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Kurthia senegalensis strain JC8ET sp. nov. is the type strain of K. senegalensis sp. nov., a new 
species within the genus Kurthia. This strain, whose genome is described here, was isolated from 
the fecal flora of a healthy patient. K. senegalensis is an aerobic rod. Here we describe the features 
of this organism, together with the complete genome sequence and annotation. The 2,975,103 bp 
long genome contains 2,889 protein-coding genes and 83 RNA genes, including between 4 and 6 
rRNA genes. 

Abbreviations: EMBL- European Molecular Biology Laboratory, DDBJ- DNA Data Bank of Japan 

Introduction
Kurthia senegalensis strain JC8ET (CSUR P138T = 
DSM 24641T) is the type strain of K. senegalensis 
sp. nov. This bacterium is a Gram-positive strictly 
aerobic rod, capsulated, motile by peritrichous 
flagella and was isolated from the stool of a healthy 
Senegalese patient as part of a "culturomics" study 
aiming at cultivating individually all species within 
human feces [1]. 
Presently, "the gold standard method" to define a 
bacterial species is DNA-DNA hybridization (DDH) 
[2]. But this method is time consuming and the 
inter-laboratory reproducibility is poor. So, with 
the development of PCR and sequencing methods, 
16S rRNA gene sequence comparison is often the 
preferred approach for recognizing a new taxon 
when a gene sequence similarity less than 97% is 
found [3]. To make descriptions more complete, 
phenotypic criteria (morphology, biochemical 
tests, growth conditions, chemotaxonomy) have to 
be included to characterize a prokaryote strain [4]. 
Fortunately, sequencing whole prokaryote 
genomes is now possible for more laboratories, 
and descriptions of sequencing protocols should be 
included in all species descriptions. Such activity 
would supplant the need for most other methods 
used during genome annotation, and new 
bioinformatics methods based on genome-to-

genome comparison have been proposed to 
replace the DDH approach [5]. 
Here we present a summary classification and a set 
of features for K. senegalensis sp. nov. strain JC8ET 
together with the description of the complete 
genomic sequencing and annotation. These 
characteristics support the circumscription of the 
species K. senegalensis. 
Kurth described Bacterium zopfii, isolated from the 
intestinal contents of chickens, which became later 
the first species of the genus Kurthia, K. zopfii. The 
genus Kurthia was created in 1885 by Trevisan [6] 
in honor of Kurth. The name Kurthia was first 
published in the seventh edition of Bergey’s Manual 
of Determinative Bacteriology [7]. Currently, the 
genus includes 4 species: K. zopfii, K. gibsonii [8], K. 
sibirica [9] and K. massiliensis [10]. The bacteria are 
included in the Firmicutes phylum, in the 
Planococcaceae family. 

Classification and features 
A stool sample was collected from a healthy 16-
year-old male Senegalese volunteer patient living 
in Dielmo (a rural village in the Guinean-Sudanian 
zone in Senegal), who was included in a research 
protocol. The patient gave an informed and signed 
consent, and the agreement of the National Ethics 
Committee of Senegal and the local ethics 
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committee of the IFR48 (Marseille, France) were 
obtained under agreement 09-022). The fecal 
specimen was preserved at -80°C after collection 
and sent to Marseille. Strain JC8E (Table 1) was 
isolated in January 2011 by aerobic cultivation on 
5% sheep blood-enriched Columbia agar 
(BioMerieux). There is no evidence of 
pathogenicity for the strain. JC8E exhibited a 
96.8% nucleotide sequence similarity with K. 
massiliensis, the phylogenetically closest validated 
Kurthia species (Figure 1). This value was lower 
than the 97% 16S rRNA gene sequence threshold 
to delineate a new species without carrying out 
DNA-DNA hybridization recommended by the 
report of the ad hoc committee on reconciliation of 
approaches to bacterial systematics [2]. Moreover, 

Stackebrandt and Ebers proposed to increase this 
value to 98.7% [25]. Recently, Auch et al. proposed 
a genome-to-genome comparison approach to 
replace the DDH approach [5]. As we sequenced 
the genomes of K. massiliensis and K. senegalensis, 
we tested this new approach. We chose GGDC 2.0 
Blast + as the alignment method for finding 
intergenomic matches, using a formula based on 
the number of identities divided by the HSP (High 
scoring Segment Pairs) length to infer distances. 
The DDH estimate resulted from a generalized 
linear model (GLM). The GLM-based DDH estimate 
was 21% ± 2.33. The found value (< 70%) 
confirmed that K. massiliensis and isolate JC8ET did 
not belong to the same species. 

Table 1. Classification and general features of Kurthia senegalensis strain JC8ET [11] 
MIGS ID Property Term Evidence codea 

  Domain Bacteria TAS [12] 
  Phylum Firmicutes TAS [13-15] 
  Class Bacilli TAS [16,17] 
 Current classification Order Bacillales TAS [18,19] 
  Family Planococcaceae TAS [19,20] 
  Genus Kurthia TAS [6,19,21,22] 
  Species Kurthia senegalensis IDA 
  Type strain JC8ET IDA 
 Gram stain Positive IDA 
 Cell shape Coccobacilli IDA 
 Motility Motile by peritrichous flagella IDA 
 Sporulation Nonsporulating IDA 
 Temperature range Mesophile IDA 
 Optimum temperature 37°C IDA 

MIGS-6.3 Salinity Growth in BHI medium + 2% NaCl IDA 
MIGS-22 Oxygen requirement Aerobic IDA 

 Carbon source Unknown NAS 
 Energy source Unknown NAS 

MIGS-6 Habitat Human gut IDA 
MIGS-15 Biotic relationship Free living IDA 
MIGS-14 Pathogenicity Unknown NAS 

 Biosafety level 2  
 Isolation Human feces  

MIGS-4 Geographic location Senegal IDA 
MIGS-5 Sample collection time September 2010 IDA 

MIGS-4.1 Latitude 13.7167 IDA 
MIGS-4.1 Longitude 16.4167 IDA 
MIGS-4.3 Depth Surface IDA 
MIGS-4.4 Altitude 51 m above sea level IDA 

Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in 
the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but 
based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the 
Gene Ontology project [23]. If the evidence is IDA, then the property was directly observed for a live isolate by 
one of the authors or an expert mentioned in the acknowledgements. 
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Figure 1. Phylogenetic tree highlighting the position of Kurthia senegalensis strain JC8ET relative to other 
type strains within the Kurthia genus. GenBank accession numbers are indicated in parentheses. 
Sequences were aligned using CLUSTALX, and phylogenetic inferences obtained using the neighbor 
joining method as implemented in the MEGA 5 software package [24]. Numbers at the nodes are 
percentages of bootstrap values supporting that node using 1,000 bootstrap replicates to generate a 
majority consensus tree. Solibacillus silvestris was used as the  outgroup. The scale bar represents 0.005 
nucleotide change per nucleotide position. 

Surface colonies were observed on sheep blood agar 
(bioMérieux) after 24 hours aerobic incubation at 
37°C. The colonies of the strain JC8ET were 
yellowish, mat, flat and spread, 5 mm in diameter. 
Gram staining showed Gram-positive coccobacilli 
(Figure 2). 
Six different growth temperatures (25, 30, 37, 45, 50 
and 55°C) were tested. Growth occurred between 
25°C and 50°C, and optimal growth was observed 
between 30°C and 50°C. Growth of the strain was 
tested under an aerobic atmosphere, in the presence 
of 5% CO2, and also in anaerobic and 
microaerophilic atmospheres which were created 
using GENbag anaer and GENbag microaer 
(bioMérieux), respectively. The strains were aerobic 
and also grew under microaerophilic conditions and 
in the presence of 5% CO2 but did not grow in an 
anaerobic atmosphere. The NaCl concentrations 
allowing growth of strain JC8ET, were determined on 
DifcoTMBrain Heart Infusion Agar plates (Becton 
Dickinson). The powder was supplemented with 

NaCl (Euromedex) to obtain the tested 
concentrations (0.5, 1, 2, 3, 5 10, 15%, w/v). Growth 
occurred between 0.5-5% NaCl but the optimum 
growth was between 0.5-2% NaCl. 
Growth in the range of pH 5.0-10.0 was tested using 
BBLTM Brain Heart Infusion (Becton Dickinson). 
Final pH was adjusted with HCl or NaOH solution. 
Growth occurred between pH 5-9. 
The size and ultrastructure of cells were determined 
by negative staining transmission electron 
microscopy. The rods were 1.8-9.2 μm long and 0.7-
1.2 μm wide (Figure 3). Peritrichous flagella were 
observed. Capsule was characterized by India ink 
stain and after the bacteria were embedded in Epon 
812 resin and observed by transmission electron 
microscopy (Figure 4).  
Strain JC8ET exhibited catalase activity but no 
oxidase activity. Api ZYM, Api 20NE (BioMérieux) 
were used to study biochemical characters (Table 2). 
 

 
Figure 2. Gram stain of K. senegalensis strain JC8ET 
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Figure 3. Transmission electron micrograph of K. 
senegalensis strain JC8ET, using a Morgani 268D 
(Philips) at an operating voltage of 60kV.The scale 
bar represents 2 μm. 

 
Figure 4. Capsule characterization of K. senegalensis 
after the bacteria were embedded in Epon 812 resin 
and observed by transmission electron microscopy. 

Table 2. Diagnostic traits differentiating five Kurthia species. 
Characteristic 1 2 3 4 5 
gelatin hydrolysis + w -  - 
N-acetyl-glucosamine assimilation - + - + - 
D-maltose assimilation + - - - - 
potassium gluconate assimilation + + - - - 
capric acid assimilation - + - - - 
trisodium citrate assimilation + - - - - 
alkaline phosphatase - + + w + 
esterase (C4) + + + w w 
esterase lipase (C8) + + + w w 
valine arylaminidase w - - + - 
cystine arylaminidase + - + - - 
trypsin - w - - - 
α-chemotrypsin w w - + - 
naphthol-AS-BI-phosphohydrolase - - - - + 
α-glucosidase + - - - - 

Strains:1, K massiliensis JC30T ; 2, K. senegalensis sp. nov. JC8ET 3, K. gibsonii DSM 20636T; 4, K. zopfii 
DSM 20580T; 5, K. sibirica DSM 4747T. 
+: positive result, -: negative result, w: weak positive resul 
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t 
Analysis of respiratory quinones by HPLC was 
carried out by the Identification Service and Dr Brian 
Tindall, DSMZ, Braunschweig, Germany. Respiratory 
lipoquinones were extracted from 100 mg of freeze 
dried cell material as described by Tindall [26,27]. 
Respiratory lipoquinones were separated into their 
different classes (menaquinones and ubiquinones) 
by thin layer chromatography on silica gel, using 
hexane:tert-butylmethylether (9:1 v/v) as solvent. 
UV absorbing bands corresponding to 
menaquinones or ubiquinones were removed from 
the plate and further analyzed by HPLC at 269 nm. 
The respiratory quinones were MK-7 (100%) for 
strain JC8ET. Preparation and determination of 
cellular fatty acids were carried out by following the 
procedures given for the Sherlock Microbial 
identification System (MIDI). The major fatty acids 
were C15:0 iso 50.75% and C15:0 anteiso 24.05%. 
Polar lipids were extracted from 100 mg of freeze 
dried cell material using a 
chloroform:methanol:0.3% aqueous NaCl mixture 
1:2:0.8 (v/v/v) (modified after [28]). The extraction 
solvent was stirred overnight and the cell debris 
pelleted by centrifugation. Polar lipids were 
recovered into the chloroform phase by adjusting 
the chloroform:methanol:0.3% aqueous NaCl 
mixture to a ratio of 1:1:0.9 (v/v/v). Polar lipids 
were separated as previously described [29]. The 
polar lipids present were diphosphatidylglycerol, 
phosphatidylglycerol, phosphatidylethanolamine, 
phospholipids 1 and 2, unidentified 
aminophospholipid and glycolipid. The 
peptidoglycan of the bacteria was isolated as 
described by Schleifer [30]. The determination was 
carried out as previously described [30,31] with the 
modification that TLC on cellulose was applied 
instead of paper chromatography. Quantitative 
analysis of amino acids was performed after 
derivatization by gas chromatography and gas 
chromatography / mass spectrometry (320-MS 
Quadrupole GC/MS, Varian) [32]. K. senegalensis 
showed the peptidoglycan type A4αL-Lys←D-Glu 
(type A11.33 according to ref [33]). 
K. senegalensis was susceptible to penicillin G, 
amoxicillin, amoxicillin plus clavulanic acid, 
imipenem, gentamycin, erythromycin, doxycycline, 
rifampicin, vancomycin, nitrofurantoin. It was 
resistant to ceftriaxone, ciprofloxacin, 
sulfamethoxazole trimethoprim and metronidazole. 
Matrix-assisted laser-desorption/ionization time-of-
flight (MALDI-TOF) MS protein analysis was carried 

out. Briefly, a pipette tip was used to pick one 
isolated bacterial colony from a culture agar plate, 
and to spread it as a thin film on a MALDI-TOF target 
plate (Bruker Daltonics). Twelve distinct deposits 
were done for strain JC8ET from twelve isolated 
colonies and the manipulation was repeated another 
day. After air-drying, 1.5 µl matrix solution 
(saturated solution of α-cyanohydroxycinnaminic 
acid in 50% aqueous acetonitrile containing 2.5% 
trifluoroacetic acid) per spot was applied. MALDI-
TOF MS was conducted using the Microflex LT 
spectrometer (Bruker Daltonics). All spectra were 
recorded in linear, positive ion mode. The 
acceleration voltage was 20 kV. Spectra were 
collected as a sum of 240 shots across a spot. 
Preprocessing and identification steps were 
performed using the manufacturer’s parameters. 
The JC8ET spectra were imported into the MALDI 
BioTyper software (version 3.0, Bruker) and 
analysed by standard pattern matching (with default 
parameter settings) against the main spectra of 
6,300 bacteria, including the spectra from K. gibsonii, 
K. sibirica, K. zopfii and K. massiliensis, in the BioTyper 
database. A score enabled the identification, or not, 
from the tested species: a score > 2.3 with a 
validated species enabled the identification at the 
species level, a score > 1.7 but < 2 enabled the 
identification at the genus level; and a score < 1.7 did 
not enable any identification. For strain JC8ET, none 
of the obtained scores were > 1, thus suggesting that 
our isolate was not a member of a known species. 
We added the spectrum from strain JC8ET to our 
database (Figure 5). The spectrum is available online 
in our free-access URMS database.  

Genome sequencing information 
Genome project history 
The organism was selected for sequencing on the 
basis of its phylogenetic position and 16S rDNA 
similarity to other members of the genus Kurthia, and 
is part of a “culturomics” study of the human 
digestive flora aiming at isolating all bacterial 
species within human feces. It was the second 
genome of a Kurthia species, Kurthia senegalensis sp. 
nov. A summary of the project information is shown 
in Table 3. The EMBL accession number is 
CAEW01000000 and consists of 46 contigs (≥500 
bp) and 17 scaffolds (> 2,575 bp). Table 3 shows the 
project information and its association with MIGS 
version 2.0 compliance. 
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Figure 5. Reference mass spectra from K. senegalensis strain JC8ET and other representatives of the 
genus Kurthia. Spectra from 24 individual colonies were compared and a reference spectrum was 
generated. Strains: 1, K massiliensis JC30T ; 2, K. senegalensis sp. nov. JC8ET; 3, K. sibirica DSM 4747T; 4, 
K. gibsonii DSM 20636T; 5, K. zopfii DSM 20580T. 

Table 3. Project information [11] 
MIGS ID Property Term 
MIGS-31 Finishing quality High-quality draft 

MIGS-28 Libraries used One paired end 3-kb library and one 
Shotgun library 

MIGS-29 Sequencing platforms 454 GS FLX Titanium 
MIGS-31.2 Fold coverage 23× 
MIGS-30 Assemblers Newbler version 2.5.3 
MIGS-32 Gene calling method Prodigal 
 EMBL ID CAEW01000000 
 EMBL Date of Release February 28, 2012 
 Project relevance Study of the human gut microbiome 

Growth conditions and DNA isolation 
K. senegalensis sp. nov. strain JC8ET, CSUR P138T, 
DSM 24641T, was grown aerobically on 5% sheep 
blood-enriched Columbia agar at 37°C. 3 petri dishes 
were spread and resuspended in 3×100µl of G2 
buffer. A first mechanical lysis was performed with 
glass powder on the Fastprep-24 device (Sample 
Preparation system) from MP Biomedicals, USA 
using 2×20 second bursts. DNA was then treated 
with lysozyme (30 minutes at 37°C) and extracted 
using the BioRobot EZ 1 Advanced XL (Qiagen). The 
DNA was then concentrated and purified on a Qiamp 
kit (Qiagen). The yield and the concentration was 
measured by the Quant-it Picogreen kit (Invitrogen) 
on the Genios Tecan fluorometer at 86 ng/µl. 

Genome sequencing and assembly 
Shotgun and 3-kb paired-end sequencing strategies 
were performed. The shotgun library was 
constructed with 500 ng of DNA with the GS Rapid 
library Prep kit (Roche). For the paired-end 
sequencing, 5 µg of DNA was mechanically 
fragmented on a Hydroshear device (Digilab) with 
an enrichment size at 3-4 kb. The DNA 
fragmentation was visualized using the 2100 
BioAnalyzer (Agilent) on a DNA labchip 7500 with 
an optimal size of 3.679 kb. The library was 
constructed according to the 454 GS FLX Titanium 
paired-end protocol. Circularization and 
nebulization were performed and generated a 
pattern with an optimal size of 497 bp. After PCR 
amplification through 15 cycles followed by double 
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size selection, the single stranded paired-end library 
was then quantified using the Genios fluorometer 
(Tecan) at 888 pg/µL. The library concentration 
equivalence was calculated as 3.28 x 
109molecules/µL. The library was stored at -20°C 
until further use. 
The shotgun and paired-end libraries were clonally-
amplified with 3 cpb and 1cpb in 3 and 4 emPCR 
reactions respectively on the GS Titanium SV emPCR 
Kit (Lib-L) v2 (Roche). The yields of the emPCR were 
14.72 and 20% respectively. 340,000 beads for the 
shotgun application and 790,000 beads for the 3kb 
paired end were loaded on the GS Titanium 
PicoTiterPlate PTP Kit 70x75 and sequenced with 
the GS FLX Titanium Sequencing Kit XLR70 (Roche). 
The run was performed overnight and then analyzed 
on the cluster through the gsRunBrowser and 
Newbler assembler (Roche). A total of 307,968 
passed filter wells were obtained and generated 69.7 
Mb with a length average of 223 bp. The passed filter 
sequences were assembled using Newbler with 90% 
identity and 40 bp as overlap. The final assembly 
identified 17 scaffolds and 42 large contigs (>1,500 
bp). 

Genome annotation 
Open Reading Frames (ORFs) were predicted using 
Prodigal [34] with default parameters but the 
predicted ORFs were excluded if they were spanning 
a sequencing GAP region. The predicted bacterial 
protein sequences were searched against the 
GenBank database [35] and the Clusters of 
Orthologous Groups (COG) databases [36] using 

BLASTP. The tRNAscan-SE tool [37] was used to find 
tRNA genes, whereas ribosomal RNAs were found by 
using RNAmmer [38]. 
Transmembrane domains and signal peptides were 
predicted using TMHMM [39] and SignalP [40], 
respectively. ORFans were identified if their BLASTp 
E-value was lower than 1e-03 for alignment length 
greater than 80 amino acids. If alignment lengths 
were smaller than 80 amino acids, we used an E-
value of 1e-05. Such parameter thresholds have 
been used in previous works to define ORFans. 
To estimate the mean level of nucleotide sequence 
similarity at the genome level between K. 
senegalensis and K. massiliensis (GenBank accession 
number CAEU01000000), the only available Kurthia 
genome to date, we compared the ORFs only using 
comparison sequences found in the server RAST 
[41] at a query coverage of ≥60% and a minimum 
nucleotide length of 100 bp. 

Genome properties 
The genome is 2,975,103 bp long with a 38.21% GC 
content (Table 3, Figure 6). Of the 2,972 predicted 
genes, 2,889 were protein-coding genes, and 83 
were RNAs. A total of 2,141 genes (74.11%) were 
assigned a putative function. The remaining genes 
were annotated as either hypothetical proteins or 
proteins of unknown function. The distribution of 
genes into COGs functional categories is presented in 
Table 4. The properties and the statistics of the 
genome are summarized in Tables 4 and 5. 

 

Table 4. Nucleotide content and gene count levels of the genome 
Attribute Value % of totala 

Genome size (bp) 2,975,103 100 
DNA G+C content (bp) 1,136,726 38.21 
DNA coding region (bp) 2,576,027 86.59 
Total genes 2,972 100 
RNA genes 83 2.79 
Protein-coding genes 2,889 97.21 
Genes with function prediction 2,141 74.11 
Genes assigned to COGs 2,272 78.64 
Genes with peptide signals 335 11.6 
Genes with transmembrane helices 67 23.19 

a) The total is based on either the size of the genome in base pairs or the total number of protein coding 
genes in the annotated genome. 

 

Table 5. Number of genes associated with the 25 general COG functional categories 
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Code Value %age Description 

J 164 5.68 Translation 

A 0 0 RNA processing and modification 

K 201 6.96 Transcription 

L 128 4.43 Replication, recombination and repair 

B 1 0.03 Chromatin structure and dynamics 

D 34 1.18 Cell cycle control, mitosis and meiosis 

Y 0 0 Nuclear structure 

V 44 1.52 Defense mechanisms 

T 148 5.12 Signal transduction mechanisms 

M 116 4.02 Cell wall/membrane biogenesis 

N 70 2.42 Cell motility 

Z 0 0 Cytoskeleton 

W 0 0 Extracellular structures 

U 40 1.38 Intracellular trafficking and secretion 

O 81 2.80 Posttranslational modification, protein turnover, chaperones 

C 117 4.05 Energy production and conversion 

G 117 4.05 Carbohydrate transport and metabolism 

E 264 9.14 Amino acid transport and metabolism 

F 71 2.46 Nucleotide transport and metabolism 

H 104 3.60 Coenzyme transport and metabolism 

I 109 3.77 Lipid transport and metabolism 

P 180 6.23 Inorganic ion transport and metabolism 

Q 62 2.15 Secondary metabolites biosynthesis, transport and catabolism 

R 378 13.08 General function prediction only 

S 222 7.68 Function unknown 

X 617 21.36 Not in COGs 

The total is based on the total number of protein coding genes in the annotated genome. 

Comparison with other Kurthia genomes 
To date, only the genome of K. massiliensis strain 
JC30T has also been sequenced. K. senegalensis strain 
JC8ET shares a mean sequence similarity of 80.57% 
(60.06-99.58%) with K. massiliensis JC30T. The 
genome size, the G+C% and the total genes of K. 
senegalensis strain JC8ET are lower than those of K. 
massiliensis JC30T (Table 6). 

Prophage genome properties 
Prophage Finder [42] and PHAST [43] were used to 
identify potential prophages in K. senegalensis strain 
JC8ET genome. The genome contains at least one 
genetic element of around 36.3 kb (with a GC 
content of 38.9%), which we named KS1, on contig 
21. The overall G + C content of the KS1 genome 

(38.9%) is comparable with the overall G + C content 
of K. senegalensis genome (38.21%), allowing KS1 to 
be maintained and regulated inside the host [44]. 
A total of 49 open reading frames (ORFs) larger than 
98 nucleotides were recovered from KS1,  and most 
of them (24) encode proteins sharing a high identity 
with proteins found in Bacillales genus phages. The 
majority of the putative genes (43) have the same 
orientation and six are located on the 
complementary strand. Preliminary annotation of 
KS1 was performed and the majority of the putative 
genes (31) encode hypothetical proteins. The 19 
ORFs with an attributed function encode proteins 
involved in DNA packaging, head and tail 
morphogenesis structure, cell lysis and lysogeny 
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control, DNA replication, recombination, and modification. 

 
Figure 6. Graphical circular map of Kurthia senegalensis genome. From outside to the center: 
Genes on forward strand (colored by COG categories), genes on reverse strand (colored by 
COG categories), RNA genes (tRNAs green, rRNAs red), GC content, and GC skew (3 circles). 

 

Table 6. Genome characteristics of Kurthia representatives. 
Attribute K. senegalensis strain JC8ET K. massiliensis JC30T 

Genome size (bp) 2,975,103 3,199,090 
DNA G+C content (%) 38.21 39.26 

Total genes 2,972 3,326 
Protein-coding genes 2,889 3,240 

Conclusion
On the basis of phenotypic, phylogenetic and 
genomic analyses, we formally propose the creation 

of Kurthia senegalensis sp. nov. that contains the 
strain JC8ET. This strain originated in Senegal. 
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Description of Kurthia senegalensis sp. nov. 
Kurthia senegalensis (se.ne.gal.e’n.sis, L. gen. masc. n. 
senegalensis pertaining to Senegal, the country 
where the type strain was isolated). Isolated from 
stool of a healthy Senegalese patient. K senegalensis 
are aerobic Gram-positive coccobacilli. Surface 
colonies were observed on sheep blood agar after 24 
h aerobic incubation at 37°C. The colonies of the 
strain JC8ET were crcular, greyish/yellowish, shiny, 
curved and smooth, 2-5 mm in diameter. Cells are 
motile by peritrichous flagella and capsulated. 
Catalase activity is positive but oxidase activity is 
negative. Gelatine hydrolysis, N-acetyl-glucosamine 
assimilation, potassium gluconate assimilation, 
capric acid assimilation and malic acid assimilation 
are present. Alkaline phosphatase, esterase (C4), 
esterase lipase (C8), leucine arylaminidase, trypsin, 
α-chemotrypsin and acid phosphatase activities are 

observed. The major fatty acids are C15:0 iso 
50.75% and C15:0 anteiso 24.05%. The polar lipids 
present are diphosphatidylglycerol, phospha-
tidylglycerol, phosphatidylethanolamine, phospho-
lipids 1 and 2, unidentified aminophospholipid and 
glycolipid. The peptidoglycan type is A4αL-Lys←D-
Glu (type A11.33). Cells are susceptible to penicillin 
G, amoxicillin, amoxicillin plus clavulanic acid, 
imipenem, gentamycin, erythromycin, doxycycline, 
rifampicin, vancomycin and nitrofurantoin. The 
genome is 2,975,103 bp long with a 38.21% G+C 
content. A 36.3 kb prophage, KS1, was identified. 
The type strain is JC8ET (= CSUR P138T = DSM 
24641T). The 16S rRNA gene sequence was 
deposited in GenBank with the accession number 
JF824796. The whole genome shotgun sequence of 
K. senegalensis strain JC8ET was deposited in 
GenBank/DDBJ/EMBL under accession number 
CAEW01000000. 
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