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Methanoplanus limicola Wildgruber et al. 1984 is a mesophilic methanogen that was isolated 
from a swamp composed of drilling waste near Naples, Italy, shortly after the Archaea were 
recognized as a separate domain of life. Methanoplanus is the type genus in the family 
Methanoplanaceae, a taxon that felt into disuse since modern 16S rRNA gene sequences-
based taxonomy was established. Methanoplanus is now placed within the 
Methanomicrobiaceae, a family that is so far poorly characterized at the genome level. The 
only other type strain of the genus with a sequenced genome, Methanoplanus petrolearius 
SEBR 4847T, turned out to be misclassified and required reclassification to Methanolacinia. 
Both, Methanoplanus and Methanolacinia, needed taxonomic emendations due to a signifi-
cant deviation of the G+C content of their genomes from previously published (pre-genome-
sequence era) values. Until now genome sequences were published for only four of the 33 
species with validly published names in the Methanomicrobiaceae. Here we describe the fea-
tures of M. limicola, together with the improved-high-quality draft genome sequence and an-
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notation of the type strain, M3T. The 3,200,946 bp long chromosome (permanent draft se-
quence) with its 3,064 protein-coding and 65 RNA genes is a part of the Genomic Encyclo-
pedia of Bacteria and Archaea project. 

 
 
Introduction 
Strain M3T (= DSM 2279 = ATCC 35062 = OCM 
101) is the type strain of the species 
Methanoplanus limicola [1,2], one out of currently 
three species in the genus Methanoplanus [1,2]. 
Strain M3T was originally isolated from the mud of 
a drilling swamp near Baia, Naples Area, Italy [1]. 
The genus name was derived from the Neo-Latin 
therm “methanum”, pertaining to methane, and 
the Latin adjective “planus”, meaning a flat plate, 
which refers to its flat cell morphology [1]. The 
species epithet was derived from the Latin word 
limicola, a dweller in the mud, inhabitant of a 
swamp [1]. When Wildgruber et al. described the 
type strain of the novel species in 1982 [1] they 
not only realized the striking similarity to the 
square-shaped flat bacterium that was reported 
two years earlier by Walsby [3], but also classified 
it as the type strain of the type species in the type 
genus of Methanomicrobiales Family III, ‘Methano-
planaceae’ [1]. However, when years later 16S 
rRNA sequences became available for phylogenet-
ic analyses it became clear that the strains which 
represent the species Methanoplanus are closely 
related to Methanomicrobiaceae (including the 
genera Methanomicrobium, Methanogenium, and 
Methanoculleus). Since that time, the genus 
Methanoplanus is generally placed within the 
Methanomicrobiaceae, and Methanoplanaceae 
Wildgruber et al. 1984 has fallen into disuse [4], 
although the genus Methanoplanus was never 
formally reclassified. In the 31 years since strain 
M3T was first characterized, only two follow-up 
projects have reported the use of M. limicola in 
comparative analyses; Ivanov and Stabnikova [5] 
used M. limicola for a study on the molecular phy-
logeny of methanogenic archaea based on the G+C 
content, and Liu et al. used the species in a study 
on  air tolerance and water stress [6]. 
Here we present a summary classification and a 
set of features for M. limicola M3T, together with 
the description of the genomic sequencing and 
annotation. 

Classification and features 
The single genomic 16S rRNA sequence of M. 
limicola M3T was compared with the Greengenes 
database for determining the weighted relative 
frequencies of taxa and (truncated) keywords as 
previously described [7]. The most frequently oc-
curring genera were Methanoculleus (51.9%), 
Methanoplanus (18.5%), Methanogenium (16.8%), 
Methanosphaerula (5.3%) and Methanomicrobium 
(3.7%) (52 hits in total). Regarding the two hits to 
sequences from members of the species, the aver-
age identity within HSPs was 99.9%, whereas the 
average coverage by HSPs was 92.8%. Regarding 
the five hits to sequences from other members of 
the genus, the average identity within HSPs was 
96.6%, whereas the average coverage by HSPs 
was 95.0%. Among all other species, the one yield-
ing the highest score was M. endosymbiosus 
(FR733674), which corresponded to an identity of 
99.5% and an HSP coverage of 99.7%. (Note that 
the Greengenes database uses the INSDC (= 
EMBL/NCBI/DDBJ) annotation, which is not an 
authoritative source for nomenclature or classifi-
cation.) The highest-scoring environmental se-
quence was EU420694 ('Archaeal and Kao-Mei 
Wetland clone KM07-Da-3'), which showed an 
identity of 95.7% and an HSP coverage of 98.0%. 
The most frequently occurring keywords within 
the labels of all environmental samples which 
yielded hits were 'temperatur' (4.7%), 'bioreactor' 
(4.4%), 'anaerob' (4.0%), 'methanogen' (3.3%) 
and 'archaeal' (2.9%) (198 hits in total) fit to the 
features known from the habitat of strain M3T. 
Environmental samples which yielded hits of a 
higher score than the highest scoring species were 
not found. 
Figure 1 shows the phylogenetic neighborhood of 
M. limicola in a 16S rRNA based tree. The se-
quence of the single 16S rRNA gene copy in the 
genome does not differ from the previously pub-
lished 16S rRNA sequence (M59143), which con-
tains 23 ambiguous base calls. 
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Figure 1. Phylogenetic tree highlighting the position of M. limicola relative to the type strains of the other 
species within the family Methanomicrobiaceae. The tree was inferred from 1,271 aligned characters of the 
16S rRNA gene sequence under the maximum likelihood (ML) criterion and rooted as previously described 
[7]. The branches are scaled in terms of the expected number of substitutions per site. Numbers adjacent to 
the branches are support values from 250 ML bootstrap replicates [8] (left) and from 1,000 maximum-
parsimony bootstrap replicates [9] (right) if larger than 60%. Lineages with type-strain genome sequencing 
projects registered in GOLD [10] are labeled with one asterisk, those also listed as 'Complete and Published' 
with two asterisks [11-14] (for Methanoregula boonei and Methanosphaerula palustris see CP000780 and 
CP001338, respectively). 

The tree depicted in Figure 1 reveals discrepan-
cies between the current classification of the 
group and 16S rRNA phylogenetic analysis, as the 
genus Methanoplanus appeared polyphyletic, with 
M. petrolearius appearing as sister group of 
Methanolacinia payntneri with maximum support. 
We conducted a constraint analysis as previously 
described [15], enforcing the monophyly of all 
genera (which only affects Methanoplanus in this 
dataset, see Figure 1). The best-known ML tree 
had a log likelihood of -7,097.90, whereas the best 
tree found under the constraint had a log likeli-
hood of -7,144.12. The constrained tree was sig-
nificantly worse than the globally best one in the 
Shimodaira-Hasegawa test as implemented in 
RAxML [8] (α = 0.01). The best-known MP trees 
had a score of 1,090, whereas the best constrained 
trees found had a score of 1,115 and were signifi-
cantly worse in the Kishino-Hasegawa test as im-
plemented in PAUP* [9] (α = 0.01). 
M. limicola M3T cells stain Gram negative [1] and 
are plate-shaped with sharp crystal-like edges 1- 3 

µm long and 1-2 µm wide (Figure 2 and [1]). Weak 
motility was observed and motility genes were 
identified in the genome (see below). Polar tufts of 
flagella were also reported [1], but not visible in 
Figure 2. Granules with putative reserve material 
were observed in thin section EM images, as were 
curious ‘bone-shaped’ cells [1]. Cell envelopes 
consist of an S-layer glycoprotein with a hexago-
nal surface pattern [1]. Cultures grow with H2 or 
formate as sole substrates supplemented with  
0.1% acetate essentially required [1]. Growth 
temperatures span from 17-41°C (optimum 40°C) 
in the presence of 0.4-5.4% NaCl (optimum 1%) 
[1]. A summary of the classification and features is 
presented in Table 1. 

Chemotaxonomy 
No chemotaxonomic results were reported for 
strain M3T, except for an estimation of 47.5% for 
the G+C content of the genome determined by a 
melting point in 0.1 × SSC [1]. 
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Figure 2. Scanning electron micrograph of M. 
limicola M3T. 

Table 1. Classification and general features of M. limicola M3T according to the MIGS recommenda-
tions [16] published by the Genomic Standards Consortium [17]. 
MIGS ID Property Term Evidence codea 
  Domain Bacteria TAS [18] 
  Phylum Euryarchaeota TAS [19] 
  Class Methanomicrobia TAS [20] 
 Current classification Order Methanomicrobiales TAS [21-25] 
  Family Methanomicrobiaceae TAS [21,22] 
  Genus Methanoplanus TAS [1,2] 
  Species Methanoplanus limicola TAS [1,2] 
  Type strain M3 TAS [1] 
 Gram stain negative TAS [1] 
 Cell shape plate-like TAS [1] 
 Motility weakly motile TAS [1] 
 Sporulation not reported  
 Temperature range mesophile, 17-41°C TAS [1] 
 Optimum temperature 40°C TAS [1] 
 Salinity 0.4 - 5.4% NaCl (w/v), optimum 1.0% TAS [5] 
MIGS-22 Oxygen requirement anaerobe TAS [1] 
 Carbon source CO2, formate TAS [1] 
 Energy metabolism methanogen, chemoorganotrophic TAS [1] 
MIGS-6 Habitat swamps of fresh water and seawater TAS [1] 
MIGS-15 Biotic relationship free living TAS [1] 
MIGS-14 Pathogenicity none NAS 
 Biosafety level 1 TAS [26] 
MIGS-23.1 Isolation mud of drilling swamp TAS [1] 
MIGS-4 Geographic location near Baia, Naples Area, Italy TAS [1] 
MIGS-5 Sample collection time 1981 or earlier NAS 
MIGS-4.1  Latitude  40.629 NAS 
MIGS-4.2 Longitude 14.362 NAS 
MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude not reported  

aEvidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable 
Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted prop-
erty for the species, or anecdotal evidence). Evidence codes are from of the Gene Ontology project [27].
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Genome sequencing and annotation 
Genome project history
This organism was selected for sequencing on the 
basis of its phylogenetic position [28], and is part 
of the Genomic Encyclopedia of Bacteria and 
Archaea project [29]. The genome project is de-
posited in the Genomes On Line Database [10] and 
the complete genome sequence is deposited in 

GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome Insti-
tute (JGI) using state of the art sequencing tech-
nology [30]. A summary of the project information 
is shown in Table 2.

Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Improved-high-quality-draft 

MIGS-28 Libraries used Three genomic libraries: one 454 pyrosequence standard library, 
one 454 PE library (5 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 

MIGS-31.2 Sequencing coverage 834.5 × Illumina; 33.4 × pyrosequence 

MIGS-30 Assemblers Newbler version 2.3, Velvet 1.0.13, phrap version SPS - 4.24 

MIGS-32 Gene calling method Prodigal 

 INSDC ID CM001436, AHKP00000000 

 GenBank Date of Release January 24, 2012 

 GOLD ID Gi02923 

 NCBI project ID 61291 

 Database: IMG 2506381025 

MIGS-13 Source material identifier DSM 2279 

 Project relevance Tree of Life, GEBA 

 

 
Growth conditions and DNA isolation 
M. limicola strain M3T, DSM 2279, was grown an-
aerobically under H2/CO2 gas phase in DSMZ me-
dium 141 (Methanogenium medium; MMG medi-
um + 0.1% acetate; substrate: H2 or formate; stim-
ulated by YE or peptone, + vitamins) [31] at 
3540°C. DNA was isolated from 0.5-1 g of cell 
paste using MasterPure Gram-positive DNA purifi-
cation kit (Epicentre MGP04100) following the 
standard protocol as recommended by the manu-
facturer with modification st/LALM for cell lysis 
as described in Wu et al. 2009 [29]. DNA is availa-
ble through the DNA Bank Network [32]. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Illumina and 454 sequencing platforms. All 
general aspects of library construction and se-
quencing can be found at the JGI website [33]. 
Pyrosequencing reads were assembled using the 

Newbler assembler (Roche). The initial Newbler 
assembly consisting of 760 contigs in ten scaffolds 
was converted into a phrap [34] assembly by mak-
ing fake reads from the consensus, to collect the 
read pairs in the 454 paired end library. Illumina 
GAii sequencing data (3,470.2 Mb) was assembled 
with Velvet [35] and the consensus sequences 
were shredded into 1.5 kb overlapped fake reads 
and assembled together with the 454 data. The 
454 draft assembly was based on 332.3 Mb 454 
draft data and all of the 454 paired end data. 
Newbler parameters are -consed -a 50 -l 350 -g -m 
-ml 20. The Phred/Phrap/Consed software pack-
age [34] was used for sequence assembly and 
quality assessment in the subsequent finishing 
process. After the shotgun stage, reads were as-
sembled with parallel phrap (High Performance 
Software, LLC). Possible mis-assemblies were cor-
rected with gapResolution [33], Dupfinisher [36], 
or sequencing cloned bridging PCR fragments with 
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subcloning. Gaps between contigs were closed by 
editing in Consed, by PCR and by Bubble PCR pri-
mer walks (J.-F. Chang, unpublished). A total of 
159 additional reactions were necessary to close 
some gaps and to raise the quality of the final se-
quence. Illumina reads were also used to correct 
potential base errors and increase consensus 
quality using a software Polisher developed at JGI 
[37]. The error rate of the final genome sequence 
is less than 1 in 100,000. Together, the combina-
tion of the Illumina and 454 sequencing platforms 
provided 867.9 x coverage of the genome. The fi-
nal assembly contained 421,665 pyrosequence 
and 44,481,858 Illumina reads. 

Genome annotation 
Genes were identified using Prodigal [38] as part 
of the DOE-JGI [39] genome annotation pipeline, 
followed by a round of manual curation using the 
JGI GenePRIMP pipeline [40]. The predicted CDSs 
were translated and used to search the National 

Center for Biotechnology Information (NCBI) non-
redundant database, UniProt, TIGRFam, Pfam, 
PRIAM, KEGG, COG, and InterPro databases. These 
data sources were combined to assert a product 
description for each predicted protein. Additional 
gene prediction analysis and functional annotation 
was performed within the Integrated Microbial 
Genomes - Expert Review (IMG-ER) platform [41]. 

Genome properties 
The genome consists of one scaffold (circularity 
not experimentally proven) of 3,200,946 bp length 
with a 42.2% G+C content (Table 3 and Figure 3). 
Of the 3,128 genes predicted, 3,064 were protein-
coding genes, and 65 RNAs; 122 pseudogenes 
were also identified. The majority of the protein-
coding genes (60.8%) were assigned a putative 
function while the remaining ones were annotated 
as hypothetical proteins. The distribution of genes 
into COGs functional categories is presented in 
Table 4.

.
Table 3. Genome statistics 
Attribute Value % of totala 

Genome size (bp) 3,200,946 100.00% 

DNA coding region (bp) 2,799,644 87.46% 

DNA G+C content (bp) 1,350,606 42.20% 

Number of replicons 1  

Extrachromosomal elements 0  

Total genes 3,129 100.00% 

RNA genes 65 2.08% 

rRNA operons 1b  

tRNA genes 56 1.79% 

Protein-coding genes 3,064 97.92% 

Pseudo genes 122 3.90% 
Genes with function prediction (pro-
teins) 1,901 60.75% 

Genes in paralog clusters 1,568 50.11% 

Genes assigned to COGs 2,204 70.44% 

Genes assigned Pfam domains 2,149 68.68% 

Genes with signal peptides 129 4.12% 

Genes with transmembrane helices 748 23.91% 

CRISPR repeats 0  
aThe total is based on either the size of the genome in base pairs or the total number 
of protein coding genes in the annotated genome 
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bbut five genes for 5S rRNA 

 
Figure 3. Graphical map of the chromosome. From bottom to the top: Genes on forward strand (colored by 
COG categories), Genes on reverse strand (colored by COG categories), RNA genes (tRNAs green, rRNAs 
red, other RNAs black), GC content (black), GC skew (purple/olive). 

Table 4. Number of genes associated with the 25 general COG functional categories 

Code Value %agea Description 
J 155 6.5 Translation, ribosomal structure and biogenesis 
A 1 0.0 RNA processing and modification 
K 133 5.6 Transcription 
L 129 5.4 Replication, recombination and repair 
B 3 0.1 Chromatin structure and dynamics 
D 17 0.7 Cell cycle control, cell division, chromosome partitioning 
Y 0 0.0 Nuclear structure 
V 33 1.4 Defense mechanisms 
T 191 8.0 Signal transduction mechanisms 
M 90 4.8 Cell wall/membrane biogenesis 
N 79 3.3 Cell motility 
Z 1 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 27 1.1 Intracellular trafficking and secretion, and vesicular transport 
O 82 3.4 Posttranslational modification, protein turnover, chaperones 
C 173 7.2 Energy production and conversion 
G 75 3.1 Carbohydrate transport and metabolism 
E 147 6.1 Amino acid transport and metabolism 
F 61 2.6 Nucleotide transport and metabolism 
H 157 6.6 Coenzyme transport and metabolism 
I 28 1.2 Lipid transport and metabolism 
P 115 4.8 Inorganic ion transport and metabolism 

Q 8 0.3 
Secondary metabolites biosynthesis, transport and catabo-
lism 

R 355 14.8 General function prediction only 
S 332 13.8 Function unknown 
- 925 29.6 Not in COGs 

aThe total is based on the total number of protein coding genes in the annotated genome. 
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Insights into the genome sequence 
G+C content of the genus Methanoplanus 
When calculated from the genome sequences, the 
G+C content of M. limicola DSM 2279 amounts to 
42.2%, whereas the previously published value, 
determined using traditional (“wet-lab”) tech-
niques, is 47.5% [1]. Similarly, the G+C content of 
M. petrolearius was given as 50% [42], whereas 
the analysis of the genome sequence of the type 
strain SEBR 4837T (DSM 11571) yielded 47.4% 
[11]. It was frequently stated in the literature that 
“organisms that differ by more than 10 mol% do 
not belong to the same genus and that 5 mol% is 
the common range found within a species” [43]. A 
recent study [44] has shown that when calculated 
from genome sequences the G+C content varies at 
most 1% within species and that larger variances 
are caused by the limitations of the traditional 
techniques for analyses. It has thus been recom-
mended to conduct emendations of species de-
scriptions in the case of discrepancies larger than 
1%, and to also conduct emendations of genus de-
scriptions if the species emendations yield values 
that do not fit into the range of the G+C content 
given in the literature for the respective genus 
[44]. 

Considerations about the polyphyletic genus 
Methanoplanus 
The phylogenetic tree presented in Figure 1 shows 
Methanoplanus as a polyphyletic taxon with the 
members of Methanomicrobium and 
Methanolacinia interspersed between the mem-
bers of Methanoplanus. Given the high bootstrap 
support for the branches in that section of the 
phylogenetic tree, this situation calls for some at-
tention, mainly due to the location of M. 
petrolearius [42]. The conflict between 16S rRNA 
gene data and the classification is significant, as 
revealed by the bootstrap values and the paired-
site tests described above. 
The problematic local structure of the phylogenet-
ic tree might be caused by the fact that most of the 
five species located in the respective part of the 
tree were already decribed in the early days 
ofArchaea research when only a limited number of 
reference sequences were available: M. limicola 
dates from 1982 [1], M. endosymbiosus from 1986 
[45], M. petrolearius from 1997 [42], Ml. paynteri 

from 1983 [46] (renamed in 1989 [47]), and 
Methanomicrobium mobilis even from 1968 [48]. 
State-of-the-art techniques for the initial taxonom-
ic characterization of the then novel bacteria were 
much less advanced than today, e.g. Sanger se-
quencing had just been invented (in 1977) when 
M. limicola was characterized with DNA-RNA hy-
bridizations as decisive technique [49], and still 
not yet generally used for taxonomic work when 
M. endosymbiosus was characterized four years 
later. When the latest of the three Methanoplanus 
species with a validly published name, M. 
petrolearius, was added in 1997 16S rRNA se-
quences were used, but the ones from Ml. paynteri 
(closest neighbor in the phylogenetic tree in Fig-
ure 1) and M. mobilis were not yet available or at 
least not used for comparative analyses [42].  
The completion of the Sequencing Orphan Species 
(SOS) initiative early last year [50], closed the last 
gaps in the availability of high-quality 16S rRNA 
reference sequences for  phylogenetic trees. How-
ever, a decade after the first genome-based inves-
tigations into the history of the domain Archaea 
[51] and the systematic overview of their evolu-
tion, physiology, and molecular biology [52], a 
significant fraction of draft genome sequences as 
such generated in the genomic Encyclopedia of 
Bacteria and Archaea [29] are still very much 
needed to cover all of the diversity of the Archaea, 
especially from difficult-to-grow organisms and 
from type strains of remote clades such as the 
Methanomicrobiaceae. 
With all these limitations, a closer inspection of 
the positions of the members of Methanoplanus in 
Figure 1 might still be worthwhile. M. petrolearius 
appears to be clearly separated from the other 
two members of the genus, M. limicola and M. 
endosymbiosus, but closely linked to Ml. paynteri 
with a 99.8% 16S rRNA gene sequence identity. 
Table 5 shows a summary of the features of all 
members of the genera Methanoplanus and 
Methanolacinia, indicating that based on the high-
er optimal growth temperature, the lack of ob-
served flagella and observed motility (although 
the flagellin genes are encoded in the genome), the 
usage of CO2+2-propanol as a substrate, and the 
higher G+C content of the genome [42], M. 
petrolearius clusters rather with Ml. paynteri than 
with the other two members of Methanoplanus.
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Table 5. Features of the type strains within the genera Methanoplanus and Methanolacinia. 
 Methanoplanus 

limicola [1] DSM 
2279 

Methanoplanus 
endosymbiosus [45] 
DSM 3599 

Methanoplanus 
petrolearius [42] 
DSM 11571 

Methanolacinia 
paynteri [46,47] DSM 
2545 

Source swamp marine ciliate oil well marine sediment 

Temperature 
range (Topt) °C 

17 - 41 (32) 16 - 36 (32) 28 - 43 (37) unknown (40) 

motility motile, flagella flagella reported non-motile non-motile 

pH range 
(pHopt) 

ND (6.5 – 7.5) 6.1 – 8.0  (6.8 – 7.3) 5.3 – 8.2 (7.0) ND 

NaCl conc. % 
(opt.) 

0.4 – 5.4(1) 4 – 4.5 (1.5) 0 - 5 (1 - 3)  

Substrates used H2+CO2, 
formate 

H2+CO2, formate H2+CO2, formate, 
CO2+2-propanol 

H2+CO2, CO2+2-
propanol, CO2+2-
butanol, CO2+2-
cyclopentanol 

G+C content 42.2% genome 
(was 47.5% pre-
genome) 

38.7% melting curve 47.4% genome 
(was 50% pre-
genome) 

44.8% buoyant densi-
ty 

 
Although the genome sequence of M. petrolearius 
SEBR 4847T (DSM 11571) was recently published 
[11], the one for Ml. paynteri was still lacking, as 
well as information about a wet lab DNA-DNA hy-
bridization (DDH) between the type strains of the 
two species. Given the high degree of 16S rRNA 
sequence identity between the two strains 
(99.8%), established thresholds of species delimi-
tations, 97% [53], even under recently published 
relaxed recommendations, 98.299% [54], defi-
nitely demands such an analysis for the purpose of 
species discrimination. Whereas the rather large 
difference of 2.6% in the G+C content of the two 
genomes (Table 5, based on currently available 
mixed data from genome sequence and buoyant 
density measurement) predicts a rather low DDH 
value as the outcome of such an experiment, the 
recently observed significant deviations between 
previously published G+C values and G+C values 
inferred from genome sequences [44] do not, 
however, allow for definitive conclusions from the 
difference in G+C values. 
For this reason, we have obtained a draft genome 
sequence for Ml. paynteri DSM 2546T using 
Illumina-MiSeq as a sequencing platform in order 
to obtain paired-end reads of 250 bp and Velvet 
[35] for the assembly. The draft genome com-
prised 54 contigs and is available from NCBI un-
der the accession number AXDV00000000 and 
from IMG under the object ID pending. Digital DDH 
similarities between Ml. paynteri DSM 2546T 
(AXDV00000000) and M. petrolearius SEBR 4847T 
(DSM 11571, CP002117) were calculated with the 

GGDC web server [55,56] version 2.0 [57] under 
the recommended settings. The inter-genomic dis-
tance (formula 2) was 0.0753, corresponding to a 
DDH estimate of 48.50% ± 2.61%. The probability 
of a DDH value > 70% was accordingly only 
0.1514. 
In conclusion, from the topology of 16S rRNA gene 
sequence-based phylogenetic tree supported by 
the distribution of the characteristic features 
listed in Table 4 we can conclude that strain SEBR 
4847T should rather be classified as a member of 
the genus Methanolacinia than as M. petrolearius, 
whereas the digital DDH results clearly indicate 
that Ml. paynteri (represented by the type strain 
G-2000, DSM 2545) and M. petrolearius (repre-
sented by the type strain SEBR 4847, DSM 11571) 
are distinct species. Thus, we propose 
Methanolacinia petrolearia comb. nov. to accom-
modate M. petrolearius, with SEBR 4847 being the 
type strain. 
The situation between M. limicola (type species of 
Methanoplanus) and M. endosymbiosus is only 
slightly better than the relationship between Ml. 
paynteri and M. petrolearius discussed above. 
Based on the above reported Greengenes analysis 
the 16S rRNA gene sequences of the two type 
strains show 99.5% sequence identity and an HSP 
coverage of 99.7%. Again, by all accepted stand-
ards of species discrimination [53,54] such a close 
similarity would call for a DDH experiment to re-
solve the close relationship, but such data are not 
available. Also a digital DDH cannot be performed 
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because only the genome sequence of M. limicola 
presented here is available, but not that of DSM 
3599, the type strain of M. endosymbiosus. Table 5 
indicates that the two strains share almost all of 
the listed features (except habitat), except for a 
3.5% difference in the G+C content, which, in case 
it would be confirmed and not biased by a tech-
nical artifact in the melting curve measurement 
done for M. endosymbiosus, indicated a sufficiently 
low level of DDH to distinguish the two species 
[44]. Nevertheless, the probability that the digital 
DDH value between the two type strains might 
surpass the 70% species discrimination (once the 
genome sequence of M. endosymbiosus is resolved) 
threshold cannot be neglected. It might be too ear-
ly to draft the obituary for M. endosymbiosus, but it 
is better to be prepared in case the once trispecific 
polyphyletic genus Methanoplanus becomes 
monospecific, an event that may occur once the 
drafts of all needed type strain genomes (the core 
objective of GEBA) are deciphered. Depending on 
the availability of enough cell material, M. 
endosymbiosus should now be scheduled as a se-
quencing target for the upcoming phases the 
GEBA, e.g. the Genomic Encyclopedia of Type 
Strains, Phase I: the one thousand microbial ge-
nomes (KMG-I) projects [58], to resolve the ques-
tion about the exact relationship between M. 
limicola and M. endosymbiosus. 

Taxonomic consequences 
As explained in detail above, the differences in the 
reported G+C contents of M. limicola and M. 
petrolearius to the ones calculated from their ge-
nome sequences justifies an emendation of the 
species descriptions. Moreover, M. petrolearius 
should be placed within the genus Methanolacinia. 
The descriptions of the two genera should be 
emended accordingly. 

Emended description of the species 
Methanoplanus limicola Wildgruber et al. 
1982 
The description of the species Methanoplanus 
limicola is the one given by Wildgruber et al. 1982 
[1], with the following modification. 
The G+C content is 42%. 

Emended description of the species 
Methanoplanus petrolearius Ollivier et al. 
1997 

The description of the species Methanoplanus 
petrolearius is the one given by Ollivier et al. 1997 
[42], with the following modification. 
The G+C content is 47%. 

Description of Methanolacinia 
petrolearia, comb. nov. 
Basonym: Methanoplanus petrolearius Ollivier et 
al. 1997 
The description of the species is the same as given 
for Methanoplanus petrolearius Ollivier et al. 1997 
with the emendation given above. 

Emended description of the genus 
Methanoplanus 
The description is the one given by Wildgruber et 
al. [1] with the following modifications: 
The G+C content is 39-42%. 

Emended description of the genus 
Methanolacinia 
The description is the one given by Zellner et al. 
[47] with the following modifications: 
The G+C content is 45-47%. 
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