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Archaeoglobus profundus (Burggraf et al. 1990) is a hyperthermophilic archaeon in the eu-
ryarchaeal class Archaeoglobi, which is currently represented by the single family Archaeog-
lobaceae, containing six validly named species and two strains ascribed to the genus 
'Geoglobus' which is taxonomically challenged as the corresponding type species has no va-
lidly published name. All members were isolated from marine hydrothermal habitats and are 
obligate anaerobes. Here we describe the features of the organism, together with the com-
plete genome sequence and annotation. This is the second completed genome sequence of a 
member of the class Archaeoglobi. The 1,563,423 bp genome with its 1,858 protein-coding 
and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. 

Introduction 
Strain AV18T (= DSM 5631 = JCM 9629 = NBRC 
100127) is the type strain of the species Archaeog-
lobus profundus [1,2]. It is the second of five spe-
cies currently ascribed to the genus Archaeoglo-
bus, of which the type species is A. fulgidus, de-
scribed in 1988 [3]. Strains for all Archaeoglobus 
species were isolated from marine hydrothermal 
systems, yet A. fulgidus originates from a shallow 
marine hydrothermal system at Volcano, Italy [3] 
whereas A. profundus was isolated from a deep sea 

hot vent area (depth: 2000 m) at Guaymas, Mexico 
[1]. The genome sequence of the type strain from 
a third species of the Archaeoglobaceae – Ferrog-
lobus placidus [4] – has been completed very re-
cently (Feb 2010) at the Joint Genome Institute 
(CP001899). Here we present a summary classifi-
cation and a set of features for A. profundus strain 
AV18T, together with the description of the com-
plete genomic sequencing and annotation. 
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Classification and features 
Six species with validly published names and two 
strains ascribed to the not invalidly published 
genus 'Geoglobus'  [5,6] are currently assigned to 
the Archaeoglobi, all of which were isolated from 
marine hydrothermal systems ranging from shal-
low water to deep sea habitats of 4,100 m depth. 
Five species thereof are accounted to the genus 
Archaeoglobus: A. profundus, A. fulgidus, A. venefi-
cus [7], A. infectus [8] and A. solfaticallidus [9]. 
Publications about the taxonomy of the Arc-
haeoglobi often mention another species of this 
genus (“A. lithotrophicus”) isolated from deep oil 
reservoirs [10], but no formal species description 
has been published, therefore this ninth species 
is excluded from comparisons shown in this 
work. 
Based on 16S rRNA gene sequences, the closest 
related type strain is F. placidus [4] with 96.5% 
sequence identity, while the other type strains of 
the genus Archaeoglobus share 91.9-95.0% se-
quence identity [11], with the non validly pub-
lished ‘Geoglobus’ strains inbetween (94.4%). 
The nearest related genera are Pyrococci and 
Thermococci with about 86% sequence identity. 
Searching the NCBI non-redundant nucleotide 
database with the 16S rRNA sequence of A. pro-
fundus, 73 sequences of at least 90% sequence 
identity were found. Fifty of these sequences be-
long to uncultured archaeal phylotypes from en-
vironmental samples, all others were identified 
as belonging to the Archaeoglobaceae. These 
samples originated from marine hydrothermal 
systems at the Mid-Atlantic Ridge [12,13] and 
AJ969472, the East Pacific Rise [14,15], Izu-Bonin 
Arc [16], and Southern Mariana Trough 
(AB293221, AB293225, AB293242, AB293237) 
in the Western Pacific Ocean, Iheya Basin (Oki-
nawa Trough) in the East China Sea [17,18], the 
Gulf of California [19,20], a seafloor borehole at 
Juan de Fuca Ridge in the Pacific Ocean [21], from 
high temperature oil reservoirs [22], and from 
terrestrial hot springs in Europe [23], North 
America [24-26], East Asia (FJ638514, FJ638518-
23 FJ638504, FJ638508) and Southeast Asia [27]. 
These numerous findings (as of January 2010) 
corroborate and extend the early assumption [1] 
that members of the Archaeoglobaceae may be 
widely distributed across hydrothermal habitats. 
Figure 1 shows the phylogenetic neighborhood of 
A. profundus AV18T in a 16S rRNA based maxi-
mum likelihood [35] phylogenetic tree, which is 

in agreement with earlier inferences of the phy-
logeny of this taxon [5,6,8,9,31]. Remarkably, A. 
profundus clusters together with F. placidus, 
apart from the cluster containing the other three 
species of the genus Archaeoglobus, indicating 
polyphyly of the genus and therefore possibly the 
need for taxonomic emendation, as discussed 
previously [9].The sequence of the single 16S 
rRNA gene copy in the genome of A. profundus 
AV18T is identical with the previously published 
16S rRNA gene sequence derived from DSM 5631 
(AJ299219), which contained five ambiguous 
base calls. 
Cells of A. profundus AV18T are reported as Gram 
stain-negative, highly irregular cocci, occurring 
singly or in pairs (Figure 2 and Table 1) [1]. They 
have dimensions of approximately 0.7-1.3 µm x 
1.4-1.9 µm. The organism shows a blue-green 
fluorescence at 420 nm UV light, indicating the 
presence of coenzyme F420, and contains a cell 
envelope composed of subunits covering the 
membrane, which is visible in thin sections [1]. 
Motility and flagella were not observed [1,43] in 
contrast to all other members of this genus, with 
the exception of A. sulfaticallidus, which was de-
scribed very recently [9]. 
Growth of strain AV18T occurs between 65 and 
90°C with an optimum at 82°C, at a pH ranging 
from 4.5 to 7.5 and a concentration of NaCl be-
tween 0.9 and 3.6% [1]. A. profundus is mixo-
trophic under strictly anaerobic conditions [1] 
with hydrogen as an essential energy source and 
sulfate, thiosulfate and sulfite as electron accep-
tors, producing H2S [1]. 
All members of the genus Archaeoglobus can util-
ize hydrogen as electron donor, in addition, A. 
fulgidus, A. veneficus and A. solfaticallidus can use 
at least a subset of the organic compounds pyru-
vate, formate, acetate or lactate [9,43]. Electron 
acceptors are those of A. profundus (see above) 
except for A. veneficus and A. infectus) which are 
incapable of utilizing sulfate [9,43]. Carbon 
sources can be CO2 (except for A. profundus and 
A. infectus) or organic compounds [8,9,43]. Due 
to differences mainly in metabolism, a new genus 
was introduced for F. placidus [4]: Unlike pre-
viously described Archaeoglobales, F. placidus is 
capable of growing by nitrogen reduction, and 
oxidation of ferrous iron or sulfide, but unable to 
reduce sulfate [4]. Besides, it is the only reported 
case of an archaeon which can anaerobically 
oxidize aromatic compounds, by reduction of 
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Fe(III) [37]. Other published species of this class 
are “Geoglobus ahangari” [5] and the recently re-
ported “G. acetivorans” [6]. The genus “Geoglo-
bus” again separates from the other Archaeoglo-
baceae by characteristic metabolic features: in 

cultivation experiments, the sole electron accep-
tor used by these species is Fe(III) and they are 
reported to be the first hyperthermophilic organ-
isms exhibiting growth upon anaerobic oxidation 
of long chain fatty acids [5,6]. 

 

 
Figure 1. Phylogenetic tree highlighting the position of A. profundus AV18T relative to the other type strains 
within the family. The tree was inferred from 1,334 aligned characters [28,29] of the 16S rRNA gene sequence 
under the maximum likelihood criterion [30] and rooted in accordance with a current taxonomy [31]. The 
branches are scaled in terms of the expected number of substitutions per site. Numbers above branches are 
support values from 1,000 bootstrap replicates if larger than 60%. Lineages with type strain genome sequenc-
ing projects registered in GOLD [32] are shown in blue, published genomes in bold: Methanococcus aeolicus 
(CP000743), Methanocaldococcus fervens (CP001696), Methanocaldococcus jannaschii [33] and A. fulgidus 
[34], two of the very first organisms whose genome sequences have been revealed. 

 
Figure 2. Scanning electron micrograph of cells of A. profundus strain AV18T 
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Table 1. Classification and general features of A. profundus strain AV18T according to the MIGS recommendations [36] 

MIGS ID Property Term Evidence code 

 Classification 

Domain   Archaea TAS [38] 
Phylum   Euryarchaeota TAS [39] 
Class       Archaeoglobi TAS [40] 
Order      Archaeoglobales TAS [41] 
Family    Archaeoglobaceae TAS [99] 
Genus      Archaeoglobus TAS [3] 
Species   Archaeoglobus profundus TAS [1] 
Type strain AV18 TAS [1] 

 Gram stain negative TAS [1] 
 Cell shape coccoid, highly irregular TAS [1] 
 Motility not motile TAS [1] 
 Sporulation nonsporulating NAS 
 Temperature range 65-90°C TAS [1] 
 Optimum temperature 82°C TAS [1] 
 Salinity >9-36 g/l (optimum 18 g/l) TAS [1] 
MIGS-22 Oxygen requirement obligate anaerobic TAS [1] 

 Carbon source acetate, pyruvate, lactate, yeast extract, meat 
extract, peptone, acetate containing crude oil TAS [1] 

 Energy source H2 TAS [1] 
MIGS-6 Habitat deep sea hydrothermal system TAS [1] 
MIGS-15 Biotic relationship free-living NAS 
MIGS-14 Pathogenicity none TAS [100] 
 Biosafety level 1 TAS [100] 
 Isolation cores of hot sediment TAS [1] 
MIGS-4 Geographic location Guaymas, Mexico TAS [1] 
MIGS-5 Sample collection time before or around 1989 NAS 
MIGS-4.1 
MIGS-4.2 

Latitude 
Longitude 

14.84 
-17.23 NAS 

MIGS-4.3 Depth -2,000 m TAS [1] 
MIGS-4.4 Altitude -2,000 m TAS [1] 

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author State-
ment (i. e. a direct report exists in the literature); NAS: Non-traceable Author Statement (i. e. not directly 
observed for the living, isolated sample, but based on a generally accepted property for the species, or 
anecdotal evidence). These evidence codes are from the Gene Ontology project [42]. If the evidence code 
is IDA, then the property was directly observed for a living isolate by one of the authors or an expert men-
tioned in the acknowledgements. 

Chemotaxonomy 
In A. profundus, acyclic C40 tetraether, an un-
known compound at an Rf in the range of cyclized 
glycerol-dialkyl-glycerol tetraethers, and a C20:C20 
diether constitute the membrane core lipids, whe-
reas C20:C25 diethers are absent, similar to A. fulgi-
dus [1]. However, A. profundus differs from A. ful-
gidus in the composition of complex lipids, con-
sisting of two phosphoglycolipids at Rf 0.10 and 

0.13, and four glycolipids at Rf 0.40, 0.45, 0.60, 
0.65, while the latter contains two phosphoglyco-
lipids at Rf 0.10 and 0.215, one phospholipid at Rf 
0.30 and one glycolipid at Rf 0.60 [1]. The cell 
envelope consists of an S-layer and is rifampicin 
and streptolydigin resistant [1]. 
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Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [44], and is part 
of the Genomic Encyclopedia of Bacteria and Arc-
haea project [45]. The genome project is depo-

sited in the Genomes OnLine Database [32] and 
the complete genome sequence is available in 
GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome Insti-
tute (JGI). A summary of the project information is 
shown in Table 2. 

Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Three 454 pyrosequence libraries, standard 
and two paired end (8 kb and 15kb insert sizes) 
and one Illumina library (300bp inset size) 

MIGS-29 Sequencing platforms 454 Titanium, Illumina 

MIGS-31.2 Sequencing coverage 136× 454 Titanium, 30× Illumina GAii 

MIGS-30 Assemblers Newbler, phrap 

MIGS-32 Gene calling method Prodigal, GenePRIMP 

 INSDC ID 
CP001857 (chromosome) 
CP001858 (plasmid) 

 GenBank Date of Release January 20, 2010 

 GOLD ID Gc01188 
 NCBI project ID 32583 

 Database: IMG-GEBA 2501939633 

MIGS-13 Source material identifier DSM 5631 

 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
A. profundus AV18T, DSM 5631, was grown anae-
robically in DSMZ medium 519 (A. profundus me-
dium) [46] at 85°C. DNA was isolated from 1-1.5 g 
of cell paste using Masterpure Gram-positive DNA 
purification kit (Epicentre) with a modified proto-
col for cell lysis, st/DL according to Wu et al. [45]. 

Genome sequencing and assembly 
The genome of strain AV18T was sequenced using 
a combination of 454 and Illumina sequencing 
platforms. All general aspects of library construc-
tion and sequencing can be found at 
http://www.jgi.doe.gov/. Pyrosequencing reads 
were assembled using the Newbler assembler ver-
sion 2.0.0-PostRelease-10/28/2008 (Roche). 
Possible misassemblies were corrected with Dup-
finisher [47] or transposon bombing of bridging 
clones (Epicentre Biotechnologies, Madison, WI). 
Gaps between contigs were closed by editing in 
Consed, by custom primer walk or PCR amplifica-
tion. A total of 26 finishing reads were produced 
to close gaps, to resolve repetitive regions, and to 

raise the quality of the finished sequence. Illumina 
reads were used to improve the final consensus 
quality using an in-house developed tool (the Po-
lisher, unpublished). The error rate of the com-
pleted genome sequence is less than 1 in 100,000. 
Pyrosequence provided 136× coverage of the ge-
nome and the final assembly contains 718,930 
454-pyrosequence reads. 

Genome annotation 
Genes were identified using Prodigal [48] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [49]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [50]. 
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Genome properties 
The 1,563,423 bp genome consists of a 1,560,622 
bp chromosome and a 2,801 bp plasmid with an 
overall G+C content of 42.0% (Table 3 and Figure 
3). Of the 1,909 genes predicted, 1,858 are pro-
tein-coding genes, and 52 RNAs; 35 pseudogenes 
were also identified. The majority of the protein-
coding genes (60.0%) were assigned a putative 
function while the remaining ones were annotated 
as hypothetical proteins. The distribution of genes 
into COGs functional categories is presented in 
Table 4. 

Insights from the genome sequence 
Replicons 
A. profundus AV18T is the second type strain of the 
Archaeoglobi with a fully sequenced genome to be 
published [34]. In contrast to A. fulgidus, the ge-
nome of AV18T has a small cryptic plasmid of 
2,801 bp that contains four genes which appear to 
have no other function than the maintenance of 
this replicative unit. It displays a slightly lower 
G+C content (40%) than the rest of the genome 
and is negatively supercoiled, as demonstrated for 
pGS5 by López-García et al. [51]. The version of 
the plasmid presented here differs in three posi-
tions from the sequence of pGS5, resulting in one 
split gene. 

Origin of replication 
Unlike in bacteria, the archaeal initiation of the 
replication fork can occur at more than one site 

(origin of replication, ORI) on the chromosome 
[59], which heuristics used for bacteria fail to lo-
cate. Likewise, the ORI in A. profundus could not 
be detected by the use of Ori-Finder [52], which is 
consistent with several attempts to discover the 
replication origin in A. fulgidus by such methods 
[53-57]. Well-conserved replication signature pat-
terns are known from both Crenarchaea and Eu-
ryarchaea [59]. In the genome of A. fulgidus, two 
almost identical ORB elements of 22 bases length 
are located at 65.6% of the length of the genome, 
which is in agreement with the position of the 
(single) ORI of this organism, identified by expe-
rimental origin mapping [58]. 
Pattern searching in the non-coding regions of the 
genome sequence of AV18T revealed a situation 
very much comparable to that of A. fulgidus: Two 
identical, but inverted ORB elements (TTTCCA-
CAGGAAATAAAGGGGT) were identified between 
genes Arcpr_1540 and Arcpr_1543; with 1,264 
bases of distance (containing two hypothetical pro-
teins) between each other, differing in only two 
bases from either ORB element in A. fulgidus. This 
position marks the predicted origin of replication in 
A. profundus, which is likewise far away from the 
(single copy of) cdc 6 (generally considered as 
marker gene for the ORI) Arcpr_0001, located at 
the very beginning of the chromosome sequence. 
The presence of further active chromosomal ORIs 
cannot be excluded, but the strong similarity to the 
situation in A. fulgidus suggests that the genome of 
AV18T also contains only one origin of replication. 

Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 1,563,423 100.00% 
DNA coding region (bp) 1,474,996 94.34% 
DNA G+C content (bp) 656,709 42.00% 
Number of replicons 2  
Extrachromosomal elements 1  
Total genes 1,909 100.00% 
RNA genes 52 2.67% 
rRNA operons 1  
Protein-coding genes 1,858 97.33% 
Pseudo genes 35 1.83% 
Genes with function prediction 1,145 59.98% 
Genes in paralog clusters 167 8.75% 
Genes assigned to COGs 1,267 66.37% 
Genes assigned Pfam domains 1,301 68.15% 
Genes with signal peptides 141 7.39% 
Genes with transmembrane helices 328 17.18% 
CRISPR repeats 0  
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Figure 3. Graphical circular map of the genome (without the 2.8 kbp plasmid). From outside to the center: Genes 
on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes 
(tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 

Shine-Dalgarno sequences 
Before the start of the translation process, the re-
cruitment of a ribosome to the mRNA is mediated 
by a species-specific DNA motif, the Shine-
Dalgarno (SD) sequence [60], constituting the ri-
bosome binding site (RBS) closely upstream of the 
coding region. In order to identify the SD consen-
sus sequence in A. profundus, the Pattern Discov-
ery Tool (oligo-analysis) of RSAT [61] was used 
for de-novo motif discovery within 50 bp regions 

upstream of all protein-coding genes in the ge-
nome of AV18T, with a background model esti-
mated from its whole genome nucleotide se-
quence. The most frequently detected heptanuc-
leotide was GGAGGTG, matching the complemen-
tary sequence one base shifted from the 3'-end of 
the 16S rRNA: TCTGCGGCTGGATCACCTCCT-3' 
(bold: matching sequence)  is obviously involved 
in ribosome recruitment. 
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Table 4. Number of genes associated with the general COG functional categories 

Code value %age Description 

J 150 8.1 Translation, ribosomal structure and biogenesis 

A 2 0.1 RNA processing and modification 

K 67 3.6 Transcription 

L 79 4.3 Replication, recombination and repair 

B 4 0.2 Chromatin structure and dynamics 

D 13 0.7 Cell cycle control, cell division, chromosome partitioning 

Y 0 0.0 Nuclear structure 

V 4 0.2 Defense mechanisms 

T 46 2.5 Signal transduction mechanisms 

M 40 2.2 Cell wall/membrane biogenesis 

N 18 1.0 Cell motility 

Z 0 0.0 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 21 1.1 Intracellular trafficking and secretion 

O 53 2.9 Posttranslational modification, protein turnover, chaperones 

C 109 5.9 Energy production and conversion 

G 41 2.2 Carbohydrate transport and metabolism 

E 110 5.9 Amino acid transport and metabolism 

F 47 2.5 Nucleotide transport and metabolism 

H 85 4.6 Coenzyme transport and metabolism 

I 24 1.3 Lipid transport and metabolism 

P 57 3.1 Inorganic ion transport and metabolism 

Q 7 0.4 Secondary metabolites biosynthesis, transport and catabolism 

R 201 10.8 General function prediction only 

S 169 9.1 Function unknown 

- 642 34.6 Not in COGs 

 
Using Prodoric Virtual Footprint software [62], 
the frequencies of heptanucleotides which are 
able to match (allowing one mismatch) the 3'-end 
of the 16S rRNA were determined. A significant 
drop was observed when the seven base window 
reached the base C at position eleven of the re-
verse complement 16S rRNA terminus (Table 5), 
indicating that interactions with the RBS are re-
stricted to the ten most distal bases. 

In total, the upstream regions of 950 genes match 
at least one of the four most frequently observed 
heptanucleotides, representing 51% of all protein-
coding genes. Bakke et al. [63] recently evaluated 
three current genome annotation pipelines on the 
basis of the Halorhabdus utahensis genome [64] 
and recommended the integration of species-
specific SD-motifs into the ORF-calling process of 

automated genome annotation pipelines, in order 
to determine the correct start codons of protein-
coding genes. In several members of the Archaea 
(group A sensu Torarinsson et al. [65]), however, 
the benefits of this approach might be limited by 
the fact that single genes and first genes of ope-
rons are often leaderless (in A. fulgidus: 50%), 
thus containing no SD sequence [65]. Despite the 
expected abundance of leaderless transcripts, the 
percentage of genes preceded by SD sequences is 
significantly higher than the percentage observed 
in the genome of H. utahensis [64] based on the 
same annotation pipeline: Scanning 50 bp areas 
upstream of all H. utahensis genes with the most 
common heptanucleotide (allowing one mis-
match) matched in only 8.6% of the respective 
areas of all genes, while the genome of strain 
AV18T reached 30.6%. 
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Table 5. Reverse complement of the 16S rRNA 3'-end 

scanning 
heptanucleotide 

abs. frequency rel. frequency 

AGGAGGT 555 29.9% 

GGAGGTG 569 30.6% 

GAGGTGA 565 30.4% 

AGGTGAT 549 30.0% 

GGTGATC 283 15.2% 

GTGATCC 88 4.7% 

TGATCCA 89 4.8% 

GATCCAG 53 2.9% 

ATCCAGC 58 3.1% 

TCCAGCC 45 2.4% 

Assessment of the frequencies of heptanucleotide sections 
with one acceptable mismatch in 50 bp regions upstram 
of all genes in AV18T. 

 
The heptanucleotide matching the very end of the 
16S rRNA terminus is slightly less represented 
than the following shifted motifs, indicating that 
the final T of the 16S terminus might not be as es-
sential for the RBS recognition as the preceding 
bases. This is consistent with recent insight into 
crystal structure and dynamics of the SD helix in 
an initiation-like 70S ribosome complex of Ther-
mus thermophilus, showing base pairings of posi-
tions two to nine from the 3'-end of the 16S rRNA 
and the SD sequence of the mRNA, excluding an 
interaction with the very last base of the rRNA 
[66]. Transferring these results to the analysis of 
the SD sequence in strain AV18T, the comparative-
ly high observed frequency of motif AGGAGGT is 
likely due to the setting of the motif scan, which 
allows one mismatch. The same is true for the op-
posite side of the SD sequence, and the reason for 
the high frequency of motif AGGTGAT. Therefore, 
the predicted complete, species-specific consensus 
RBS motif of A. profundus is the 8-base pattern 
GGAGGTGA, which represents the functional se-
quence area of interaction in the initial contact 
between ribosome and mRNA in A. profundus. 

tRNAs and Codon usage 
By the use of tRNAscan-SE [67], a total of 48 
tRNAs were identified and the coverage of all 
possible codons was assessed. Two codons are 
redundantly represented by tRNAs: AUC (two cop-

ies of Ile-tRNA gene) and AUG (four copies of Met-
tRNA gene). None of the codons ending on U are 
are present. Apart from these, AUA is the only co-
don that is not directly associated with a tRNA. 
The translation of this codon is strictly dependent 
on wobble modifications that are carried out by 
different modification systems in the three do-
mains of life. Insight into the archaeal mechanism 
of AUG translation was gained very recently [68], 
involving the polyamine-conjugated modified base 
2-agmatinylcytidine (agm2C) at the wobble posi-
tion of the corresponding tRNA, and the enzyme 
tRNAIle-agm2C synthetase (TiaS), which catalyzes 
the agm2C formation using agmatine and ATP. A 
candidate for this enzyme in A. profundus AV18T is 
Arcpr_0572, identified by sequence similarity with 
the experimentally confirmed TiaS gene in A. ful-
gidus (AF2259). Arcpr_0572 displays the highest 
similarity to AF2004, one of three genes belonging 
to the same gene family in A. fulgidus. Therefore, a 
bidirectional best BLAST hit to the experimentally 
confirmed TiaS gene in A. fulgidus cannot be iden-
tified in A. profundus. 
Redundant or missing representation of codons by 
tRNAs has apparently no effect on the frequency 
of codon usage (determined by program 
gp_cusage; data not shown), as both are used in 
some cases more frequently, in other cases less 
frequently than the corresponding alternative co-
don which is allocated exactly one tRNA. The 
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tRNAs for Trp, Tyr and one of the Met-tRNAs con-
tain introns of 60, 17 and 26 bases length, respec-
tively. Concerning the frequencies of the utilized 
start codons, 84.6% of the protein-coding genes 
start with AUG, while the frequency of this start 
codon in A. fulgidus is considerably lower (76.5%). 
The frequency of the alternative start codon GUG 
(10.4%) in A. fulgidus is almost twice as high 
(19.5%), reflecting the difference in GC-content (A. 
fulgidus: 48.6%), while UUG is rare in both (A. pro-
fundus: 4.4%, A. fulgidus: 3.2%). The correct pre-
diction of start codons plays a decisive role in the 
ORF-calling process. In a comparison between 
three current genome annotation pipelines, 90% 
of the predicted genes shared the same stop co-
dons, while only 48% thereof agreed in start co-
don prediction, resulting in different gene lengths 
[63]. The average gene length in the genome of 
AV18T is only 773 bp, while A. fulgidus genes are 
on average 815 bp long, a difference which – along 
with the different frequencies of alternative start 
codons – might also be caused by the different an-
notation pipelines used for both genomes [63]. 

Comparative genomics 
The genome sequencing for the type strain of 
another species of the Archaeoglobaceae, F. placi-
dus AEDII12DOT, provided the opportunity for a 
genome-wide comparative analysis among three 
species of the Archaeoglobaceae. All of these ana-
lyses were performed using IMG online tools [69] 
with the default settings, unless stated otherwise. 
Metabolic pathways were reconstructed by the 
combination of online resources such as NCBI, 
KEGG [70], ), BRENDA [71] and MetaCyc [72]. Or-
thology of genes was determined by bidirectional 
best BLAST [73] hits and the comparison of func-
tional groups using EBI InterProScan [74]. Phylo-
genetic comparisons are restricted to validly 
named species only. This limitation excludes e.g. 
‘Nanoarchaeum equitans’, ‘Cenarchaeum symbi-
osum’ and strains assigned to the category Candi-
datus. 
The genome size of A. profundus AV18T (1.6 Mb) is 
significantly smaller than those of A. fulgidus (2.2 
Mb, 2,468 protein-coding genes [34]) and F. placi-
dus (2.2 Mb, 2,622 protein-coding genes). Figure 4 
shows the numbers of shared genes in a Venn-
diagram. A. fulgidus and F. placidus share a consi-
derable number of genes that are not present in A. 
profundus. These genes are associated with a wide 
range of functions and pathways, some of which 

will be discussed below in more detail. This frac-
tion of genes includes the seven subunits of car-
bon monoxide dehydrogenase, two of the key en-
zymes for the β-oxidation of fatty acids, and genes 
belonging to the CRISPR/Cas system. 
The genome of strain AV18T contains only a small 
percentage (8.7%) of paralogous genes, as com-
pared to 12.8% in F. placidus and 17.1% A. fulgi-
dus (http://img.jgi.doe.gov). Likewise, the percen-
tage of genes with signal peptides in strain AV18T 
(7.4%) is considerably lower than those of A. ful-
gidus (10.8%) and F. placidus (10.1%. 

DNA-polymerase genes 
To date, four distinct DNA-dependent DNA-
polymerase families are known. They are specifi-
cally distributed across the three domains of life, 
with the unrelated B and D family polymerases 
being present in Archaea [75]., The evolutionary 
divergence further discriminates Crenarchaeota, 
which have up to three family B monomeric DNA 
polymerases, and Euryarchaeota, which generally 
have one monomeric family B DNA polymerase 
and one heterodimeric family D DNA polymerase 
[76]. 
Three different family B DNA polymerases have 
been detected in Archaea [77-79], B3 being the 
single family B DNA-polymerase identified in the 
genome of A. profundus AV18T. The respective 
gene, Arcpr_0273 is also present in the genomes of 
A. fulgidus (in contrast to the current annotation, 
which assigned subtype B1 to this gene) and F. 
placidus. Each of the three Archaeoglobi contains 
also one copy of the euryarchaeal family D DNA 
polymerase, and A. fulgidus is unique by having a 
second family B DNA polymerase gene (AF0693), 
belonging to subtype B2. 

RNA polymerase β subunit 
The DNA-dependent RNA polymerase (RNAP) 
subunit B was previously reported as a suitable 
tool for phylogenetic reconstructions [80]. A split 
in the B subunit of the RNA polymerase – resulting 
in the fragments B' and B'' –  has been reported for 
a subset of the euryarchaeal branch containing the 
methanogens and halophiles, based on the first 
five available archaeal sequences of this gene. This 
split has been described to be phylogenetically 
conserved and its use for supporting or refuting 
branching topologies has been suggested [80].  
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Figure 4. Venn-diagram depicting the intersections of protein sets (total numbers in parenthes-
es) of the three completely sequenced Archaeoglobi genomes. All intersections concerning A. 
profundus are gene counts of AV18T, the remaining intersection between A. fulgidus and F. 
placidus only, are gene counts in A. fulgidus. Due to variable copy numbers of several genes in 
the three species, the fragments do not add up to the total numbers of genes for A. fulgidus and 
F. placidus. 

Here, the validity of this observation was reas-
sessed, based on a larger number of available arc-
haeal RNAP subunit B genes (n=77) from all of the 
currently available fully sequenced genomes. For 
organisms exhibiting the above mentioned split, 
the corresponding amino acid sequences of the B' 
and B'' component were joined and a phylogenetic 
tree was inferred (Figure 5), showing clusters that 
are largely consistent with the 16S rRNA tree to-
pology [31]. The topology of this tree suggests a 
polyphyletic origin of the split in the B subunit, 
however, the best tree under the constraint of mo-
nophyly is not significantly worse (α=0.01) than 
the tree shown [30]. Therefore, this tree is not sig-
nificantly in conflict with the assumption of a 
unique origin of the split into the B' and B'' compo-
nents of RNAP. Further mapping of the species ex-
hibiting the conserved split against the 16S rRNA 

phylogeny confirmed the suggestion that this split 
is the result of a singular event which had taken 
place in the evolution of the Euryarchaea [80]. The 
lowest branching family containing this conserved 
split are Archaeoglobaceae represented by A. pro-
fundus, A. fulgidus and F. placidus (genes: 
Arcpr_0976/7, AF1886/7, Ferp_0762/3). Likewise, 
all taxa which diverged later from the main branch, 
i.e. Methanococci, Methanobacteria, Methanomicro-
bia, Halobacteria and possibly Methanopyrus kan-
dleri (the basal position of the latter in the 16S 
rRNA-based phylogenetic tree is disputed [82]), 
contain this split without exception. Taxa which 
diverged earlier (Thermococci, Thermoplasmata 
and all Crenarchaeota) have the unfragmented ver-
sion of the B subunit, equally without exception 
among validly named organisms. 
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Figure 5. Phylogenetic tree of archaeal type strains with fully sequenced genomes, inferred using the maximum li-
kelihood criterion [30], based on an alignment of the RNA polymerase B subunit sequence and rooted with the 
node which separates Cren- and Euryarchaeota. The alignment was inferred by Muscle [81] software, using the 
PROTCATLGF substitution model. Bootstrapping was performed using RAxML [30] and values above 60% mark 
the corresponding nodes. Species containing a conserved split in the RNA polymerase B subunit gene are dis-
played in bold. 
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CRISPRs 
Clusters of Regularly Interspaced Short Palin-
dromic Repeats (CRISPRs) represent a recently 
discovered prokaryotic defense system against 
viral attacks [83,84]. Although frequently ob-
served in members of the Archaea (~90%), A. pro-
fundus completely lacks any CRISPRs. In contrast, 
the genome of A. fulgidus contains three large 
CRISPR spacer/repeat arrays, consisting of 44 to 
60 repeats of lengths between 30 and 37 bases per 
repeat [34]. Ferroglobus contains twelve CRISPR 
arrays of variable repeat lengths and copy num-
bers (JGI, unpublished). 

Motility and chemotaxis genes 
A widespread phenomenon among Archaea and 
Bacteria is their ability to sense environmental 
conditions by the chemotaxis system and actively 
move towards more favorable locations by the 
activity of the flagellum. The archaeal flagella are 
non-homologous to those of Bacteria, and their 
components are encoded by one or two well-
conserved gene clusters (fla clusters) [85], which 
have been subject to extensive phylogenetic stu-
dies [86]. A. profundus is reported to be non-
motile [1,43], showing no flagellation, in contrast 
to most Archaeoglobi, including A. fulgidus [3] and 
F. placidus [4]. Unexpectedly, the genome se-
quence revealed the presence of a complete fla 
gene cluster (Arcpr_1384 – Arcpr_1391) and the 
preflagellin peptidase FlaK gene (Arcpr_0277), 
[85]. The situation in A. fulgidus (AF_1048–
AF_1055, flaK-gene: AF_0936) and F. placidus 
(Ferp_1456–Ferp_1463, flaK-gene: Ferp_0061) is 
virtually identical in content, order and orienta-
tion of genes of the fla cluster, therefore the dif-
ferent phenotypes are unexpected. However, a 
conflict between presence of the flagella genes and 
the phenotypically observed lack of motility is not 
unique for A. profundus, but has also been re-
ported for Methanosarcina species [86]. Also the 
reverse, even more surprising case – observed 
motility, but lacking homologues of the genes cod-
ing for flagellum components – has been reported 
for Pyrobaculum aerophilum and M. kandleri [86]. 
Some of our electron micrograph images (data not 
shown) displayed structures which might be fla-
gella on few A. profundus cells, mainly observed in 
larger cell clots. This indicates that A. profundus 
might be flagellated under certain conditions, not 
necessarily for motility reasons, but also functions 
such as cell-cell adhesion to form cell aggregates 
(as reported for Methanosarcinales) are thinkable. 

In any case, the possibility of artifacts (e.g. the 
presence of fragments from damaged cells) caus-
ing the observed structures on our electron mi-
crographs cannot be excluded. 
Unlike the flagellum genes, the archaeal chemotaxis 
system is homologous to the one in bacteria (for a 
review see [87]). Using the IMG Phylogenetic Profi-
ler, the genomes of A. profundus, A. fulgidus and F. 
placidus revealed the same genetic components for 
a chemotaxis system (AF1034, AF1037–AF1042, 
AF1044; Arcpr_1371–Arcpr_1376, Arcpr_1378, 
Arcpr_1379; Ferp_1072–Ferp_1377, Ferp_1379, 
Ferp_1990), with the only exception that A. fulgidus 
displays two copies of the methyl-accepting chemo-
taxis protein, while the others only have one. This 
observation again supports the hypothesis that A. 
profundus might be motile under certain condi-
tions, otherwise not only its flagellum-genes, but 
also the genetic components for chemotaxis would 
remain unused. However, the archaeal system of 
motility and chemotaxis is not yet fully unraveled. 
Especially the proteins constituting the flagellar 
motor and the link between chemotactic signal 
transduction and the motility apparatus [88]. The 
lack of undescribed essential components for this 
complex cannot be ruled out for A. profundus, 
which might be the reason for the observed immo-
bility. 

β-oxidation of long-chain fatty acids 
The ability of the Archaeoglobi to anaerobically 
oxidize long-chain fatty acids has been discussed 
controversially: although a β-oxidation system in 
A. fulgidus was predicted from the genome se-
quence [34], followed by reports of growth on 
crude and olive oil [89], “G. ahangari” was later 
reported to be the first hyperthermophile with 
this capacity [5]. Very recently, A. fulgidus VC-16 
was demonstrated to be capable of growth on a 
wide range of fatty acids and alkenes as sole 
source of energy, using thiosulfate or sulfate as the 
electron acceptor [90]. Likewise, the genome of F. 
placidus contains at least the four key enzymes for 
β-oxidation, suggesting the presence of this path-
way 
In the first description of A. profundus, minor 
growth on acetate containing crude oil was ob-
served [1]. With the here reported complete ge-
nome sequence, it becomes clear that this organ-
ism is unique within its sequenced relatives in 
lacking two of the four key enzymes for β-
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oxidation: 3-hydroxyacetyl-CoA-dehydrogenase 
(EC:1.1.1.35) and enoyl-CoA-hydratase (EC:4.2.1.17). 
Therefore it can now be posited that the reported 
growth on crude oil was most likely due to the 
contained traces of acetate, as the organism lacks 
essential components required for the oxidation of 
long-chain fatty acids via β-oxidation. 

Nitrate reduction 
Currently, F. placidus is the only validly named 
member of the Archaeoglobi which has been 
shown to be able to use nitrate as electron accep-
tor. A cluster of genes encoding a putative nitrate 
reductase has yet been identified in A. fulgidus 
(AF0173–AF0176) and discussed in the literature 
[34,91], again resulting in a conflict between ge-
netic equipment and observed metabolic features, 
as a biochemical evidence for nitrate reduction is 
still missing in A. fulgidus. Homologues of these 
genes are also present in A. profundus, though dis-
tributed in two separate locations in the genome 
(Arcpr0672, Arcpr0674, Arcpr1727, Arcpr1728) 
and in F. placidus (Ferp_0121-Ferp_0124). The 
latter contains another nitrate reductase gene 
cluster (Ferp_0311–Ferp_0314, additional gamma 
subunit: Ferp_1088), which might be the reason 
for the observed nitrate respiration in culture 
conditions, while specificity and activity of the 
more widely distributed hypothetical nitrate re-
ductase gene cluster remains subject to further 
experiments. 

Sulfate reduction 
The reduction of sulfurous compounds is the cen-
tral electron accepting pathway in the metabolism 
of A. profundus. The genetic equipment for the ca-
talysis of the corresponding reactions is largely 
equivalent to the one previously described for De-
sulfovibrio species and postulated for Desulfohalo-
bium retbaense [92]. The respective genes of A. 
profundus have been determined by sequence 
comparisons and identification of the correspond-
ing functional groups. A notable difference to the 
mechanism of sulfate-reduction in Desulfovibrio 
species is the absence of a periplasmic cytoch-
rome buffer composed of cytochrome c3. 
Thus, genes encoding a molybdopterin oxidore-
ductase MOP complex – as described for Desulfo-
vibrio desulfuricans G20 [93] – have not been iden-
tified in the genome of A. profundus. The MOP 
complex is thought to transfer electrons to mena-
quinone by interacting with periplasmic reduced 
cytochrome c3. The regeneration of the reduced 

menaquinone pool is most likely performed by a 
set of F420-nonreducing hydrogenase family pro-
teins (genes: Arcpr_1002, Arcpr_1005 and 
Arcpr_1006) which transfer electrons originating 
from the oxidation of hydrogen – via a co-localized 
gene (Arcpr_1004) encoding a membrane asso-
ciated cytochrome b – to oxidized menaquinone 
molecules in the membrane. Another option for 
the reduction of the menaquinone pool is given by 
a F420H2:quinone oxidoreductase complex, utiliz-
ing electrons supplied by F420H2. This reduced 
electron carrier originates from the pathway of 
reverse methanogenesis, which is a typical feature 
of the Archaeoglobi. The F420H2:quinone oxidore-
ductase complex has been studied in A. fulgidus 
[94,95] and a similar gene cluster exists in A. pro-
fundus (Arcpr_1575–Arcpr_1584). One of three 
additional proteins which have been found in the 
purified complex of A. fulgidus [94] has also been 
identified in A. profundus (Arcpr_0247) by reci-
procal BLAST search. 
The quinone-interacting membrane-bound oxido-
reductase (QMO)-complex (Arcpr_0661–
Arcpr_0663) transfers electrons via the heterodi-
meric AprAB complex (Arcpr_1261, Arcpr_1262) 
from the reduced menaquinone pool in the mem-
brane to activated sulfate (APS, adenosine-5'-
phosphosulfate), forming sulfite. Likewise, the 
membrane-associated DsrMKJOP (Arcpr_1727–
Arcpr_1731) complex transfers electrons from the 
same source to the dissimilatory sulfite reductase 
(Arcpr_0139-Arcpr_0141), catalyzing the reduc-
tion from sulfite to sulfide. Both processes are 
used to generate a membrane potential with the 
major purpose of ATP production. 

Carbon monoxide dehydrogenase 
The enzymatic equipment used for reverse me-
thanogenesis in A. fulgidus is equivalent to the the 
“Eastern branch” of the Wood-Ljungdahl pathway, 
which is also present in acetogenic organisms 
[96]. This pathway consists of two branches, each 
reducing a CO2 into a methyl- and a carbonyl-
moiety, respectively, which are joined forming 
acetyl-CoA. This metabolic capacity is not present 
in A. profundus, due to a blocked “Western branch” 
(acetyl-CoA decarbonylase/synthase is absent), a 
fact which has been discovered already in 1995 
[97]. The consequence for A. profundus is its ina-
bility to grow autotrophically [43,97]. In both A. 
fulgidus and F. placidus, all genes for the complete 
set of seven different subunits of the acetyl-CoA 
decarbonylase/synthase are present and both can 
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grow autotrophically, like all other described Arc-
haeoglobaceae, except A. profundus and A. infectus. 
However, A. profundus might be able to use the 
presence of the Eastern branch of the Wood-
Ljungdahl pathway for a certain amount of CO2-
fixation, as the intermediate 5,10-methylene-
tetrahydro-methanopterine can be branched off to 
other pathways, e. g. by formaldehyde-activating 
enzyme (Arcpr_1052) into formaldehyde, or by 
glycine hydroxymethyltransferase (Arcpr_0687, 
Arcpr_1587) to the glycine, serine and threonine 
metabolism. 
Besides providing comprehensive insight into the 
genetic equipment, the completely sequenced ge-

nome of A. profundus revealed instances in which 
the presence of certain genes suggests capabilities 
which were not observed in laboratory cultiva-
tion, such as flagellation or chemotaxis. Reasons 
for this might be paralogous genes, e. g. having 
altered, yet unidentified substrate specificity, de-
fect genes, pseudogenes or genes which are per-
manently transcriptionally deactivated, as re-
ported for hydrogenase genes in Methanosarcina 
acetivorans [98]. Alternatively, the biochemic ca-
pacities might only be exhibited under specific 
unknown environmental conditions, which are yet 
to be reproduced in laboratory experiments. 
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