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The Gram-negative gammaproteobacterium Pseudomonas syringae is one of the most wide-
spread plant pathogens and has been repeatedly reported to cause significant damage to crop 
plantations. Research on this pathogen is very intensive, but most of it is done on isolates that 
are pathogenic to Arabidopsis, tomato, and bean. Here, we announce a high-quality draft ge-
nome sequence of Pseudomonas syringae pv. syringae B64 which is the first published ge-
nome of a P. syringae strain isolated from wheat up to date. The genome sequence will assist 
in gaining insights into basic virulence mechanisms of this pathogen which has a relatively 
small complement of type III effectors. 

Abbreviations: Pss- Pseudomonas syringae pathovar syringae, Pto- Pseudomonas syringae 
pathovar tomato, Pph- Pseudomonas syringae pathovar phaseolicola, EPS- Exopolymeric sub-
stances, NRPS- non-ribosomal peptide synthetase, MLST- multilocus sequence typing 

Introduction 
Pseudomonas syringae strains have been isolated 
from more than 180 host species [1] across the 
entire plant kingdom, including many agricultural-
ly important crops, such as bean, tomato, cucum-
ber, as well as kiwi, stone fruit, and olive trees. 
Strains are divided into more than 50 pathovars 
primarily based on host-specificity, disease symp-
toms, and biochemical profiles [2-4]. The first 
strain of this species was isolated from a lilac tree 
(Syringa vulgaris), which gave origin to its name 
[5].The observed wide host range is reflected in a 
relatively large genetic heterogeneity among dif-
ferent pathovars. This is most pronounced in the 
complement of virulence factors, which is also as-
sumed to be the key factor defining host specifici-
ty [6]. For successful survival and reproduction, 
both epiphytic and endophytic P. syringae strains 
deploy different sets of type III and type VI secre-
tion system effectors, phytotoxins, EPS, and other 
types of secreted molecules [6-11]. Currently, 
there are three completely sequenced P. syringae 
genomes published: pathovar syringae strain 
B728a which causes brown spot disease of bean 
[12], pathovar tomato strain DC3000 which is 
pathogenic to tomato and Arabidopsis [13], and 

pathovar phaseolicola strain 1448A, causal agent 
of halo blight on bean [14]. There are also a num-
ber of incomplete genomes of various qualities 
available for other strains. 
Pseudomonas syringae pv. syringae strain B64 was 
isolated from hexaploid wheat (Triticum aestivum) 
in Minnesota, USA [15]. The strain has been de-
ployed in several studies mainly addressing phy-
logenetic diversity of P. syringae varieties [15-18], 
but never as an infection model for wheat. The 
genome sequencing of the B64 strain and its com-
parison with the other published genomes should 
reveal wheat-specific adaptations and give in-
sights in virulence strategies for colonizing mono-
cot plants. 

Classification and features 
Pseudomonas syringae belongs to class 
Gammaproteobacteria. Detailed classification of 
this species is still under heavy debate. Young and 
colleagues have proposed to group all plant-
pathogenic oxidase-negative and fluorescent 
Pseudomonas strains into a single species, P. 
syringae, which is to be further sub-divided into 
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pathovars [4,19]. Several DNA hybridization stud-
ies have shown a large genetic heterogeneity 
among the groups, however biochemical charac-
teristics, with a few exceptions, did not allow ele-
vating those into distinct species [20,21]. Current-
ly, the species is divided into five phylogenetic 

clades based on MLST analysis. P. syringae pv. 
syringae (Pss) strains belong to group II within 
this nomenclature [22]. The basic characteristics 
of Pss B64 are summarized in Table 1, while its 
phylogenetic position is depicted in Figure 1. 

Table 1. Classification and the general features of P. syringae pv. syringae B64 according to the MIGS recom-
mendations [23] 

MIGS ID Property Term Evidence codea 

  
Domain Bacteria TAS [24] 

  
Phylum Proteobacteria TAS [25] 

  
Class Gammaproteobacteria TAS [26,27] 

 
Current classification Order Pseudomonadales TAS [28,29] 

  
Family Pseudomonadaceae TAS [30,31] 

  
Genus Pseudomonas TAS [30-34] 

  
Species Pseudomonas syringae TAS [30,35] 

  
Pathovar syringae TAS [36] 

  
Strain B64 TAS [15,16] 

 
Gram stain Negative TAS [37] 

 
Cell shape Rod-shaped TAS [37] 

 
Motility Motile TAS [37] 

 
Sporulation None TAS [37] 

 
Temperature range Mesophilic TAS [38] 

 
Optimum temperature 28°C TAS [38] 

MIGS-22 Oxygen Aerobic TAS [37] 

 
Carbon source Heterotrophic TAS [36] 

 
Energy metabolism Chemoorganotrophic TAS [37] 

MIGS-6 Habitat Host-associated TAS [17,36,37] 
MIGS-6.3 Salinity Not reported 

 MIGS-10 Extrachromosomal elements None IDA 
MIGS-11 Estimated Size 5.93 Mb IDA 
MIGS-15 Biotic relationship Parasitic NAS 
MIGS-14 Pathogenicity Pathogenic TAS [19] 

 
Host Triticum aestivum TAS [15,17] 

 
Host taxa ID 4565 

 
 

Cell arrangement Single TAS 

 
Biosafety level 1 NAS 

 
Isolation source Leaf NAS 

MIGS-4 Geographic location Minnesota, USA TAS [15] 
MIGS-5 Sample collection time Not reported 

 MIGS-4.1 Latitude Not reported 
 MIGS-4.2 Longitude Not reported 
 MIGS-4.3 Depth Not reported 
 MIGS-4.4 Altitude Not reported 
 aEvidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement 

(a direct report exists in the literature); NAS: Non-traceable Author Statement (not directly observed for the liv-
ing, isolated sample, but based on a generally accepted property of the species, or anecdotal evidence). These 
evidence codes are from the Gene Ontology project [39]. 
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Figure 1. Phylogenetic tree constructed using neighbor-joining method using MLST approach [40] and MEGA 5.10 
software suit [41] with 1,000 bootstraps. The tree features the three completely sequenced P. syringae model strains Pto 
DC3000, Pss B728a, and Pph 1448A, the strain Pss B64 itself, as well as another wheat-isolated strain Pss SM. The 
model strains represent the major phylogenetic clades of P. syringae: I, II and III respectively. P. fluorescens Pf0-1 was 
used as an outgroup. The analysis confirms placement of Pss B64 into clade II. 

 
Pss B64 has similar physiological properties as 
other representatives of its genus. It can grow in 
complex media such as LB [42] or King’s B [43], as 
well as in various defined minimal media: HSC 
[44], MG-agar [45], PMS [46], AB-agar [47], and 
SRMAF [48]. Even though the optimal growth tem-
perature is 28°C, the bacterium can also replicate 
at 4°C. Growth is completely inhibited above 35°C. 
Pss B64 is capable of endophytic growth in the 
wheat leaf mesophyll, but does not seem to cause 
any symptoms unless a very high inoculation dose 
is applied. 
The bacterium has a weak resistance to ampicillin 
(25 mg/L) and chloramphenicol (10 mg/L). It is 
also possible to develop spontaneous rifampicin-
resistant mutants. In addition, the genomic se-
quence predicts this strain to be polymyxin B in-
sensitive due to presence of the arn gene cluster. 

Genome sequencing information 
Genome project history 
The organism was selected for sequencing be-
cause it has been identified to have a syringolin 
biosynthesis gene cluster [49]. Syringolin is a pro-
teasome inhibitor produced by some strains of 
pathovar syringae. As a consequence of pro-
teasome inactivation a number of plant intracellu-
lar pathways are being inhibited, including the 
entire salicylic acid-dependent defense pathway, 
thus promoting the entry of bacteria into leaf tis-
sue and subsequent endophytic growth [9]. Since 
up to now it has not been possible to establish an 

infection model for syringolin in the model plant 
Arabidopsis, it was decided to explore another 
common research target and one of the most im-
portant crop plants, bread wheat (Triticum 
aestivum). The genome project has been deposited 
in the Genbank Database (ID 180994) and the ge-
nome sequence is available under accession num-
ber ANZF00000000. The version described in this 
paper is the first version, ANZF01000000. The de-
tails of the project are shown in Table 2. 

Growth conditions and DNA isolation 
P. syringae pv. syringae strain B64 was grown in 
40 mL of LB medium at 28°C, 220 rpm until OD600 
of ~1.0. Genomic DNA was isolated from the pel-
leted cell using a Qiagen Genomic-tip 100/G col-
umn (Qiagen, Hilden, Germany) according to the 
manufacturer’s instructions. 

Genome sequencing and assembly 
A 3kb paired-end library was generated and se-
quenced at the Functional Genomics Center Zurich 
on a Roche Genome Sequencer FLX+ platform. A 
total of 872,570 high-quality filtered reads with a 
total of 188,465,376 bases were obtained, result-
ing in 31.8-fold average sequencing coverage. The 
obtained reads were assembled de novo using 
Newbler 2.5.3. This resulted in 150 contigs com-
bined into one 6 Mb-long super-scaffold and 3 
smaller scaffolds of 5.29 kb, 2.84 kb and 2.74 kb in 
size. The largest of the minor scaffolds constituted 
a ribosomal RNA operon, the other two showed 
sequence similarity to non-ribosomal peptide  
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synthase modules. A portion of intra-scaffold gaps 
have been closed by sequencing of PCR products 
using Sanger technology, decreasing the total 
number of contigs to 41 with a contig N50 value of 
329.4 kb, the longest contig being 766.5 kb long. 
Note that the Genbank record contains 42 contigs 
due to fact that one of the contigs was split into 
two parts in order to start the assembly with the 
dnaA gene. While closing gaps it became possible 

to allocate the positions of all ribosomal operons 
by sequence overlap and thus to incorporate the 
largest of the minor scaffolds. However, it was not 
possible to precisely map the remaining two mi-
nor scaffolds. These must be located within two 
distinct remaining large gaps, but due to insignifi-
cance to the project they have been excluded from 
the assembly. 

Table 2. Genome sequencing project information 

MIGS ID Property Term 

MIGS-31 Finishing quality High-quality draft 

MIGS-28 Libraries used 3kb paired-end library 

MIGS-29 Sequencing platform Roche Genome Sequencer FLX+ 

MIGS-31.2 Sequencing coverage 31.8× 

MIGS-30 Assembler Newbler 2.5.3 

MIGS-31.3 Contigs 41 

MIGS-32 Gene calling method RAST server 

 
NCBI project ID 180994 

 
NCBI accession number ANZF00000000 

 
Date of release January 18, 2013 

 
GOLD ID Gc02493 

 Database: IMG/ER 2523533564 

 
Project relevance Plant-pathogen interactions, model for syringolin effects 

Genome annotation 
Initial open-reading frame (ORF), tRNA, and rRNA 
prediction and functional annotation has been 
performed using the RAST (Rapid Annotation us-
ing Subsystem Technology) server [50]. For the 
purpose of comparison, the genome has also been 
annotated using Prokka [51], which utilizes Prodi-
gal [52] for ORF prediction (the RAST server uti-
lizes a modified version of Glimmer [53]). Start 
codons of all the predicted ORFs were further ver-
ified manually, using the position of potential ri-
bosomal binding sites and BLASTP [54] align-
ments with homologous ORFs from other P. 
syringae strains as a reference. Functional annota-
tions have also been refined for every ORF using 
BLASTP searches against the non-redundant pro-
tein sequence database (nr) and the NCBI Con-
served-Domain search engine [55]. Functional 
category assignment and signal peptide prediction 
was done using the Integrated Microbial Ge-
nomes/Expert reviews (IMG/ER) system [56]. 

Genome properties 
The genome of the strain B64 is estimated to be 
comprised of 5,930,035 base pairs with an aver-
age GC-content of 58.55 % (Table 3 and Figure 2), 
which is similar to what is observed in other P. 
syringae strains [12,13,53]. Of the 5,021 predicted 
genes, 4,947 were protein coding genes, 4 riboso-
mal RNA operons, and 61 tRNA genes; 78 were 
identified to be pseudo-genes. The majority of the 
protein-coding genes (83.65 %) were assigned a 
putative function, while the remaining ones were 
annotated as hypothetical proteins. The distribu-
tion of genes into COGs functional categories is 
presented in Table 4. 
The genome contains a complete canonical type III 
secretion system and ten known effector proteins: 
AvrE1, HopAA1, HopI1, HopM1, HopAH1, HopAG1, 
HopAI1, HopAZ1, HopBA1, and HopZ3. Out of the-
se ten, the first five are present in all other se-
quenced P. syringae strains, thereby constituting 
the effector core, whereas the latter five could be 
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host-determinants for wheat. That there is such a 
small number of effectors is not something unusu-
al, and is seen in other strains of clade II [22]. In 
addition, there are two complete type VI secretion 
system gene clusters and nine putative effector 
proteins belonging to the VgrG and Hcp1 families. 
Pss B64 genome also encodes gene clusters for 
biosynthesis of four phytotoxin: syringomycin, 
syringopeptin, syringolin, and mangotoxin. All of 
the above-mentioned genome components have 
been previously demonstrated to be involved in 
virulence, epiphytic fitness of P. syringae, as well 
as in competition with other microbial species [7-
10,57-59]. Additional identified virulence-
associated traits are: exopolysaccharides alginate, 
Psl, and levan biosynthesis, surfactant 

syringofactin, type VI pili, large surface adhesins, 
siderophores pyoverdine and achromobactin, pro-
teases and other secreted hydrolytic enzymes, 
RND-type transporters (including putative mexAB, 
mexCD, mexEF, and mexMN homologs [60,61]), all 
of which are found in other P. syringae strains. It is 
also notable that inaZ gene encoding ice-
nucleation protein is truncated by a frameshift, 
thus making this strain ice-negative. The latter 
contradicts results of a previous study by Hwang 
and colleagues [16] in which Pss B64 has been 
identified to be ice-positive. This could be due to 
an assembly error, or the frameshift could have 
been introduced at a later point during propaga-
tion. 

 

Table 3. Genome Statistics 
Attribute Value % of Total 

Estimated genome size (bp) 5,930,035 100.00 

Estimated total gap length (bp) 56,737 0.96 

DNA coding region (bp) 5,146,184 86.78 

DNA G+C content (bp) 3,472,195 58.55 

Number of replicons 1 - 

Extra-chromosomal elements 0 - 

Total genes 5,021 100.00 

Protein-coding genesa 4,869 96.97 

RNA genes 74 1.47 

rRNA genes 13 0.26 

5S rRNA 5 0.10 

16S rRNA 4 0.08 

23S rRNA 4 0.08 

tRNA genes 61 1.21 

rRNA operons 4 - 

Pseudo-genes 78 1.55 

Protein coding genes with function prediction 4,200 83.65 

without function predictiona 669 13.32 

Protein coding genes with COGs 4,013 79.92 

with KOGs 1,698 33.82 

with Pfam 4,256 84.76 

with TIGRfam 1,641 32.68 

in paralog clusters 3,933 78.33 

Proteins with signal peptides 511 10.18 

Proteins with transmembrane helices 1,112 22.15 
aexcluding pseudo-genes; therefore percentage values differ from those displayed at the IMG/ER 
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Table 4. Number of genes associated with the 25 general COG functional categories 

Code Value %age Description 

J 208 4.60 Translation 

A 1 0.02 RNA processing and modification 

K 352 7.78 Transcription 

L 162 3.58 Replication, recombination and repair 

B 1 0.02 Chromatin structure and dynamics 

D 42 0.93 Cell cycle control, mitosis and meiosis 

Y - - Nuclear structure 

V 48 1.06 Defense mechanisms 

T 332 7.34 Signal transduction mechanisms 

M 275 6.08 Cell wall/membrane biogenesis 

N 159 3.52 Cell motility 

Z 1 0.02 Cytoskeleton 

W - - Extracellular structures 

U 140 3.10 Intracellular trafficking and secretion 

O 156 3.45 Posttranslational modification, protein turnover, chaperones 

C 230 5.09 Energy production and conversion 

G 265 5.86 Carbohydrate transport and metabolism 

E 439 9.71 Amino acid transport and metabolism 

F 90 1.99 Nucleotide transport and metabolism 

H 177 3.91 Coenzyme transport and metabolism 

I 152 3.36 Lipid transport and metabolism 

P 268 5.93 Inorganic ion transport and metabolism 

Q 122 2.70 Secondary metabolites biosynthesis, transport and catabolism 

R 515 11.39 General function prediction only 

S 388 8.58 Function unknown 

- 1,008 20.08 Not in COGs 
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Figure 2. Graphical map of the chromosome. From outside to the center: genes on forward strand (colored by 
COG categories), genes on reverse strand (colored by COG categories), RNA genes: tRNAs - green, rRNAs - red, 
other RNAs - black, GC content, and GC skew 
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