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Draft genome sequence of marine alphaproteobacterial strain HIMB11, 
the first cultivated representative of a unique lineage within the 
Roseobacter clade possessing an unusually small genome 
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Strain HIMB11 is a planktonic marine bacterium isolated from coastal seawater in Kaneohe Bay, Oahu, 
Hawaii belonging to the ubiquitous and versatile Roseobacter clade of the alphaproteobacterial family 
Rhodobacteraceae. Here we describe the preliminary characteristics of strain HIMB11, including annota-
tion of the draft genome sequence and comparative genomic analysis with other members of the 
Roseobacter lineage. The 3,098,747 bp draft genome is arranged in 34 contigs and contains 3,183 pro-
tein-coding genes and 54 RNA genes. Phylogenomic and 16S rRNA gene analyses indicate that HIMB11 
represents a unique sublineage within the Roseobacter clade. Comparison with other publicly available 
genome sequences from members of the Roseobacter lineage reveals that strain HIMB11 has the genomic 
potential to utilize a wide variety of energy sources (e.g. organic matter, reduced inorganic sulfur, light, 
carbon monoxide), while possessing a reduced number of substrate transporters. 

Abbreviations: DMSP - Dimethylsulfoniopropionate, DMS - dimethylsulfide, AAnP - aerobic anoxygenic 
phototroph, COG - Clusters of Orthologous Groups, PGC -photosynthesis gene cluster, BLUF - blue-light 
using flavin adenine nucleotide, ABC - ATP-binding cassette, TRAP - tripartite ATP-independent 
periplasmic, DMTs - drug/metabolite transporters 
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Introduction 
Bacteria belonging to the Roseobacter lineage of  
marine Alphaproteobacteria account for a sub-
stantial fraction (ranging ~10 – 25%) of 
bacterioplankton cells in surface ocean seawater 
[1-4], making them one of a relatively small 
number of suitable targets for scientists investi-
gating the ecology of abundant marine bacterial 
groups. Focused genome sequencing efforts have 
provided significant insights into the functional 
and ecological roles for this group [5-7]. In 2004, 
the first member of this group to have its genome 
sequenced, Ruegeria pomeroyi (basonym 
Silicibacter pomeroyi) strain DSS-3 [8], revealed 
strategies used by the Roseobacter group for nu-
trient acquisition in the marine environment. To 
date, over 40 genomes have been sequenced 
from members of the Roseobacter lineage. Com-
parative analysis among 32 of these genomes in-
dicates that members of this group are ecological 
generalists, having relatively plastic require-
ments for carbon and energy metabolism, which 
may allow them to respond to a diverse range of  
environmental conditions [9]. For example, 
members of the Roseobacter lineage have the ge-
nomic potential to obtain energy via oxidation of  
organic substrates, oxidation of inorganic com-
pounds, and/or sunlight-driven electron transfer 
via bacteriochlorophyll a, proteorhodopsin, or 
xanthorhodopsin phototrophic systems. Genome 
analyses as well as culture experiments have also 
revealed a variety of mechanisms by which 
roseobacters may associate and interact with 
phytoplankton and other eukaryotes. These in-
clude genes involved in uptake of compounds 
produced by algae such as peptides, amino acids, 
putrescine, spermidine, and DMSP [10,11], as 
well as genes for chemotaxis, attachment, and 
secretion [12]. 
Strain HIMB11 was isolated from surface sea-
water collected from Kaneohe Bay off the coast of 
Oahu, Hawaii, USA in May, 2005. Subsequent 16S 
rRNA gene sequence comparisons revealed it to 
be a member of the Roseobacter clade of marine 
bacterioplankton [13] that was highly abundant 
after a storm-induced phytoplankton bloom in the 
bay [14]. Here, we present a preliminary set of 
features for strain HIMB11, a description of the 
draft genome sequence and annotation, and a 
comparative analysis with 35 other genome se-
quences from members of the Roseobacter lineage. 

Genome annotation revealed strain HIMB11 to 
have the genetic potential for bacteriochlorophyll-
based aerobic anoxygenic phototrophic (AAnP) 
metabolism and degradation of the algal-derived 
compound DMSP along with production of the 
climate-relevant gas dimethylsulfide (DMS), and 
oxidation of the greenhouse gas carbon monoxide 
(CO). Collectively, these features indicate the po-
tential for strain HIMB11 to participate in the bio-
geochemical cycling of sulfur and carbon, and con-
comitantly affect global climate processes. 

Classification and features 
Strain HIMB11 was isolated by a high-throughput, 
dilution-to-extinction approach [15] from surface 
seawater collected near the coast of Oahu, Hawaii, 
USA, in the tropical North Pacific Ocean. The strain 
was isolated in seawater sterilized by tangential 
flow filtration and amended with low concentra-
tions of inorganic nitrogen and phosphorus (1.0 
µM NH4Cl, 1.0 µM NaNO3, and 0.1 µM KH2PO4). 

Comparative analysis of the HIMB11 16S rRNA 
gene sequence to those from cultured, sequenced 
roseobacters indicates that HIMB11 occupies a 
unique lineage that is divergent from the 16S 
rRNA gene sequences of Roseobacter strains al-
ready in culture (Figure 1). Based on the National 
Center for Biotechnology Information (NCBI) 
non-redundant database, the HIMB11 16S rRNA 
gene sequence is most similar (~99% nucleotide 
identity) to a large number of environmental 
gene clones obtained from various marine envi-
ronments that exclusively fall in the Roseobacter 
lineage of Alphaproteobacteria. 

Because of the significant sequence variation in 
16S rRNA genes (up to 11%) and the prevalence 
of horizontal gene transfer within the clade, estab-
lishing a taxonomic framework for roseobacters 
remains a challenge [9]. When genome sequence 
data is available, it is often more informative to 
perform a phylogenomic analysis based on shared 
orthologs versus 16S rRNA phylogenetic analysis 
alone [9,21]. A maximum likelihood tree con-
structed using 719 shared orthologous protein 
sequences supported the 16S rRNA gene-based 
analysis by revealing that HIMB11 formed a 
unique sublineage of the Roseobacter clade (Fig-
ure 2). 
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Figure 1. Phylogenetic relationships between HIMB11 and bacterial strains belonging  to the 
Roseobacter clade. SSU rRNA gene sequences were aligned with version 111 of the ‘All-Species 
Living Tree’ project SSU rRNA gene database [16] using the ARB software package [17]. The phy-
logeny was constructed from nearly full-length gene sequences using  the RAxML maximum likeli-
hood method [18] within ARB, filtered to exclude alignment positions that contained gaps or am-
biguous nucleotides in any of the sequences included in the tree. Bootstrap analyses were deter-
mined by RAxML [19] via the raxmlGUI graphical front end [20]. The scale bar corresponds to 
0.05 substitutions per nucleotide position. Open circles indicate nodes with bootstrap support be-
tween 50-80%, while closed circles indicate bootstrap support >80%, from 500 replicates. A varie-
ty of Archaea were used as outgroups. 
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HIMB11 cells are short, irregular rods (0.3-0.5 x 
0.8 µm) that are generally smaller in size than 
previously reported for other cultured 
Roseobacter strains (e.g. described taxa in 
Bergey’s Manual range from 0.5-1.6 – 1.0-4.0 µm) 
[24] (Figure 3). HIMB11 is likely motile, as the 
genes necessary to build flagella are present (e.g. 
fli, flg). Based on the ability of HIMB11 to grow in 
dark or light on a medium consisting solely of 
sterile seawater amended with inorganic nitrogen 
and phosphorus, and the absence any of the 

known pathways for inorganic carbon fixation, the 
strain is presumed to acquire carbon and energy 
via the oxidation of components of the dissolved 
organic carbon pool in natural seawater. Based on 
the presence of carbon-monoxide-oxidizing genes 
(i.e. coxL, forms I and II) [25,26] as well as 
bacteriochlorophyll-based phototrophy genes (e.g. 
puf, puh, bch) [27,28], HIMB11 is hypothesized to 
oxidize both organic and inorganic compounds as 
well as obtain energy from light [5]. A summary of 
these and other features is shown in Table 1. 

Table 1. Classification and general features of strain HIMB11 according  to the MIGS rec-
ommendations [29].  
MIGS ID Property Term Evidence codea 

  Domain Bacteria TAS [30] 

  Phylum Proteobacteria  TAS [31] 

  Class Alphaproteobacteria  TAS [32,33] 

 Current classification Order Rhodobacterales TAS [32,34] 

  Family Rhodobacteraceae TAS [32,35] 

  Genus not assigned  

  Species not assigned  

  Strain HIMB11  

 Gram stain Negative NAS 

 Cell shape Short irregular rods IDA 

 Motility Flagella NAS 

 Sporulation Non-sporulating NAS 

 Temperature range Mesophile IDA 

 Optimum temperature Unknown  

 Carbon source  Ambient seawater DOC TAS [36] 

 Energy source Mixotrophic NAS 

 Terminal electron receptor   

MIGS-6 Habitat Seawater IDA 

MIGS-6.3 Salinity ~35.0 ‰ IDA 

MIGS-22 Oxygen Aerobic NAS 

MIGS-15 Biotic relationship Free-living TAS [36] 

MIGS-14 Pathogenicity None NAS 

MIGS-4 Geographic location Kaneohe Bay, Hawaii TAS [14] 

MIGS-5 Sample collection time 18 May, 2005 TAS [14] 

MIGS-4.1 Latitude - Longitude 21.44, -157.78 TAS [14] 

MIGS-4.2    

MIGS-4.3 Depth ~1 m TAS [14] 

MIGS-4.4 Altitude   

a) Evidence codes - IDA: Inferred f rom Direct Assay; TAS: Traceable Author Statement (i.e., 
a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not di-
rectly observed for the living, isolated sample, but based on a generally accepted property 
for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology 
project [37].  
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Figure 3. Scanning electron micrograph of strain HIMB11. For scale, the membrane pore 
size is 0.2 μm in diameter. 

Genome sequencing information 
Genome project history 
The genome of strain HIMB11 was selected for 
sequencing based on its phylogenetic affiliation 
with the widespread and ecologically important 
Roseobacter clade of marine bacterioplankton and 
its periodically high abundance in coastal Hawaii 
seawater [14]. The genome sequence was com-
pleted on May 25, 2011, and presented for public 
access on September 15, 2013. The genome pro-
ject is deposited in the Genomes OnLine Database 
(GOLD) as project Gi09592. The Whole Genome 
Shotgun project has been deposited at 
DDBJ/EMBL/GenBank under the accession num-
ber AVDB00000000. The version described in this 
paper is version AVBD01000000. Table 2 presents 
the main project information and its association 
with MIGS version 2.0 compliance [29]. 

Growth conditions and DNA isolation 
Strain HIMB11 was grown at 27 °C in 60 L of 
coastal Hawaii seawater sterilized by tangential 
flow filtration and supplemented with 10 µM 
NH4Cl, 1.0 µM KH2PO4, and 1.0 µM NaNO3 (final 

concentrations). Cells from the liquid culture were 
collected on a membrane filter, and DNA was iso-
lated using a standard phe-
nol/chloroform/isoamyl alcohol extraction proto-
col. A total of 50 μg of DNA was obtained. 

Genome sequencing and assembly 
The HIMB11 genome was sequenced at the Penn-
sylvania State University Center for Comparative 
Genomics and Bioinformatics (University Park, PA, 
USA) using a 454 GS FLX platform and Titanium 
chemistry from 454 Life Sciences (Branford, CT, 
USA). The sequencing library was prepared in ac-
cordance with 454 instructions and was carried 
out on a full 454 picotiter plate. This yielded 
1,550,788 reads with an average length of 359 bp, 
totaling 556,821,617 bp. A subset of 1,336,895 
reads was ultimately assembled using the 
Newbler assembler version 2.5.3, yielding a final 
draft genome of 34 contigs representing 
3,098,747 bp. This provided 121× coverage of the 
genome. 
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Table 2. Project information 
MIGS ID Property Term 

MIGS-31 Finishing  quality Draft 
MIGS-28 Libraries used One standard 454 pyrosequence titanium library 
MIGS-29 Sequencing platforms 454 GS FLX Titanium 
MIGS-31.2 Fold coverage 121× pyrosequence 

MIGS-30 Assemblers Newbler version 2.5.3 
MIGS-32  Gene calling  method Prodigal 1.4, GenePRIMP 
 Genome Database release IMG; 2506210027 
 Genbank ID AVDB00000000 
 Genbank Date of Release September 15, 2013 

 GOLD ID Gi09592 
 Project relevance Environmental 

Genome annotation 
Genes were identified using Prodigal 1.4 [38] as 
part of the genome annotation pipeline in the In-
tegrated Microbial Genomes Expert Review (IMG-
ER) system [39,40] developed by the Joint Ge-
nome Institute (Walnut Creek, CA, USA). Predicted 
coding sequences were translated and used as 
queries against the NCBI non-redundant database 
and UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, 
and InterPro databases. The tRNAScanSE tool [41] 
was used to identify tRNA genes, and ribosomal 
RNAs were identified using RNAmmer [42]. Other 
non-coding RNAs were found by searching the 
genome for corresponding Rfam profiles using 
INFERNAL [43]. Additional gene prediction  

analysis and manual functional annotation was 
performed within the IMG-ER platform. 

Genome properties 
The HIMB11 draft genome is 3,098,747 bp long 
and comprises 34 contigs ranging in size from 454 
to 442,822 bp, with an overall GC content of 
49.73% (Table 3). Of the 3,237 predicted genes, 
3,183 (98.33%) were protein-coding genes, and 
54 were RNAs. Most (78%) protein-coding genes 
were assigned putative functions, while the re-
maining genes were annotated as hypothetical 
proteins. The distribution of genes into COG func-
tional categories is presented in Table 4. 

Table 3. Nucleotide content and gene count levels of the genome 
Attribute Value % of totala 
Genome size (bp) 3,098,747 100.00 
DNA coding reg ion (bp) 2,812,982 90.78 
DNA G+C content (bp) 1,541,077 49.73 
Total genes 3,237 100.00 
RNA genes 54 1.67 
Protein-coding genes 3,183 98.33 
Genes in paralog  clusters   
Genes assigned to COGs 2,523 77.94 
1 or more conserved domains   
2 or more conserved domains   
3 or more conserved domains   
4 or more conserved domains   
Genes with signal peptides 919 28.39 
Genes with transmembrane helices 654 20.20 
Paralogous groups   

a) The total is based on either the size of the genome in base pairs or 
the total number of protein coding genes in the annotated genome. 
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Table 4. Number of genes associated with the 25 general COG functional categories 
Code Value %agea Description 

J 158 5.6 Translation 
A 0 0 RNA processing  and modification 
K 159 5.7 Transcription 

L 104 3.7 Replication, recombination and repair 
B 3 0.1 Chromatin structure and dynamics 
D 24 0.9 Cell cycle control, mitosis and meiosis 
Y 0 0 Nuclear structure 
V 22 0.8 Defense mechanisms 

T 74 2.6 Signal transduction mechanisms 
M 133 4.7 Cell wall/membrane biogenesis 
N 40 1.4 Cell motility 
Z 0 0 Cytoskeleton 
W 0 0 Extracellular structures 

U 38 1.4 Intracellular trafficking and secretion 
O 118 4.2 Posttranslational modification, protein turnover, chaperones 
C 196 7.0 Energy production and conversion 
G 165 5.9 Carbohydrate transport and metabolism 
E 334 11.9 Amino acid transport and metabolism 

F 73 2.6 Nucleotide transport and metabolism 
H 157 5.6 Coenzyme transport and metabolism 
I 154 5.5 Lipid transport and metabolism 
P 112 4.0 Inorganic ion transport and metabolism 
Q 123 4.4 Secondary metabolites biosynthesis, transport and catabolism 

R 379 13.5 General function prediction only 
S 238 8.5 Function unknown 
- 714 22.06 Not in COGs 

a) The total is based on the total number of protein coding genes in the annotated genome. 

Insights from the Genome Sequence 
Metabolism of HIMB11 
Major pathways of carbon, nitrogen, phosphorus, 
and sulfur acquisition, as well as alternative me-
tabolisms and means of energy acquisition (e.g. 
light, CO), were annotated based on the presence 
and absence of key genes involved in these pro-
cesses. A summary is provided in Figure 4. 
HIMB11 appears to possess an incomplete glycol-
ysis pathway (pfkC and pgm are absent), yet it 
possesses the genes necessary for gluconeogene-
sis. HIMB11 harbors genes for the Entner-
Doudoroff and pentose phosphate pathways, as 
well as pyruvate carboxylase to perform 
anaplerotic CO2 fixation. HIMB11 does not appear 
to use inorganic forms of nitrogen other than am-
monium, as there are no genes present that are 
involved in nitrogen fixation, nitrate or nitrite  

reduction, nitric oxide reduction, nitrous oxide 
reduction, hydroxylamine oxidation, or 
nitroalkane denitrification. Instead, HIMB11 is 
hypothesized to rely solely on reduced and organ-
ic nitrogen sources; there are transporters for 
ammonium (amtB) and a variety of other nitro-
gen-containing substrates (e.g. amino acids, poly-
amines, glycine betaine, taurine), as well as genes 
for urease (ureABC). Strain HIMB11 possesses a 
high-affinity phosphate transporter accompanied 
by regulatory genes (pstSCAB, phoUBR) and alka-
line phosphatase (phoA), suggesting that it can 
utilize both inorganic and organic forms of phos-
phorus; it does not harbor low-affinity phosphate 
transport (pitA) or the genes for phosphonate uti-
lization (phnGHIJKLM). 
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Figure 4. Proposed mechanisms for the acquisition of carbon, nitrogen, phospho-
rus, sulfur, and energy in HIMB11. Substrates that are hypothesized to be trans-
ported and used by HIMB11 are in bold. Genes that designate these mechanisms 
are indicated. DMSP, dimethylsulfoniopropionate; DMS, dimethylsulfide; DON, 
dissolved organic nitrogen; C-O-P, phosphoesters; C-P, phosphonates; Pi, phos-
phate. 

HIMB11 possesses genes for assimilatory sulfate 
reduction (cys) and for the metabolism of reduced, 
organic sulfur compounds (e.g. amino acids, 
DMSP). DMSP is an osmolyte produced by certain 
phytoplankton, including dinoflagellates and 
coccolithophores [44,45], and acts as a major 
source of both carbon and sulfur for marine 
bacterioplankton in ocean surface waters [46-49]. 
Roseobacters are frequently abundant during 
DMSP-producing algal blooms [1], and members 
of this group have become models for the study of 

bacterial transformations of DMSP [50]. There are 
two competing pathways for DMSP degradation: 
the demethylation pathway that leads to assimila-
tion of sulfur (dmdA, -B, -C, -D), and the cleavage 
pathway that leads to the release of DMS (dddD, -
L, -P, -Q, -W, -Y) [51]. DMS is a climate-active gas 
that has been implicated in the formation of at-
mospheric-cooling aerosols and clouds. The ge-
nome of HIMB11 harbors versions of both sides of 
the pathway (dmdA, -B, -C, -D’ and dddP, -D). 
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The HIMB11 genome contains genes that encode 
for a diverse array of energy acquisition strategies. 
The presence of the sox gene cluster indicates that 
HIMB11 is putatively capable of oxidizing reduced 
inorganic sulfur compounds [8] as a mechanism for 
lithoheterotrophic growth. Additional modes of 
energy acquisition encoded by the HIMB11 genome 
include pathways for CO oxidation to CO2 via car-
bon monoxide dehydrogenase (i.e. cox operons, 
including coxL, forms I and II) [25,26], degradation 
of aromatics (i.e. gentisate, benzoate, phenylacetic 
acid), and bacteriochlorophyll-based anoxygenic 
photosynthesis. Photosynthetic genes are orga-
nized in a photosynthesis gene cluster (PGC) and 
include genes for the photosynthetic reaction cen-
ter (puf and puh), light harvesting complexes, bio-
synthesis of bacteriochlorphyll a and carotenoids, 
and regulatory factors (bch and crt). Two con-
served regions within the PGC that were identified 
in a recent study examining the structure and ar-
rangement of PGCs in ten AAnP bacterial genomes 
of different phylogenies, bchFNBHLM-LhaA-puhABC 
and crtF-bchCXYZ [28], were also found to be con-
served in the HIMB11 genome. The arrangement of 
the puf genes (pufQBALMC) as well as the puh genes 
(puhABC-hyp-ascF-puhE) in HIMB11 is very similar 

to what has been described before for other 
Roseobacter strains [28]. Putative genes containing 
the sensor domain BLUF (blue-light-utilizing flavin 
adenine dinucleotide) were also found in HIMB11. 
BLUF sensor domains have been hypothesized to 
be involved in a light-dependent regulation of the 
photosynthesis operon and may enable light sens-
ing for phototrophy [5,52]. 

Genome comparisons with other 
members of the Roseobacter clade 
A regression model was used to estimate the ge-
nome size of HIMB11 based on the genomes of 40 
Roseobacter strains (Figure 5). The model considers 
the number of nucleotides sequenced versus the ra-
tio of the number of conserved single-copy genes 
universally present in Roseobacter genomes to the 
number of predicted protein-encoding genes. These 
data were fit to an exponential regression model 
(R2=0.94), which estimates the genome coverage of 
the draft HIMB11 genome to be 90.6% and the full 
genome size to be 3.42 Mb. This is relatively small 
compared to most cultured Roseobacter genomes 
(median 4.35 Mb) with only one notable exception 
(Roseobacter member HTCC2255, 2.21 Mb). 

 

 
Figure 5. Regression model for strain HIMB11 genome size estimation based on the genomes of 40 cul-
tured Roseobacter strains. The x-axis shows the ratio of the number of conserved single-copy genes univer-
sally present in fully sequenced Roseobacter genomes to the number of predicted protein-encoding genes. 
The y-axis is the number of nucleotides sequenced. The data were fit to an exponential regression model 
(R2=0.94), and the model was used to estimate the genome size of HIMB11 to be 3.42 Mb. 
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At the time of this analysis, 35 other Roseobacter 
genomes were publically available in the IMG-ER 
database (Table 5). The effect of a reduced genome 
size is readily apparent with respect to the trans-
porter content of the HIMB11 genome: it possesses a 
highly reduced number of genes devoted to ATP-
binding cassette (ABC) transporters and tripartite 
ATP-independent periplasmic (TRAP) transporters. 
ABC transporters use energy from ATP hydrolysis to 
transport a wide range of substrates across the 
membrane (e.g. ions, amino acids, peptides, sugars). 
While the 35 public Roseobacter genomes contain on 
average 279 genes involved in ABC transport (171 
to 443 per genome), HIMB11 has only 169 genes for 

ABC transport systems. TRAP transporters are also 
underrepresented in the HIMB11 genome. These are 
a large prokaryotic family of solute transporters that 
contain a substrate binding protein (DctP) and two 
membrane proteins (DctQ and DctM). By relying on 
electrochemical ion gradients rather than ATP for 
transport [53], they mediate the uptake of a number 
of different substrates (e.g. succinate, malate, 
fumarate, pyruvate, taurine, ectoine, DMSP). 
Roseobacter genomes contain on average 60 genes 
devoted to TRAP transporter systems (23 to 135 
genes per genome), while the HIMB11 genome har-
bors 26 TRAP transporter genes. 

Table 5. Publicly available Roseobacter clade genomes use for comparative analysis with strain HIMB11, as 
of IMG release 3.4. 
Organism name Status Size (bp) Gene Count  GC% 
Citreicella sp. SE45 Draft 5,523,231 5,499 67 
Dinoroseobacter shibae DFL-12, DSM 16493 Finished 4,417,868 4,271 66 
Jannaschia sp. CCS1 Finished 4,404,049 4,339 62 
Loktanella sp. CCS2 Draft 3,497,325 3,703 55 
Loktanella vestfoldensis SKA53 Draft 3,063,691 3,117 60 
Marit imibacter alkaliphilus HTCC2654 Draft 4,529,231 4,763 64 
Oceanibulbus indolifex HEL-45 Draft 4,105,524 4,208 60 
Oceanicola batsensis HTCC2597 Draft 4,437,668 4,261 66 
Oceanicola granulosus HTCC2516 Draft 4,039,111 3,855 70 
Octadecabacter antarcticus 238 Draft 5,393,715 5,883 55 
Octadecabacter antarcticus 307 Draft 4,909,025 5,544 55 
Pelagibaca bermudensis HTCC2601 Draft 5,425,920 5,519 66 
Phaeobacter gallaeciensis 2.10 Draft 4,157,399 4,017 60 
Phaeobacter gallaeciensis BS107 Draft 4,232,367 4,136 60 
Rhodobacterales sp. HTCC2083 Draft 4,018,415 4,226 53 
Rhodobacterales sp. HTCC2150 Draft 3,582,902 3,713 49 
Rhodobacterales sp. Y4I Draft 4,344,244 4,206 64 
Rhodobacterales sp. HTCC2255 Draft 2,224,475 2,209 37 
Roseobacter denitrif icans OCh 114 Finished 4,331,234 4,201 59 
Roseobacter sp. AzwK-3b Draft 4,178,704 4,197 62 
Roseobacter sp. MED193 Draft 4,652,716 4,605 57 
Roseobacter sp. SK209-2-6 Draft 4,555,826 4,610 57 
Roseovarius nub inhibens ISM Draft 3,668,667 3,605 64 
Roseovarius sp. 217 Draft 4,762,632 4,823 61 
Roseovarius sp. TM1035 Draft 4,209,812 4,158 61 
Ruegeria pomeroy i DSS-3 Finished 4,601,053 4,355 64 
Ruegeria sp. KLH11 Draft 4,487,498 4,338 58 
Ruegeria sp. TM1040 Finished 4,153,699 3,964 60 
Sagittula stellata E-37 Draft 5,262,893 5,121 65 
Silic ibacter lacuscaerulensis ITI-1157 Draft 3,523,710 3,677 63 
Silic ibacter sp. TrichCH4B Draft 4,689,084 4,814 59 
Sulfitobacter sp. EE-36 Draft 3,547,243 3,542 60 
Sulfitobacter sp. GAI101 Draft 4,527,951 4,258 59 
Sulfitobacter sp. NAS-14.1 Draft 4,002,069 4,026 60 
Thalassiob ium sp. R2A62 Draft 3,487,925 3,744 55 
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In contrast, drug/metabolite transporters (DMTs), 
which are another abundant group of transporters 
found in roseobacters [5], are abundant in 
HIMB11. DMTs are a ubiquitous superfamily (con-
taining 14 families, six of which are prokaryotic) 
of drug and metabolite transporters, of which few 
are functionally characterized [54]. In prokary-
otes, most act as pumps for the efflux of drugs and 
metabolites. On average, individual Roseobacter 
genomes harbor 27 genes for DMTs (19 to 37 per 
genome). HIMB11 has 33 DMT genes, which is fur-
ther elevated when normalized to its small ge-
nome size. Thus, the reductive trend for ABC and 
TRAP transporters is reversed in the DMT family 
of transporters, potentially a result of selective 
pressure for the efflux of toxins/metabolites. 

Conclusion 
HIMB11 represents a member of the Roseobacter 
lineage that is phylogenomically distinct from  

other cultured, sequenced members of the 
Roseobacter clade. This uniqueness is further sup-
ported by its small genome and cell size relative to 
other members of this group that have been simi-
larly investigated. These characteristics, taken to-
gether with the atypical transporter inventories, 
the presence of many alternative methods of en-
ergy acquisition (e.g. CO, light), and the periodic 
abundance of HIMB11 in Kaneohe Bay, suggest 
that stain HIMB11 is an opportunist in the envi-
ronment, persisting on relatively few reduced 
substrates and alternative energy metabolism un-
til conditions arise that are favorable for rapid 
growth (e.g. a phytoplankton bloom). Consistent 
with other members of this lineage is the potential 
for HIMB11 to play an important role in the cy-
cling of the climatically important gases DMS, CO, 
and CO2, warranting further study in both the la-
boratory and field. 
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