0 2 4
Desulfovibrio vulgaris str. Hildenborough NC_002937 | 63.2 2 4
Arthrobacter sp. FB24 NC_008541 | 65.4 3 5
Mycobacterium tuberculosis H37Rv NC_000962 | 65.6 [0 2
Rhodobacter capsulatus SB 1003 NC_014034 | 66.6 1 1 13 21
Deinococcus radiodurans R1 NC_001263 | 66.6 5 4 16 18
Saccharomonospora viridis DSM 43017 NC_013159 | 67.3 1 1 3 20
Mycobacterium smegmatis str. MC2 155 NC_008596 | 67.4
Stackebrandtia nassauensis DSM 44728 NC_013947 | 68.1 8
Rhodobacter sphaeroides 2.4.1 NC_007494 | 68.8 1
Rhodobacter sphaeroides 2.4.1 NC_007494 | 68.8 | 10 10 11 22
Brachybacterium faecium DSM 4810 NC_013172 | 72.0 1 2 9 18
Thermobispora bispora DSM 43833 NC_014165 | 72.4 1 1 4 9
Xylanimonas cellulosilytica DSM 15894 NC_013530 | 72.5 1 2 8| 37
Nocardiopsis dassonvillei DSM 43111 NC_014210 | 72.7 1 1 2 12
Actinosynnema mirum DSM 43827 NC_013093 | 73.7 1 1 6 18
Kineococcus radiotolerans SRS30216 NC_009664 | 74.2 H 3| 21 H
Cellulomonas flavigena DSM 20109 NC_014151 | 74.3 2 4 13 37

Total "Wrong" Errors | 61 | 87 | 272 \ 601 |

Fig. 3 Total wrongly predicted (annotated) genes. GP, GenePRIMP; Pr, Prodigal; GM, GeneMarkS; Gl, Glimmer3

calling methods in preparation for a task such as rean-
notating all public genomes.

An important parameter affecting gene predictions
made by ab initio gene callers is minimum gene length.
Other things being equal, a shorter minimum gene
length yields more candidate ORFs, which can result in
a larger number of genes called. A biologically meaning-
ful minimum gene length is 39 nucleotides (nt), which is
the length of the PatS peptide, the shortest CDS yet de-
tected [17]. However, such a short length generates so
many spurious candidate ORFs that it is not recom-
mended by designers of ab initio gene callers. The de-
fault minimum gene lengths recommended by program
designers are: 90 nt for Prodigal, 81 nt for GeneMarkS,
and 120 nt for Glimmer. These defaults were suggested
by the developers of the corresponding tools to ensure
their optimal performance. Selecting any other minimum
gene length cutoff than 39 nt cannot be biologically justi-
fied but will undoubtedly result in poor performance;

furthermore, it is likely to bias the analysis against one or
another gene finder. For these reasons we chose to
proceed with default cutoffs.

Turning to an analysis of the data regarding the three
ab initio gene callers, it appears that Glimmer3’s “ag-
gressive” algorithm for finding novel coding regions
makes it prone to errors detectable with proteomics,
while Prodigal’s design objective of eliminating false pos-
itives while retaining sensitivity makes it the least prone
to such errors. The version of GeneMarkS tested, which
now has been improved but not yet released, produced
intermediate results. It is possible that the “aggressive”
gene calling of Glimmer might be appropriate for a dif-
ferent set of genomes from novel single cell organisms.
It may also be that the careful modeling of non-coding
regions done by GeneMarkS (Mark Borodovsky, per-
sonal communication) may avoid more false positives
than Prodigal in genomes with exceptionally low coding
percentage and low GC content.
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Gl, Glimmer3

Organism Accession | %GC | GP | Pr | GM Gl

Prochlorococcus marinus CCMP1986 NC_005072 30.8 1 2 4 16
Bacillus cereus ATCC 14579 NC_004722 35.3 1 1 1 1
Bacillus anthracis str. Sterne NC_005945 35.4 1 2 2 13
Cyanothece sp. ATCC 51142 NC_010546 38.0 2 2 9 20
Streptococcus pyogenes M1 GAS NC_002737 | 385 0 0 0 0
Clostridium thermocellum ATCC 27405 NC_009012 39.0 0 0 0 0
Methanosarcina barkeri Fusaro, DSM 804 NC_007355 39.0 7 16 20 33
Anabaena variabilis ATCC 29413 NC_007413 41.4 5 6 25 39
Anaplasma phagocytophilum HZ NC_007797 41.6 2 2 1 6
Yersinia pestis KIM10+ NC_004088 47.7 1 3 8 20
Synechocystis sp. PCC 6803 NC_000911 47.4 2 2 14 35
Synechococcus sp. PCC 7002 NC_010475 49.2 5 10 35 36
Escherichia coli str. K-12 substr. MG1655 NC_000913 50.8 2 2 12 31
Cryptobacterium curtum DSM 15641 NC_013170 50.9 5 6 10 18
Thermococcus gammatolerans EJ3 * NC_012804 54.0 2 4 4 3
Geobacter uraniireducens Rf4 NC_009483 54.2 7| 15 33 54
Pelobacter carbinolicus DSM 2380 NC_007498 55.1 0 0 2 5
Chlorobium tepidum TLS NC_002932 56.5 7 14 43 45
Chloroflexus aurantiacus J-10-fl NC_010175 56.7 3 6 22 30
Desulfovibrio alaskensis G20 NC_007519 578 | 11 17 41 43
Geobacter metallireducens GS-15 NC_007517 59.5 5] 12 35 43
Syntrophobacter fumaroxidans MPOB NC_008554 59.9 1 1 7 14
Halogeometricum borinquense PR3, DSM 11551 | NC_014729 60.0 0 0 8 22
Slackia heliotrinireducens DSM 20476 NC_013165 60.2 2 7 15 17
Roseiflexus castenholzii DSM 13941 NC_009767 60.7 6 7 18 22
Geobacter sulfurreducens PCA NC_002939 60.9 4 10 32 32
Halorhabdus utahensis AX-2, DSM 12940 NC_013158 63.0 5 6 13 11
Deinococcus deserti VCD115 NC_012526 63.0 1 1 8 12
Desulfovibrio vulgaris str. Hildenborough NC_002937 63.2 7 12 33 53
Arthrobacter sp. FB24 NC_ 008541 | 65.4 | 29| 43| 82| 97|
Mycobacterium tuberculosis H37Rv NC_000962 656 | 24| 26 49 78
Rhodobacter capsulatus SB 1003 NC_014034 66.6 | 22 24 54 47
Deinococcus radiodurans R1 NC_001263 66.6 | 26 38 53 57
Saccharomonospora viridis DSM 43017 NC_013159 67.3 7 17 35 49
Mycobacterium smegmatis str. MC2 155 NC_008596 67.4 0 6 27 26
Stackebrandtia nassauensis DSM 44728 NC_013947 68.1 | 10| 21 48 38
Rhodobacter sphaeroides 2.4.1 NC_007494 68.8 6 6 17 14
Rhodobacter sphaeroides 2.4.1 NC_007494 68.8 | 21 30 68 61
Brachybacterium faecium DSM 4810 NC_013172 72.0 | 10 16 31 31
Thermobispora bispora DSM 43833 NC_014165 72.4 1 5 28 16
Xylanimonas cellulosilytica DSM 15894 NC_013530 725 | 20 30 56 53
Nocardiopsis dassonvillei DSM 43111 NC_014210 72.7 4 1 51 34
Actinosynnema mirum DSM 43827 NC_013093 73.7 18 17 50 39
Kineococcus radiotolerans SRS30216 NC_009664 742 | 20 B9 86 77
Cellulomonas flavigena DSM 20109 NC_014151 743 | 14| 22 35 37

Total "Short" Errors 327 | 537 | 1225 | 1428

Fig. 4 Genes with starts predicted downstream from detected starts (as indicated by proteomics). GP, GenePRIMP; Pr, Prodigal; GM, GeneMarkS;

We explored the hypothesis that all gene callers might
show poorer performance at high GC because they con-
tain a higher frequency of alternate start codons and a
lower frequency of stop codons. Our analysis uncovered
two biases in our dataset that prevented rigorous explor-
ation of this hypothesis: increased genome size with in-
creasing GC content (Fig. 6a) and increased number of
peptides with increasing GC content (Fig. 6b). Larger ge-
nomes are likely to have more total errors, and genomes
with more peptides are more likely to have detectable er-
rors. Future research might call for additional proteomics
datasets generated with specific purpose of improving
prokaryotic structural annotation by carefully selecting an
unbiased set of genomes that will shed more light on the
specific reasons for differences in performance of gene
callers across genomes and for specific genomes.

Although post processing by GenePRIMP generally im-
proved upon Prodigal’s predictions, the number of missed

genes was higher in GenePRIMP annotation due to the
presence of pseudogenes. The issue of pseudogene calling
does not arise with ab initio gene callers; they simply
search for coding domains and make no attempt to analyze
whether adjacent coding domains are part of a pseudogene.
With regard to post processing by GenePRIMP, it must be
noted that it does not automatically assume that all genes
with frame disruptions are pseudogenes. Instead, it con-
siders the number of frame disruptions (frameshifts and/or
stop codons) and the length of the gene as compared to its
homologs, and marks as pseudogenes only those with mul-
tiple frame disruptions and/or severe truncations. Further-
more, GenePRIMP retains the coordinates of all fragments
of disrupted CDSs, even when they are annotated as pseu-
dogenes. Frameshifted genes without a “pseudogene” tag
that had confirming peptides were considered good calls
despite their frameshifts, since the confirming peptides in-
dicate that not calling the gene a pseudogene was a correct
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Organism A ion | %GC | Pr | GP | GM | GI
Prochlorococcus marinus CCMP1986 NC_005072 | 30.8 3 4 2 3
Bacillus cereus ATCC 14579 NC_004722 | 35.3 0 4 1 0
Bacillus anthracis str. Sterne NC_005945 | 35.4 0 3 0 1
Cyanothece sp. ATCC 51142 NC_010546 | 38.0 2 6 2 1
Streptococcus pyogenes M1 GAS NC_002737 | 38.5 1 2 2 1
Clostridium thermocellum ATCC 27405 NC_009012 | 39.0 1 0 1 2
Methanosarcina barkeri Fusaro, DSM 804 NC_007355 | 39.0 4] 13 0 4
Anabaena variabilis ATCC 29413 NC_007413 | 41.4 3 9 1 4
Anaplasma phagocytophilum HZ NC_007797 | 41.6 0 2 0 0
Yersinia pestis KIM10+ NC_004088 | 47.7 0 1 0 1
Synechocystis sp. PCC 6803 NC_000911 | 474 0 7 7 3
Synechococcus sp. PCC 7002 NC_010475 | 49.2 2| 15 7| 15
Escherichia coli str. K-12 substr. MG1655 NC_000913 | 50.8 1 4 3 8
Cryptobacterium curtum DSM 15641 NC_013170 | 50.9 2 3 3 6
Thermococcus gammatolerans EJ3 * NC_012804 | 54.0 1 7 1 6
Geobacter uraniireducens Rf4 NC_009483 | 542 | 14| 12| 12| 16
Pelobacter carbinolicus DSM 2380 NC_007498 | 55.1 0 2 1 4
Chlorobium tepidum TLS NC_002932 | 56.5 9| 10 6 9
Chloroflexus aurantiacus J-10-fl NC_010175 | 56.7 2] M 6 4
Desulfovibrio alaskensis G20 NC_007519 | 57.8 5| 13| 10| 18
Geobacter metallireducens GS-15 NC_007517 | 59.5 12| 15| 17| 18
Syntrophobacter fumaroxidans MPOB NC_008554 | 59.9 2| 12 6 8
Halogeometricum borinquense PR3, DSM 11551 NC_014729 | 60.0 2 0 3 3
Slackia heliotrinireducens DSM 20476 NC_013165 | 60.2 0 1 2 0
Roseiflexus castenholzii DSM 13941 NC_009767 | 60.7 0 8| 10| 14
Geobacter sulfurreducens PCA NC_002939 | 60.9 1 8| 15| 11
Halorhabdus utahensis AX-2, DSM 12940 NC_013158 | 63.0 3 9| 18| 12
Deinococcus deserti VCD115 NC_012526 | 63.0 5 5 8 7
Desulfovibrio vulgaris str. Hildenborough NC_002937 | 63.2| 10| 14| 15| 18
Arthrobacter sp. FB24 NC_008541 | 65.4 4 5| 14| 15
Mycobacterium tuberculosis H37Rv NC_000962 | 65.6 5 5| 11 15
Rhodobacter capsulatus SB 1003 NC_014034 | 66.6 1 13| 17| 22
Deinococcus radiodurans R1 NC_001263 | 66.6 | 14| 14| 24| 22
Saccharomonospora viridis DSM 43017 NC_013159 | 67.3 2 2 8 1
Mycobacterium smegmatis str. MC2 155 NC_008596 | 67.4 4 0 5 6
Stackebrandtia nassauensis DSM 44728 NC_013947 | 68.1 11 13| 18| 21
Rhodobacter sphaeroides 2.4.1 NC_007494 | 68.8 7 5 8 7
Rhodobacter sphaeroides 2.4.1 NC_007494 | 68.8 14| 13| 23| 22
Brachybacterium faecium DSM 4810 NC_013172 | 72.0 5 5 5 8
Thermobispora bispora DSM 43833 NC_014165 | 72.4 2 4 4 3
Xylanimonas cellulosilytica DSM 15894 NC_013530 | 72.5 3 5 5| 13
Nocardiopsis dassonvillei DSM 43111 NC_014210 | 72.7 1 5 1 1
Actinosynnema mirum DSM 43827 NC_013093 | 73.7 0 5 3 4
Kineococcus radiotolerans SRS30216 NC_ 009664 | 742 5[ 11| 7 H
Cellulomonas flavigena DSM 20109 NC_014151 | 74.3 7 8| 11| 85

Total "Missed" Errors 180 | 313 | 318 | 430 |
Fig. 5 Genes missed by gene prediction (annotation) methods. Pr, Prodigal; GP, GenePRIMP; GM, GeneMarkS; Gl, Glimmer3

call even though frameshifts were present. On the other
hand, GenePRIMP pseudogene calls with confirming pep-
tides were scored as “missed,” since the confirming pep-
tides indicate that the gene in question is a real gene, not a
pseudogene, despite the fact that it may have multiple
frameshifts due to sequencing and assembly errors (Fig. 7).
This explains why missed gene errors for GenePRIMP are
higher than Prodigal’s.

A similar situation occurs when sequencing error intro-
duces an interrupted gene. GenePRIMP attempts to detect
these instances and joins coding domains it deems to have
likely been interrupted by the introduction of a spurious
stop codon due to sequencing error. The partial coding do-
mains are annotated as “exons,” even though they are not
pieces of a gene interrupted by introns (as in eukaryotes),
but rather pieces of a gene with spurious interruptions in-
troduced by sequencing errors that result in frameshifts
and internal stop codons. The missed gene data suggests
that the GenePRIMP algorithm for detecting and

annotating sequencing error is reliable and appropriate, al-
beit with a novel interpretation of “exon.” For similar rea-
sons, NCBI has recently changed the guidelines for
annotation of interrupted genes in RefSeq genomes (per-
sonal communication). Interrupted genes are annotated as
partial coding regions if their translated protein products
have significant similarity to full-length proteins in closely
related genomes.

Conclusions

Proteomics is a valuable aid to evaluating and improving
gene-calling programs. When applied to 45 replicons of
interest to the participants of this study, a combination of
ab initio gene calling by Prodigal followed by Gene-
PRIMP post processing had a lower estimated, oper-
ational error rate than GeneMarkS followed by
Glimmer3. We have also compared these data against
the RefSeq pipeline (version available in Spring 2013)
and the results showed that the its overall performance
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was between that of GeneMark and Glimmer (data not
shown). Nonetheless, due to inherent biologically-based
limitations, we cannot conclude that proteomics alone
should be used to define a best practice as the basis for
a general standard in prokaryotic structural genome an-
notation; this must wait for better tools and expanded
datasets that cover more taxonomic groups without
biases in GC content, genome length, and gene expres-
sion levels. Some participants have already improved
their pipelines, especially gene data models and refer-
ence databases, with the goal of one day achieving a
much needed standard. Moving forward, a consensus

approach, employing multiple gene callers and additional
forms of expression verification such as RNA-seq, should
be also explored as the possible basis for a standard in
prokaryotic structural genome annotation.

Methods

Selection of genomes of interest

The genomes of interest had at least one of these
characteristics:

1. The annotation was thought to be in need of
updating.

200 [1000000

| I
DeiRad|1701| 02|5|

[ 1000800

Fig. 7 Artemis visualization of peptides refuting incorrect pseudogene call. The three boxes with thick black outlines and yellow backgrounds are
CDS fragments of a single gene (DeiRad1_01026) disrupted by two frameshifts. The green boxes represent detected peptides
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wrong
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Fig. 8 Schematic representation of scoring errors in gene calling. Right and left pointing arrows indicate genes called on positive and negative
genome strand respectively. Boxes represent peptides detected by proteomics. Dashed contours show the extension of a gene or missed gene

short

2. The organism was well studied; preferably a type
strain whose annotation had been heavily curated.

3. The genome added taxonomic diversity to the
dataset.

Because of the genome selection criteria, the sample
set is diverse and relevant to the participants, but it can-
not be considered a representative random sample of ge-
nomes in nature or in public databases. The average GC
content was 57.7 %, with a range of 30.8 % to 74.3 %.
The average genome size was 4.3 Mbp with a range of
1.5 Mbp to 8.2 Mbp.

Collection of data and loading to MySQL warehouse

A mySQL warehouse of proteogenomic information was
created by acquiring, transforming, and loading publically
available gene calls and proteomic data. The data sources
for gene calls and peptides are shown in Additional file 1
and are available at http://portal.nersc.gov/dna/microbial/
prokpubs/SIGS_proteogenomics/. GeneMarkS, Glimmer3,
and Prodigal-2.5 in .gff format were downloaded from
RefSeq public ftp site at the time of this study (Spring,
2013). These gene call coordinates were extracted from
the .gff files and loaded into the warehouse. It must be
noted that as a result of this study, development of a new
version of GeneMarkS has started (GeneMarkS-2), how-
ever, predictions made by the new version have not been
used in this study. The PNNL peptide data was also pro-
vided in .gff format, with mapping to its associated Gen-
Bank nucleotide sequence, allowing easy extraction and
loading into MySQL. The non-PNNL peptide data was
often not provided in .gff format, and sometimes did not
have end coordinates. However, it always included individ-
ual peptide sequences, allowing each peptide to be
mapped to its coordinates in the corresponding GenBank
fasta file. Mapping was accomplished using a Perl script
that searched for exact, unique matches in one of the six
translation frames of the corresponding nucleotide se-
quence for the peptide. Short peptides that could not be
mapped unambiguously were discarded. Unambigously
mapped peptides were loaded into MySQL.

Identification and analysis of peptides conflicting with
gene calls

A SQL script identified peptides whose boundaries were
partially or fully outside of a gene call. A Perl script pro-
duced a .gff file of conflicting peptides for each gene
calling method. This .gff file of peptides and its corre-
sponding nucleotide sequence were loaded into Artemis.
A JGI Quality Assurance Analyst scored the gene associ-
ated with the conflicting peptide as wrong, missed, or
short (Fig. 8). When conflicting peptides lay in the
wrong reading frame relative to the gene call, the gene
call was scored as “wrong.” When at least two conflict-
ing peptides extended upstream of the predicted start
site, the gene call was scored “short.” When conflicting
peptides were in a region without any gene calls the im-
plied gene was scored as “missed.” The false discovery
rate (FDR) for the majority of the data was reported as
0.3 % [8]. In order to further reduce the rate of false pos-
itives, we required that each missed, wrong or short gene
was detected by at least 2 non-redundant peptides,
which would reduce the false positive rate to 0.09 %. All
missed, wrong and short genes were additionally verified
by BLASTp with an e-value of 1.0e-05 and by conserved
motif and domain analysis.

Additional file

Additional file 1: Replicons Used in This Study. This is an Excel file
listing the GenBank accession numbers of the 45 replicons used in

this study, along with the number of peptides, the RefSeq source for
gene calls, and the file name and publication reference for the peptide
sources.
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