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Tropical forest soils decompose litter rapidly with frequent episodes of anoxia, making it 
likely that bacteria using alternate terminal electron acceptors (TEAs) such as iron play a 
large role in supporting decomposition under these conditions. The prevalence of many 
types of metabolism in litter deconstruction makes these soils useful templates for improv-
ing biofuel production. To investigate how iron availability affects decomposition, we cul-
tivated feedstock-adapted consortia (FACs) derived from iron-rich tropical forest soils ac-
customed to experiencing frequent episodes of anaerobic conditions and frequently fluctu-
ating redox. One consortium was propagated under fermenting conditions, with 
switchgrass as the sole carbon source in minimal media (SG only FACs), and the other con-
sortium was treated the same way but received poorly crystalline iron as an additional ter-
minal electron acceptor (SG + Fe FACs). We sequenced the metagenomes of both consortia 
to a depth of about 150 Mb each, resulting in a coverage of 26× for the more diverse SG + 
Fe FACs, and 81× for the relatively less diverse SG only FACs. Both consortia were able to 
quickly grow on switchgrass, and the iron-amended consortium exhibited significantly 
higher microbial diversity than the unamended consortium. We found evidence of higher 
stress in the unamended FACs and increased sugar transport and utilization in the iron-
amended FACs. This work provides metagenomic evidence that supplementation of alter-
native TEAs may improve feedstock deconstruction in biofuel production. 

Abbreviations: EMBL: European Molecular Biology Laboratory NCBI: National Center for 
Biotechnology Information (Bethesda, MD, USA) RDP: Ribosomal Database Project (East Lan-
sing, MI, USA) 
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Introduction 
Development of renewable, sustainable biofuels 
from plant feedstock material has emerged as a key 
goal of the US Department of Energy. The use of 
lignocellulose as a renewable energy source has 
many advantages, above all that lignocellulose is 
the most abundant biopolymer on earth, with its 
production independent of food agriculture [1]. 
The deconstruction of plant biomass is a key first 
step in the conversion of plant sugars to biofuels, 
though this step has posed a great challenge to 
making biofuels economically viable. The major 
hurdles involve both lignin occlusion of cellulose 
and lignin derivatives that inhibit lignocellulose 
deconstruction and fuel synthesis [1]. Lignin is also 
a potentially valuable waste stream that is current-
ly burned to produce energy as heat [2]. Part of the 
impact of this work is the discovery of enzymes and 
pathways in natural ecosystems that function to 
liberate lignin from cellulose. These discoveries 
promise to both provide insight into the natural 
processes of plant lignin decomposition, as well as 
improve efficiency of biofuels production. 

The microbial communities present in the wet 
tropical soils of Puerto Rican rain forests are prom-
ising in providing pathways to overcome the chal-
lenges of lignocellulose deconstruction. These trop-
ical soil communities are responsible for near com-
plete decomposition of leaf plant litter in as little as 
eighteen months [3], which is interesting consider-
ing that the soils experience strong fluctuations in 
redox potential, switching from a completely oxic 
state to an anoxic state on a daily or weekly basis 
[4,5]. We have also observed considerable microbi-
al activity and plant litter decomposition under an-
aerobic conditions in the lab and field [6-9]. This is 
at odds with the current paradigm of the “enzyme 
latch hypothesis,” which posits that oxidative en-
zyme activities are the rate-limiting steps of plant 
litter decomposition [10-12]. Understanding the 
enzymes employed by native tropical soil microbes 
to deconstruct lignocellulose has the potential to 
illuminate the mechanisms of fast anaerobic ligno-
cellulose decomposition. 

Classification and features 
Two metagenomes were generated from feedstock-
adapted consortia, originally derived from tropical 
forest soil communities [Table 1]. Soil samples 
were collected from a wet subtropical lower 
montane forest in the Luquillo Experimental For-
est, which is part of the NSF-sponsored Long-Term 

Ecological Research program in Puerto Rico 
(18°18′N, 65°50′W). The fieldwork was conducted 
and samples collected and transported under USDA 
permit number P526P-08-00634. Soils are acidic 
(pH 5.5), clayey ultisols with high iron and alumi-
num content and characterized by a fluctuating re-
dox that ranges from oxic to anoxic on a timescale 
of weeks [4,5,15]. Soils were collected from the 
Bisley watershed, 250 meters above sea level 
(masl) from the 0–10 cm depth, using a 2.5-cm di-
ameter soil corer. Cores were stored intact in Ziploc 
bags at ambient temperature and immediately 
transported to the lab, where they were used for 
growth inoculum. 

For adaptation to growth on feed-stocks as sole 
carbon source, tropical forest soils were homoge-
nized then used to inoculate basal salts minimal 
medium (BMM) [16] containing trace minerals 
[17,18], vitamins [19], and buffered to pH 5.5 to 
match the measured soil pH using MES. Soils were 
added at a rate of 0.5 g (wet weight) per 200 mL 
BMM, and the resulting mixture was incubated an-
aerobically at ambient temperatures for 8 weeks 
with 10 g L-1 dried, ground switchgrass as the sole 
carbon source. Samples of switchgrass (MPV 2 cul-
tivar) were kindly provided by the laboratory of Dr. 
Ken Vogel (USDA, ARS, Lincoln, NE). Soluble iron 
was added to a final concentration of 5 mM. A stock 
solution of soluble iron was obtained by adding 
ferric chloride hexahydrate [Fe(III)] to a solution of 
nitrilotriacetic acid disodium salt and sodium bi-
carbonate. Dinitrogen gas was bubbled through 
media to remove any dissolved O2, and containers 
were quickly sealed with airtight stoppers to main-
tain anaerobic conditions. Containers were auto-
claved for 20 min at 121°C. Anaerobic switchgrass-
adapted consortia were enriched from tropical for-
est soils by passaging the communities two times 
for ten weeks each, with switchgrass as the sole 
carbon source, under anaerobic conditions with 
and without supplemental iron. 

Metagenome sequencing information 
Metagenome project history 
These metagenomes were selected based on the 
ability of the consortia to mineralize switchgrass as 
the sole C source anaerobically, and represented 
two distinct metabolisms for deconstructing 
switchgrass that are both likely to be prevalent un-
der natural field conditions. Sequence analysis of 
the small subunit ribosomal RNA genes revealed 
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that growth on switchgrass as the sole carbon 
source resulted in a richness of 84 taxa, while in-
clusion of iron in the consortia growth media re-

sulted in a richness of 336 taxa; this was in compar-
ison to the richness of the original soil sample 
which was 1,339 taxa [20] based on 97% identity. 

 

Table 1. Classification and general features of the four metagenome data sets according to the Minimum 
Information about Genomes and Metagenomes (MIMS) standards [13]. 
MIMS ID Property Term Evidence codea 

 

Current classification 
 

Metagenome ecological 
metagenome terrestrial 
metagenome 
 

TAS [5] 

 Carbon source Switchgrass IDA 

 Energy source Switchgrass IDA 

 Terminal electron receptor Iron reduction or fermentation TAS [8] 

MIGS-6 Habitat 
Consortia (mixed community) derived 
from wet tropical forest soils 

TAS [8] 

MIGS-14 Pathogenicity none NAS 
MIGS-4 Geographic location Wet tropical forest, Puerto Rico, USA  
MIGS-5 Sample collection time April, 2009  
MIGS-4.1 Latitude 18°18N  
MIGS-4.2 Longitude 65°50W  
MIGS-4.3 Depth 0-10 cm TAS [8] 
MIGS-4.4 Altitude 250 masl TAS [8] 

aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report ex-
ists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolat-
ed sample, but based on a generally accepted property for the species, or anecdotal evidence). These evi-
dence codes are from the Gene Ontology project [14]. 

Growth conditions and DNA isolation 
Consortia were grown for metagenomic DNA se-
quencing in the same manner as described for the 
cultivation of communities, as above. DNA was 
extracted using a CTAB extraction method, which 
is the standard operating procedure recommend-
ed by the Joint Genome Institute. Cells from the 
consortia were pelleted by centrifugation and re-
constituted in TE to an equivalent OD (600 nm) of 
about 1.0 using direct counts. Lysozyme was add-
ed (final concentration 1.3 mg per ml) and incu-
bated for 5 minutes at room temperature, then 
10% SDS (33 µl per ml) and proteinase K (final 
concentration 5.5µl per ml) was added and incu-
bated at 37oC for 1 hour. Sodium chloride (5M 
stock added to final concentration 0.22 M) was 
added, then the CTAB/NaCl buffer was added both 
at 0.075 ml per ml starting volume. This mix was 
incubated at 65oC for 10 minutes. Chloro-
form:isoamyl alcohol (24:1) was added at 0.2 vol, 
then centrifuged at 14,000 x g for 10 minutes at 
room temperature. DNA in the aqueous phase was 

extracted again with phenol:chloroform:isoamyl 
alcohol (25:24:1), subjected to an ethanol precipi-
tation, and the DNA pellet finally reconstituted at 
37oC for 20 minutes in TE plus RNAse. The quanti-
ty and quality of the extraction were checked by 
gel electrophoresis using JGI standards. 

Metagenome sequencing and assembly 
The metagenomes were sequenced using the 
Illumina GaII sequencing platform. Two types of 
short-insert (300 bp) paired-end libraries were 
generated, with and without PCR amplification 
after adapter ligation. All general aspects of the 
library construction process can be accessed via 
the DOE Joint Genome Institute website [21]. 16.2 
Gb of Illumina GaII sequence data were generated 
for the PR soil-derived Feedstock-adapted consor-
tia SG + Fe sample and 33.9 Gb Illumina GaII se-
quence data were generated for the PR soil-
derived Feedstock-adapted consortia SG only 
sample. Raw Illumina metagenomic reads were 
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trimmed using a minimum quality score cutoff of 
10. Trimmed, paired-end Illumina reads were as-
sembled using SOAPdenovo v1.05 [22] with a 
range of Kmers (85, 89, 93, 97, 101, 105). Default 
settings for all SOAPdenovo assemblies were used 
(flags: –d 1 and –R). Contigs generated by each 
assembly (6 total contig sets) were sorted into 
two pools based on length. Contigs smaller than 
1,800 bp were assembled using Newbler (Life 
Technologies, Carlsbad, CA) in an attempt to gen-
erate larger contigs (flags: -tr, -rip, -mi 98, -ml 80). 

All assembled contigs larger than 1,800 bp, as well 
as the contigs generated from the final Newbler 
run, were combined using minimus 2 (flags: -D 
MINID=98 -D OVERLAP=80)(AMOS [23]). The as-
sembly was a result of two rounds of sequencing 
in this manner, with and without amplification. 
Table 2 presents the project information and its 
association with MIGS version 2.0 compliance 
[13]. These sequences are currently available to 
the public at IMG/M. 

Table 2. Project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Standard Draft 

MIGS-28 Libraries used Illumina standard paired-end library (0.3 kb insert size) 
MIGS-29 Sequencing platforms Illumina GaIIX 

MIGS-31.2 Fold coverage 
26.1466 × (PR soil-derived FAC SG + Fe) 
81.1761 × (PR soil-derived FAC SG only) 

MIGS-30 Assemblers SOAPdenovo v1.05, Newbler v2.5, minimus2 
MIGS-32 Gene calling method Glimmer 
 GOLD ID Gm00278 
 IMG Project ID 18182 
 Project relevance biotechnological 

Metagenome annotation 
Prior to annotation, all sequences were trimmed to 
remove low quality regions falling below a mini-
mum quality of Q13, and stretches of undetermined 
sequences at the ends of contigs are removed. Low 
complexity regions are masked using the dust algo-
rithm from the NCBI toolkit and very similar se-
quences (similarity > 95%) with identical 5’ 
pentanucleotides are replaced by one representa-
tive, typically the longest, using uclust [24]. The 
gene prediction pipeline included the detection of 
non-coding RNA genes (tRNA, and rRNA) and 
CRISPRs, followed by prediction of protein coding 
genes. 
Identification of tRNAs was performed using 
tRNAScan-SE-1.23 [25]. In case of conflicting pre-
dictions, the best scoring predictions were selected. 
Since the program cannot detect fragmented tRNAs 
at the end of the sequences, we also checked the 
last 70 nt of the sequences by comparing these to a 
database of nt sequences of tRNAs identified in the 
isolate genomes using blastn [26]. Hits with high 
similarity were kept; all other parameters are set to 
default values. Ribosomal RNA genes (tsu, ssu, lsu) 
were predicted using the hmmsearch [27] with in-
ternally developed models for the three types of 
RNAs for the domains of life. Identification of 

CRISPR elements was performed using the pro-
grams CRT [28] and PILERCR [29]. The predictions 
from both programs were concatenated and, in 
case of overlapping predictions, the shorter predic-
tion was removed. 
Identification of protein-coding genes was per-
formed using four different gene calling tools, 
GeneMark (v.2.6r) [29] or Metagene (v. Aug08) 
[30], prodigal [31] and FragGenescan [32] all of 
which are ab initio gene prediction programs. We 
typically followed a majority rule based decision 
scheme to select the gene calls. When there was a 
tie, we selected genes based on an order of gene 
callers determined by runs on simulated 
metagenomic datasets (Genemark > Prodigal > 
Metagene > FragGeneScan). At the last step, CDS 
and other feature predictions were consolidated. 
The regions identified previously as RNA genes and 
CRISPRs were preferred over protein-coding genes. 
Functional prediction followed and involved com-
parison of predicted protein sequences to the pub-
lic IMG database using the usearch algorithm [24], 
the COG db using the NCBI developed PSSMs [33], 
the pfam db [34] using hmmsearch. Assignment to 
KEGG Ortholog protein families was performed us-
ing the algorithm described in [35]. 
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Metagenome properties 
The metagenomes were sequenced at a total size of 
152,660,070 bp for the SG only FACS and 
154,120,208 bp for the SG + Fe FACS. The GC con-
tent of these metagenomes was 41.18% for SG only 
and 46.02% for SG + Fe FACs. This sequencing in-
cluded 197,271 and 193,491 predicted genes with 
98.85% and 99.62% predicted protein-coding 
genes for SG only and SG + Fe FACs, respectively. A 
total of 127,406 and 129,389 of the protein coding 
genes, or 64.58% and 66.87% of the total predicted 
protein-coding genes, were assigned to a putative 
function with the remaining annotated as hypothet-
ical proteins for SG only and SG + Fe FACs, respec-
tively. 
The iron-amended consortia (SG + Fe) was signifi-
cantly enriched in protein-coding genes with puta-
tive function for 11 of the 25 general COG catego-
ries that genes were assigned. The largest differ-
ences were observed for genes associated with 
amino acid transport and metabolism (E), carbo-
hydrate transport and metabolism (G), and second-
ary metabolites biosynthesis, transport, and catab-
olism (Q), which were all enriched in the iron-
amended compared to the unamended FACs. Genes 
assigned to translation, ribosomal structure and 
biogenesis (J) and transcription (K) were signifi-
cantly depleted in the iron-amended compared to 
the unamended consortia. The properties and the 
statistics of the genome are summarized in Table 3, 
Table 4 and Table 5. 

Taxonomic diversity 
The taxonomic diversity and phylogenetic struc-
ture of the two metagenomes was determined 
based on all genes, classifying at a minimum 60% 
identity to members of the listed phyla. The phy-
logeny reported is the one in use in IMG/M [36], 
which uses the phylogeny described as part of the 
genomic encyclopedia of Bacteria and Archaea 
(GEBA) project [37]. 
Both consortia were dominated by representative 
genes belonging to the Firmicutes, which accounted 
for 20 and 23% of the counts in the SG only and SG 
+ Fe FACs, respectively. In terms of relative abun-
dance, the next most dominant genes belonged to 
the phylum Bacteroidetes, accounting for 7% of the 
counts, and Proteobacteria, accounting for 6% of 
the counts. Members of the archaeal phylum 
Euryarchaeota accounted for 2.6% and 1.34% of 
the SG only and SG + Fe FACs gene counts, respec-
tively. There were very few documented members 

of the Eukaryota, accounting for less than one-tenth 
of one percent. Plasmid population-associated 
genes were dominated by those associated with 
Firmicutes and Proteobacteria, and these were out-
numbered by double-stranded DNA viruses by 
about two to one. 
Differences were observed in abundance of genes 
in many phyla, which was expected given the much 
higher richness observed by pyrosequencing the 
small subunit ribosomal RNA genes in consortia 
amended with iron as terminal electron acceptor. 
To visualize which phyla were over- or under-
represented in gene counts for each metagenome, 
we chose to present the phyla that were at least 
two-fold (double) differentially represented in the 
iron-amended consortia compared to the una-
mended consortia. Fold-differences were calculated 
by dividing the counts detected in SG+Fe FACs di-
vided by counts detected in SG only FACs, and the 
log2 of fold differences are presented in Figure 1. 
Phyla that were over-represented in the iron-
amended FACs included Acidobacteria (5.17-fold 
enriched), Actinobacteria (2.5-fold), Elusimicrobia 
(2-fold), and Chlamydiae (2-fold), which are all Bac-
teria; also over-represented in the SG + Fe were 
Firmicutes plasmids (2-fold). Of these, only the 
Acidobacteria and Actinobacteria were abundant 
(>2% relative abundance), with the rest detected in 
the tens of counts per metagenome. Phyla that 
were under-represented in the iron-amended FACs 
compared to the SG only FACs included 
Basidiomycota (domain Eukaryota, 0.625-fold), 
Euryarchaeota (domain Archaea, 0.52-fold), 
Chordata (domain Eukaryota, 0.5-fold), 
Proteobacteria Plasmids (0.5-fold), and 
Crenarchaeota (domain Archaea, 0.17-fold) [Table 
6]. 
While gene counts of representative phyla suggest 
phylogenetic differences, these data are certainly 
biased towards phyla that have more sequenced 
representatives. Additionally, phyla that are includ-
ed in coverage of popular universal small subunit 
rRNA primers are also may be over-represented in 
these analyses because of their over-representation 
in the databases. While the relative abundances of 
between-phyla comparisons may be questionable 
based on differential representation in the data-
base, the relative abundances of taxa within a phyla 
is reflective of the distinct metabolic conditions af-
forded by growth of consortia with lignocellulose 
as sole C source either with or without iron as an 
additional terminal electron acceptor.  
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Table 3. Summary of metagenomes 

Metagenome Size (Mb) # scaffolds GOLD ID GOLD sample idID 

SG only 152.66 57,147 Gm00278 Gs0000888 

SG + Fe 154.12 65,160 Gm00278 Gs0000889 

Table 4. Nucleotide content and gene count levels of the metagenomes 
 SG only Metagenome SG + Fe Metagenome 
 Number % of Total Number % of Total 
DNA, total number of bases 152,660,070 100.00% 154,120,208 100.00% 
DNA coding number of bases 130,438,005 85.44% 136,080,382 88.29% 
DNA G+C number of bases 62,858,797 41.18%* 70,930,796 46.02%* 
DNA scaffolds 57,147 100.00% 65,160 100.00% 
CRISPR Count 51  4  
Genes total number 197,271 100.00% 193,491 100.00% 
Protein coding genes 195,006 98.85% 192,751 99.62% 
RNA genes 2,265 1.15% 740 0.38% 
rRNA genes 294 0.15% 16 0.01% 
5S rRNA 106 0.05% 9 0.00% 
16S rRNA 75 0.04% 3 0.00% 
18S rRNA 1 0.00% 4 0.00% 
tRNA genes 1,971 1.00% 724 0.37% 
Protein coding genes with function prediction 127,406 64.58% 129,389 66.87% 
without function prediction 67,600 34.27% 63,362 32.75% 
not connected to SwissProt Protein Product 195,006 98.85% 192,751 99.62% 
Protein coding genes with enzymes 33,383 16.92% 30,632 15.83% 
w/o enzymes but with candidate KO based enzymes 26,793 13.58% 32,919 17.01% 
Protein coding genes connected to KEGG pathways3 37,533 19.03% 34,348 17.75% 
not connected to KEGG pathways 157,473 79.83% 15,8403 81.87% 
Protein coding genes connected to KEGG Orthology 
(KO) 63,949 32.42% 57,111 29.52% 
not connected to KEGG Orthology (KO) 131,057 66.44% 135,640 70.10% 
Protein coding genes connected to MetaCyc pathways 32,243 16.34% 29,552 15.27% 
not connected to MetaCyc pathways 162,763 82.51% 163,199 84.34% 
Protein coding genes with COGs3 121,020 61.35% 123,077 63.61% 
with Pfam3 115,645 58.62% 118,589 61.29% 
with TIGRfam3 33,743 17.10% 33,969 17.56% 
in internal clusters 77,655 39.36% 73,856 38.17% 
Protein coding genes coding signal peptides 48,556 24.61% 49,644 25.66% 
Protein coding genes coding transmembrane proteins 43,693 22.15% 43,726 22.60% 
COG clusters 4,125 84.65% 3,974 81.55% 
KOG clusters 0 0.00% 0 0.00% 
Pfam clusters 4,447 37.33% 4,293 36.04% 

TIGRfam clusters 2,580 64.13% 2,489 61.87% 

*GC percentage shown as count of G's and C's divided by a total number of G's, C's, A's, and T's. This is not 
necessarily synonymous with the total number of bases. 
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Table 5. Number of genes associated with the 25 general COG functional categories. 
ID Name SG only SG + Fe R P-value 

J Translation, ribosomal structure and biogenesis 6,659 6,055 4.57 *** 0.000 

A RNA processing and modification 21 22 0 n.s. 

K RNA processing and modification 21 22 0 n.s. 

L Replication, recombination and repair 6,248 6,103 1.36 0.086 

B Chromatin structure and dynamics 49 35 0.21 n.s. 

D Cell cycle control, cell division, chromosome partitioning 1,457 1,68 1.35 0.089 

Y Nuclear structure - - - - 

V Defense mechanisms 2,884 3,232 -2.11 * 0.018 

T Signal transduction mechanisms 10,430 10,271 2.01 * 0.022 

M Cell wall/membrane/envelope biogenesis 8,396 8,753 -1.67 * 0.047 

N Cell motility 3,150 3,146 -1.2 n.s. 

Z Cytoskeleton 39 43 -0.29 n.s. 

W Extracellular structures 2 1 0 n.s. 

U Intracellular trafficking, secretion, and vesicular transport 2,438 2,525 -0.56 n.s. 

O Posttranslational modification, protein turnover, chaperones 3,893 3,914 0.14 n.s. 

C Energy production and conversion 8,221 8,426 0.08 n.s. 

G Carbohydrate transport and metabolism 13,038 14,361 -3.69 *** 0.000 

E Amino acid transport and metabolism 9,571 10,682 -5.33 *** 0.000 

F Nucleotide transport and metabolism 2,808 3,022 -2.21 * 0.014 

H Coenzyme transport and metabolism 5,193 5,080 2.17 * 0.015 

I Lipid transport and metabolism 3,034 3,375 -1.9 * 0.029 

P Inorganic ion transport and metabolism 5,914 6,171 0.12 n.s. 

Q Secondary metabolites biosynthesis, transport and catabolism 1,608 1,916 -2.51 ** 0.006 

R General function prediction only 15,442 15,796 -0.87 n.s. 

S Function unknown 10,667 10,106 0.6 n.s. 
aP-value symbols denote * P<0.05, ** P<0.01, *** P<0.001, and n.s. indicates not significant. 
 
In an additional, separate experiment, we tested 
the effects of additional terminal electron accep-
tors on the ability of feedstock-adapted consortia 
to degrade switchgrass, which included iron as 
well as sulfate and nitrate, with switchgrass-only 
as a control. In this additional experiment, we ana-
lyzed the resulting microbial communities by the 
taxonomic marker 16S ribosomal RNA gene se-
quence libraries [8]. These communities were 
grown from the SG only FACs whose metagenomic 
sequences are presented here. Further passages 
were made before community analysis, making 
these consortia from this additional experiment 
less rich and characterized by fewer dominant 
species. Because these communities are simpler, 
we are able to more closely examine the relation-
ships among taxa and co-occurrences under vary-
ing availability of terminal electron acceptors. 

We observed some differences in taxon occur-
rence and functional gene abundance between the 
iron-amended and iron-unamended 
metagenomes, and used network analysis to illus-
trate the phylogenetic basis of taxon co-
occurrence among differences in availability of 
terminal electron acceptors. Network analyses 
were constructed by calculating all possible corre-
lations between taxa using Pearson's correlation 
coefficient, then discarding any pairwise correla-
tions that did not meet the criteria for a “connec-
tion”, which was a minimum r value of 0.9 and 
minimum P-value of 0.01. Network analysis was 
conducted based on the methods presented in 
Barberán et al. [38] in R using the packages igraph 
[39], Hmisc [40], multtest [41], doMC [42], and 
foreach [43]. 
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These networks were strongly dominated by a few 
taxa, as evidenced by the large number of singletons 
(661 taxa, 62%) and doubletons (167 taxa, 16%) 
detected among the total taxa detected (1,060). The-
se singleton and doubleton taxa were not included in 
the network analysis, leaving 232 taxa for analyzing 
co-occurrences. Of the 1,060 taxa included in this 
analysis, 170 taxa met the minimum criteria for a 
significant connection, with 579 connections be-
tween them. Taxa are mapped in Figure 2 with col-
ors corresponding to phylum (left) as well as by 
generalist or specialist (right), where generalists 
were defined as taxa detected in all TEA treatments, 
while specialists were defined as taxa detected in 
only one treatment. 
As expected due to the static anaerobic conditions, 
networked communities are dominated by 
Firmicutes, which are prevalent in all clusters. 
Firmicutes also dominated the SG only and SG + Fe 
FACs, accounting for 20 and 23% of total richness, 
respectively. The Firmicutes contain the Clostridiales, 
which are fast-growing obligate anaerobes, ferment-
ers, and well-known lignocellulolytic microbes [44-
46]. In our consortia networks, the Firmicutes tend-
ed to either be generalists or switchgrass-only spe-
cialists, which may also explain their prevalence in 
our metagenomes. The specialists were dominated 
by Firmicutes, with the notable observation that 
there were no nitrate specialists detected by this 
method. Of the remaining specialists, there were 
more sulfate-specialists than any other kind, fol-
lowed by switchgrass-only specialists, then iron spe-
cialists. All iron specialists were Firmicutes; this was 
somewhat surprising considering that the best-
known iron reducers are in the phylum 
Proteobacteria, including Geobacter and Shewanella 
[47,48]. However, these taxa were notably absent in 
previous phylogenetic and metagenomic analyses of 
wet tropical forest soils of Puerto Rico [9,20], and 
there are actually a wide diversity of iron-reducing 
bacteria within the Firmicutes. In the network, 
Firmicutes also tended to co-occur either with each 
other, forming large cliques, or with taxa from di-
verse phyla. Generalists were mostly Firmicutes, but 
also included representatives from the phyla 
Proteobacteria and Methanomicrobia (of the 
Euryarchaeota). These phyla are known to accom-
modate some well-known K-selected species; taxa 
that are not fast growers but have persistent growth 
and are able to survive under a range of conditions 
[12,49]. 

Functional genetic diversity 
Analysis of pfams that were significantly different 
between iron-amended FACs (SG+Fe) and una-
mended FACs (SG only) suggested that there were 
strong differences between the function and meta-
bolic status of the two consortia (Table 7, Figure 3). 
There were 15 pfams that were significantly en-
riched in the SG + Fe FACs, compared to 23 pfams 
enriched in SG only compared to SG + Fe. The pfams 
enriched in the SG + Fe suggested that the addition 
of iron caused the consortia to be overall more effi-
cient at transporting xylose and other nutrients, as 
evidenced by the large number of ABC transporters 
and other bacterial transporter systems. Transport-
ers made up the bulk of the identified pfams, repre-
senting the most abundant pfam domains differen-
tially detected in the SG + Fe compared to the SG on-
ly FACs. There was also evidence that the increased 
transport of carbon and other nutrients resulted in 
increased biosynthesis of biomass and secondary 
metabolites, with pfams such as S-layer homology 
domain, oxidoreductase family domains, [Fe-S] bind-
ing domains, and polyketide synthesis domains. The 
SG + Fe FACs were also significantly enriched in 
glycosyl-hydrolase family 65 domains compared to 
the switchgrass only FACs, suggesting that this 
community had more members that were able to 
utilize the switchgrass for energy and microbial bi-
omass. 
In contrast, the pfams detected in the SG only FACs 
that were significantly enriched compared to the SG 
+ Fe FACs hinted at stressful conditions in survival of 
the community without the addition of the exoge-
nous terminal electron acceptor iron. There were a 
number of intracellular signaling domains that were 
enriched, suggesting that there were more interac-
tions among remaining community members that 
grow under these conditions. There was also evi-
dence of enrichment for mobile genetic elements 
and viral DNA transfer, evidenced by increased de-
tection of transposase domains, retroviral 
integrases, and phage replication domains. It has 
been demonstrated that communities under stress 
have higher transfer rate of mobile genetic elements, 
potentially as a mechanism to induce better survival 
strategies [50]. These differences in detected pfams 
at the DNA level suggest that the metagenomic se-
quencing of the SG only FACs occurred prior to the 
community adapting to the lack of exogenous termi-
nal electron acceptors. That is, our sequencing was 
performed before the community had  arrived at a 
new equilibrium, and over the course of selection for 
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anaerobic growth of tropical soil communities on 
switchgrass as sole C source, the communities were 

unable to adapt to the lack of iron as terminal elec-
tron acceptor. 

Table 6. Overview of taxonomic diversity in metagenomes. 
Domain Phylum SG only Count  % SG + Fe Count  % 
Archaea      
 Crenarchaeota 575 0.29 88 0.05 
 Euryarchaeota 5,089 2.58 2,590 1.34 
 Nanoarchaeota 1 0 0 0 
Bacteria      
 Acidobacteria 478 0.24 2,392 1.24 
 Actinobacteria 1,113 0.56 2,756 1.42 
 Aquificae 100 0.05 99 0.05 
 Bacteroidetes 14,680 7.44 14,937 7.72 
 Chlamydiae 16 0.01 35 0.02 
 Chlorobi 460 0.23 530 0.27 
 Chloroflexi 1,073 0.54 2042 1.06 
 Chrysiogenetes 13 0.01 18 0.01 
 Cyanobacteria 742 0.38 823 0.43 
 Deferribacteres 117 0.06 121 0.06 
 Deinococcus-Thermus 158 0.08 275 0.14 
 Dictyoglomi 132 0.07 144 0.07 
 Elusimicrobia 17 0.01 35 0.02 
 Fibrobacteres 30 0.02 36 0.02 
 Firmicutes 38,958 19.75 44,858 23.18 
 Fusobacteria 533 0.27 534 0.28 
 Gemmatimonadetes 11 0.01 29 0.01 
 Lentisphaerae 113 0.06 165 0.09 
 Nitrospirae 70 0.04 80 0.04 
 Planctomycetes 375 0.19 448 0.23 
 Proteobacteria 11,289 5.72 11,803 6.1 
 Spirochaetes 2,460 1.25 3,795 1.96 
 Synergistetes 314 0.16 460 0.24 
 Tenericutes 30 0.02 34 0.02 
 Thermodesulfobacteria 36 0.02 43 0.02 
 Thermotogae 330 0.17 414 0.21 
 Verrucomicrobia 450 0.23 611 0.32 
Eukaryota      
 Apicomplexa 25 0.01 19 0.01 
 Arthropoda 32 0.02 30 0.02 
 Ascomycota 64 0.03 59 0.03 
 Bacillariophyta 7 0 8 0 
 Basidiomycota 8 0 5 0 
 Chlorophyta 5 0 5 0 
 Chordata 32 0.02 29 0.01 
 Microsporidia 1 0 0 0 
 Nematoda 7 0 3 0 
 Streptophyta 73 0.04 66 0.03 
Plasmid:Archaea      
 Crenarchaeota 5 0 2 0 
 Euryarchaeota 4 0 4 0 
Plasmid:Bacteria      
 Actinobacteria 3 0 3 0 
 Bacteroidetes 2 0 1 0 
 Firmicutes 23 0.01 32 0.02 
 Proteobacteria 32 0.02 29 0.01 
Viruses      
 ds DNA viruses, no RNA stage 113 0.06 97 0.05 
 ss DNA viruses 1 0 0 0 

http://dx.doi.org/10.1601/nm.1�
http://dx.doi.org/10.1601/nm.2�
http://dx.doi.org/10.1601/nm.90�
http://dx.doi.org/10.1601/nm.419�
http://dx.doi.org/10.1601/nm.7918�
http://dx.doi.org/10.1601/nm.5712�
http://dx.doi.org/10.1601/nm.420�
http://dx.doi.org/10.1601/nm.7928�
http://dx.doi.org/10.1601/nm.7763�
http://dx.doi.org/10.1601/nm.777�
http://dx.doi.org/10.1601/nm.550�
http://dx.doi.org/10.1601/nm.543�
http://dx.doi.org/10.1601/nm.624�
http://dx.doi.org/10.1601/nm.605�
http://dx.doi.org/10.1601/nm.507�
http://dx.doi.org/10.1601/nm.519�
http://dx.doi.org/10.1601/nm.8419�
http://dx.doi.org/10.1601/nm.17781�
http://dx.doi.org/10.1601/nm.7909�
http://dx.doi.org/10.1601/nm.3874�
http://dx.doi.org/10.1601/nm.8344�
http://dx.doi.org/10.1601/nm.8427�
http://dx.doi.org/10.1601/nm.8953�
http://dx.doi.org/10.1601/nm.14417�
http://dx.doi.org/10.1601/nm.7744�
http://dx.doi.org/10.1601/nm.808�
http://dx.doi.org/10.1601/nm.7793�
http://dx.doi.org/10.1601/nm.14317�
http://dx.doi.org/10.1601/nm.14428�
http://dx.doi.org/10.1601/nm.491�
http://dx.doi.org/10.1601/nm.455�
http://dx.doi.org/10.1601/nm.8397�
http://dx.doi.org/10.1601/nm.1�
http://dx.doi.org/10.1601/nm.2�
http://dx.doi.org/10.1601/nm.90�
http://dx.doi.org/10.1601/nm.419�
http://dx.doi.org/10.1601/nm.5712�
http://dx.doi.org/10.1601/nm.7928�
http://dx.doi.org/10.1601/nm.3874�
http://dx.doi.org/10.1601/nm.808�


DeAngelis et al. 

http://standardsingenomics.org 391 

 

Figure 1. Phyla that are at least 2-fold differentially represented in one metagenome compared to the 
other, and had greater than one representative detected. Phyla with gene counts over-represented in 
the iron-amended consortium (SG + Fe) are colored brown, while phyla with gene counts over-
represented in the unamended consortium (SG only) are colored light green. 

 
Figure 2. Network analysis of feedstock adapted consortia grown on switchgrass only (SG on-
ly), SG plus iron oxides (FeOx), SG plus nitrate (NO3

-), or SG plus sulfate (SO3
-). Each point rep-

resents one taxon, and the size of the point corresponds to the number of connections (edges) 
associated with the taxon. Edges (grey lines) indicate a minimum correlation of Pearson r = 0.9 
as well as statistical significance (P<0.01). On the left, taxa are colored by taxonomy according 
to their assigned phylum; on the right, taxa are colored based on whether they are generalists 
(present in all four treatments) or specialists (present in one treatment only and absent in the 
rest). 
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Table 7. Report of pfams that were significantly enriched† 
ID SG only  R SG + Fe  Description 
Enriched in 
SG+Fe FACs 

 
    

pfam00005 2,409 -7.38 8.10e-14 3,025 ABC transpoerter 

pfam00528 1,817 -7.36 9.02e-14 2,348 Bacterial binding protein-dependent transport systems 

pfam02653 394 -6.24 2.23e-10 605 Bacterial binding protein-dependent transport systems 

pfam00106 420 -4.88 5.38e-07 589 short-chain dehydrogenases/reductases family 

pfam01979 163 -5.55 1.44e-08 287 large metal dependent hydrolase superfamily 

pfam08352 99 -6.43 6.20e-11 218 
C-terminus of oligopeptide ABC transporter ATP binding 
proteins 

pfam02894 146 -4.1 2.03e-05 231 Oxidoreductase family, C-terminal alpha/beta domain 

pfam02782 113 -4.33 7.56e-06 193 FGGY carbohydrate kinase family 

pfam00395 130 -3.98 3.39e-05 208 S-layer homology domain 

pfam01266 93 -3.77 8.17e-05 156 FAD dependent oxidoreductase family 

pfam02801 47 -4.13 1.79e-05 99 Beta-ketoacyl-ACP synthase (fatty acid synthesis) 

pfam00404 2 -6.02 8.86e-10 43 Dockerin: protein domain in cellulosome cellular structure 

pfam01799 24 -3.71 1.02e-04 59 [2Fe-2S] binding domain 

pfam03632 19 -3.8 7.32e-05 52 glycoside hydrolase family 65 

pfam08659 1 -5.41 3.23e-08 33 
polyketide synthase domain, catalyses the first step in the 
reductive modification of the beta-carbonyl centers in the 
growing polyketide chain 

Enriched in 
SG only FACs 

 
    

pfam00990 697 5.95 1.33e-09 508 
GGDEF domain, cyclic di-GMP synthesis involved in in-
tracellular signaling 

pfam03466 499 6.29 1.60e-10 330 
LysR substrate binding domain, similar to periplasmic 
binding protein 

pfam00126 476 5.71 5.71e-09 326 Helix-turn-helix DNA binding domain 

pfam00583 1,048 3.88 5.26e-05 905 Acetyltransferase (or transacetylase) 

pfam00989 569 3.89 4.92e-05 459 PAS domain, signal sensor 

pfam00563 262 5.43 2.89e-08 157 EAL domain, possible diguanylate phosphodiesterase with 
metal-binding site 

pfam01473 135 8.26 1.11e-16 31 Putative cell wall binding repeat 

pfam02311 405 3.78 7.82e-05 314 
rabinose-binding and dimerization domain of the AraC 
regulatory protein 

pfam00665 201 4.53 2.94e-06 124 Retroviral integrase 

pfam02378 145 4.25 1.08e-05 84 
Phosphotransferase system, EIIC, part of a sugar-specific 
permease system 

pfam00801 163 3.71 1.03e-04 106 
Polycystic-kidney disease domain, usually involved in me-
diating protein-protein interactions 

†in either the iron-amended consortia (SG + Fe FAC, upper half of table) or the unamended feedstock-adapted consortia (SG only FAC, 
lower half of table). 
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Table 7 (cont.). Report of pfams that were significantly enriched† 
ID SG only  R SG + Fe  Description 
pfam01797 119 3.84 6.07e-05 69 Transposase IS200, for transposition of insertion elements 

pfam01609 119 3.76 8.44e-05 70 
Transposase DDE domain, for transposition of insertion el-
ements 

pfam01011 75 4.54 2.83e-06 30 
beta propeller, found in several enzymes which utilize 
pyrrolo-quinoline quinone as a prosthetic group 

pfam00367 80 4.35 6.80e-06 35 phosphotransferase system, EIIB 

pfam02302 105 3.69 1.13e-04 60 phosphoenolpyruvate: sugar phosphotransferase system 
(PTS) system, Lactose/Cellobiose specific IIB subunit 

pfam09681 47 5.93 1.53e-09 5 N-terminal phage replisome organizer, origin of phage 
replication 

pfam01978 83 3.83 6.47e-05 42 sugar-specific transcriptional regulator of the treha-
lose/maltose ABC transporter 

pfam03143 52 3.75 8.81e-05 21 GTP-binding elongation factor family 

pfam09820 35 4.41 5.09e-06 7 predicted AAA-ATPase domain 

pfam08350 33 4 3.22e-05 8 domain of unknown function, so far found only at the C-
terminus of archaean proteins 

pfam08495 36 3.74 9.02e-05 11 FIST N domain: novel sensory domain present in signal 
transduction proteins 

pfam09373 22 4.45 4.34e-06 1 Pseudomurein-binding repeat, pseudomurein being a cell-
wall structure 

pfam08004 18 3.96 3.71e-05 1 domain of unknown function, so far found only among 
archaeal proteins 

†in either the iron-amended consortia (SG + Fe FAC, upper half of table) or the unamended feedstock-adapted consortia 
(SG only FAC, lower half of table). 

 
Figure 3. Illustration of pfams that were differentially represented in SG only compared to SG + Fe. On the left, 
pfams are listed for the consortium grown in switchgrass only with no iron (SG only), and on the right, pfams are 
listed for the consortium grown in switchgrass with iron (SG + Fe). This illustration is based on data from Table 7. 
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Table 8. Count of genes in COGs that bear protein sequence homology to target lignocellulolytic genes of interest. 
COG ID SG only SG + Fe COG Description 

COG1472 11 23 Beta-glucosidase-related glycosidases 

COG3250 11 7 Beta-galactosidase/beta-glucuronidase 

COG5001 9 9 Predicted signal transduction protein containing a membrane domain, an EAL and a 
GGDEF domain 

COG1028 4 33 
Dehydrogenases with different specificities (related to short-chain alcohol dehydrogen-
ases) 

COG0300 3 2 Short-chain dehydrogenases of various substrate specificities 

COG4221 3 2 Short-chain alcohol dehydrogenase of unknown specificity 

COG1012 2 11 NAD-dependent aldehyde dehydrogenases 

COG0677 2 3 UDP-N-acetyl-D-mannosaminuronate dehydrogenase 

COG3384 2 3 Uncharacterized conserved protein 

COG0280 1 3 Phosphotransacetylase 

COG1344 1 3 Flagellin and related hook-associated proteins 

COG3325 1 2 Chitinase 

COG0277 1 1 FAD/FMN-containing dehydrogenases 

COG0179 1  
2-keto-4-pentenoate hydratase/2-oxohepta-3-ene-1,7-dioic acid hydratase (catechol 
pathway) 

COG1874 1  Beta-galactosidase 

COG2132 1  Putative multicopper oxidases 

COG1129  20 ABC-type sugar transport system, ATPase component 

COG2723  11 Beta-glucosidase/6-phospho-beta-glucosidase/beta-galactosidase 

COG0411  9 ABC-type branched-chain amino acid transport systems, ATPase component 

COG0673  8 Predicted dehydrogenases and related proteins 

COG0036  4 Pentose-5-phosphate-3-epimerase 

COG1455  4 Phosphotransferase system cellobiose-specific component IIC 

COG1486  4 Alpha-galactosidases/6-phospho-beta-glucosidases, family 4 of glycosyl hydrolases 

COG2200  4 FOG: EAL domain 

COG0366  3 Glycosidases 

COG1004  3 Predicted UDP-glucose 6-dehydrogenase 

COG3842  3 ABC-type spermidine/putrescine transport systems, ATPase components 

COG3845  3 ABC-type uncharacterized transport systems, ATPase components 

COG0435  2 Predicted glutathione S-transferase 

COG0583  2 Transcriptional regulator 

COG0812  2 UDP-N-acetylmuramate dehydrogenase 

COG3836  2 2,4-dihydroxyhept-2-ene-1,7-dioic acid aldolase 

COG4213  2 ABC-type xylose transport system, periplasmic component 
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Table 8 (cont.). Count of genes in COGs that bear protein sequence homology to target lignocellulolytic genes of interest. 

COG ID SG only SG + Fe COG Description 

COG4214  2 ABC-type xylose transport system, permease component 

COG0376  1 Catalase (peroxidase I) 

COG0410  1 ABC-type branched-chain amino acid transport systems, ATPase component 

COG1640  1 4-alpha-glucanotransferase 

COG1921  1 Selenocysteine synthase [seryl-tRNASer selenium transferase] 

COG1960  1 Acyl-CoA dehydrogenases 

COG2368  1 Aromatic ring hydroxylase 

COG2373  1 Large extracellular alpha-helical protein 

Total Result 54 197  

Functional Genes Related to Feedstock 
 Deconstruction 
To recover genes that were specifically involved in 
switchgrass deconstruction, we used blastp to pull 
out sequences from the annotated, assembled 
metagenomes that had E-value of 1e-20 or better. 
The target list contained 101 proteins, consisting 
of glycosyl hydrolases, lignases, and other pro-
posed lignocellulose-degrading enzymes based on 
genome analysis of the isolate Enterobacter 
lignolyticus SCF1 [51], which originated from the-
se same soils. This resulted in 1,001 hits from both 
the SG only and SG + Fe FACs, but 54 and 198 tar-
gets on scaffolds longer than 10kb from the SG 
only and SG + Fe FACs, respectively. These results 
are summarized in Table 8, where we report the 
number of genes clustered by COG ID number. 
There were 13 COGs that contain genes detected 
in both FACs, three COGs with genes detected in 
the SG only FAC but not the SG + Fe FAC, and 24 
COGs with genes detected in the SG + Fe FAC but 
not the SG only FAC. This imbalance in target 
lignocellulolytic genes, with many more genes de-
tected with iron amendment than without the TEA 
amendment, supports our conclusion that iron 

addition improves lignocellulose decomposition 
among these FACs. 

Conclusion 
Metagenome sequencing of iron-amended and 
unamended feedstock-adapted consortia suggests 
that iron amendment results in microbial commu-
nities that are more active or more efficient at lig-
nocellulose degradation. This is evidenced by the 
increased abundance of genes associated carbo-
hydrate transport and decreased abundance of 
genes associated with cell maintenance and 
growth. The iron amendment was only applied 
after one generation of anaerobic growth, so it is 
possible that further generations of growth in the 
presence of iron would result in consortia better 
able to degrade lignocellulosic feedstocks. This 
research also supports the possibility that anaer-
obic lignocellulose deconstruction could benefit 
from metabolism supplemented by additional 
TEAs. 

Acknowledgements 
The work conducted in part by the US Department of 
Energy Joint Genome Institute and in part by the Joint 
BioEnergy Institute (http://www.jbei.org) supported 
by the US Department of Energy, Office of Science, Of-
fice of Biological and Environmental Research, under 
Contract No. DE-AC02-05CH11231. We would like to 
thank Dr. Ken Vogel (USDA, ARS, Lincoln, NE) for 

providing samples of switchgrass (MPV 2 cultivar) for 
use in these studies. We are also grateful to Albert 
Barberán for guidance in constructing the community 
networks. 

http://standardsingenomics.org/�
http://dx.doi.org/10.1601/nm.19526�
http://dx.doi.org/10.1601/nm.19526�


Switchgrass-adapted consortia 

396 Standards in Genomic Sciences 

References 
1. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD. 

Metabolic engineering of microorganisms for bio-
fuels production: from bugs to synthetic biology 
to fuels. Curr Opin Biotechnol 2008; 19:556-563. 
PubMed 
http://dx.doi.org/10.1016/j.copbio.2008.10.014 

2. Jaeger KE, Eggert T. Lipases for biotechnology. 
Curr Opin Biotechnol 2002; 13:390-397. PubMed 
http://dx.doi.org/10.1016/S0958-1669(02)00341-
5 

3. Parton W, Silver WL, Burke IC, Grassens L, Har-
mon ME, Currie WS, King JY, Adair EC, Brandt 
LA, Hart SC, et al. Global-scale similarities in ni-
trogen release patterns during long-term decom-
position. Science 2007; 315:361-364. PubMed 
http://dx.doi.org/10.1126/science.1134853 

4. Silver WL, Lugo A, Keller M. Soil oxygen availa-
bility and biogeochemistry along rainfall and 
topographic gradients in upland wet tropical for-
est soils. Biogeochemistry 1999; 44:301-328. 
http://dx.doi.org/10.1007/BF00996995 

5. Silver WL, Liptzin D, Almaraz M. Soil redox dy-
namics and biogeochemistry alonga tropical 
elevational gradient. Ecol Bull 2013; (In press). 

6. Pett-Ridge J, Firestone MK. Redox fluctuation 
structures microbial communities in a wet tropi-
cal soil. Appl Environ Microbiol 2005; 71:6998-
7007. PubMed 
http://dx.doi.org/10.1128/AEM.71.11.6998-
7007.2005 

7. DeAngelis KM, Allgaier M, Chavarria Y, Fortney 
JL, Hugenholtz P, Simmons B, Sublette K, Silver 
WL, Hazen TC. Characterization of Trapped Lig-
nin-Degrading Microbes in Tropical Forest Soil. 
PLoS ONE 2011; 6:e19306. PubMed 
http://dx.doi.org/10.1371/journal.pone.0019306 

8. DeAngelis, K. M. et al. Anaerobic decomposition 
of switchgrass by tropical soil-derived feedstock-
adapted consortia. MBio 3, (2012). 

9. DeAngelis KM, Silver WL, Thompson AW, Fire-
stone MK. Microbial communities acclimate to 
recurring changes in soil redox potential status. 
Environ Microbiol 2010; 12:3137-3149. PubMed 
http://dx.doi.org/10.1111/j.1462-
2920.2010.02286.x 

10. Paul EA, Clark FE. Soil microbiology, ecology, 
and biochemistry. (Academic Pr, 1996). 

11. Freeman C, Ostle N, Kang H. An enzymic ‘latch’ 
on a global carbon store. Nature 2001; 409:149. 
PubMed http://dx.doi.org/10.1038/35051650 

12. Fierer N, Grandy AS, Six J, Paul EA. Searching for 
unifying principles in soil ecology. Soil Biol 
Biochem 2009; 41:2249-2256. 
http://dx.doi.org/10.1016/j.soilbio.2009.06.009 

13. Field D, Garrity G, Gray T, Morrison N, Selengut 
J, Sterk P, Tatusova T, Thomson N, Allen MJ, 
Angiuoli SV, et al. The minimum information 
about a genome sequence (MIGS) specification. 
Nat Biotechnol 2008; 26:541-547. PubMed 
http://dx.doi.org/10.1038/nbt1360 

14. Ashburner M, Ball CA, Blake JA, Botstein D, But-
ler H, Cherry JM, Davis AP, Dolinski K, Dwight 
SS, Eppig JT. Gene Ontology: tool for the unifica-
tion of biology. Nat Genet 2000; 25:25-29. Pub-
Med http://dx.doi.org/10.1038/75556 

15. McGroddy M, Silver WL. Variations in Below-
ground Carbon Storage and Soil CO2 Flux Rates 
along a Wet Tropical Climate Gradient1. 
Biotropica 2000; 32:614-624. 
http://dx.doi.org/10.1646/0006-
3606(2000)032[0614:VIBCSA]2.0.CO;2 

16. Tanner, R. S. et al. Cultivation of bacteria and fun-
gi. 69–78 (2007). 

17. Widdel F, Kohring GW, Mayer F. Studies on 
dissimilatory sulfate-reducing bacteria that de-
compose fatty acids. Arch Microbiol 1981; 
129:395-400. PubMed 
http://dx.doi.org/10.1007/BF00406470 

18. Tschech A, Pfennig N. Growth yield increase 
linked to caffeate reduction in Acetobacterium 
woodii. Arch Microbiol 1984; 137:163-167. 
http://dx.doi.org/10.1007/BF00414460 

19. Janssen PH, Schuhmann A, Morschel E, Rainey 
FA. Novel anaerobic ultramicrobacteria belong-
ing to the Verrucomicrobiales lineage of bacterial 
descent isolated by dilution culture from anoxic 
rice paddy soil. Appl Environ Microbiol 1997; 
63:1382-1388. PubMed 

20. DeAngelis KM, Gladden JM, Allgaier M, 
D'haeseleer P. Strategies for enhancing the effec-
tiveness of metagenomic-based enzyme discovery 
in lignocellulolytic microbial communities. Bio-
Energy Research 2010; 3:146-158. 
http://dx.doi.org/10.1007/s12155-010-9089-z 

21. DOE Joint Genome Institute. 
http://www.jgi.doe.gov 

22. SOAPdenovo v1.05. 
http://soap.genomics.org.cn/soapdenovo.html 

23. AMOS. http://sourceforge.net/projects/amos 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18996194&dopt=Abstract�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18996194&dopt=Abstract�
http://dx.doi.org/10.1016/j.copbio.2008.10.014�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12323363&dopt=Abstract�
http://dx.doi.org/10.1016/S0958-1669(02)00341-5�
http://dx.doi.org/10.1016/S0958-1669(02)00341-5�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17234944&dopt=Abstract�
http://dx.doi.org/10.1126/science.1134853�
http://dx.doi.org/10.1007/BF00996995�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16269735&dopt=Abstract�
http://dx.doi.org/10.1128/AEM.71.11.6998-7007.2005�
http://dx.doi.org/10.1128/AEM.71.11.6998-7007.2005�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21559391&dopt=Abstract�
http://dx.doi.org/10.1371/journal.pone.0019306�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20629704&dopt=Abstract�
http://dx.doi.org/10.1111/j.1462-2920.2010.02286.x�
http://dx.doi.org/10.1111/j.1462-2920.2010.02286.x�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11196627&dopt=Abstract�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11196627&dopt=Abstract�
http://dx.doi.org/10.1038/35051650�
http://dx.doi.org/10.1016/j.soilbio.2009.06.009�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18464787&dopt=Abstract�
http://dx.doi.org/10.1038/nbt1360�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10802651&dopt=Abstract�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10802651&dopt=Abstract�
http://dx.doi.org/10.1038/75556�
http://dx.doi.org/10.1646/0006-3606(2000)032%5b0614:VIBCSA%5d2.0.CO;2�
http://dx.doi.org/10.1646/0006-3606(2000)032%5b0614:VIBCSA%5d2.0.CO;2�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7283636&dopt=Abstract�
http://dx.doi.org/10.1007/BF00406470�
http://dx.doi.org/10.1601/nm.4285�
http://dx.doi.org/10.1601/nm.4285�
http://dx.doi.org/10.1007/BF00414460�
http://dx.doi.org/10.1601/nm.8399�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9097435&dopt=Abstract�
http://dx.doi.org/10.1007/s12155-010-9089-z�
http://www.jgi.doe.gov/�
http://soap.genomics.org.cn/soapdenovo.html�
http://sourceforge.net/projects/amos�


DeAngelis et al. 

http://standardsingenomics.org 397 

24. Edgar RC. Search and clustering orders of magni-
tude faster than BLAST. Bioinformatics 2010; 
26:2460-2461. PubMed 
http://dx.doi.org/10.1093/bioinformatics/btq461 

25. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: A Program 
for Improved Detection of Transfer RNA Genes in 
Genomic Sequence. Nucl. Acids Res. 25, 0955–
964 (1997). 

26. Altschul SF, Madden TL, Schäffer AA, Zhang J, 
Zhang Z, Miller W, Lipman DJ. Gapped BLAST 
and PSI-BLAST: a new generation of protein data-
base search programs. Nucleic Acids Res 1997; 
25:3389-3402. PubMed 
http://dx.doi.org/10.1093/nar/25.17.3389 

27. Eddy SR. Accelerated Profile HMM Searches. 
PLOS Comput Biol 2011; 7:e1002195. PubMed 
http://dx.doi.org/10.1371/journal.pcbi.1002195 

28. Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, 
Kyrpides NC, Hugenholtz P. CRISPR Recognition 
Tool (CRT): a tool for automatic detection of clus-
tered regularly interspaced palindromic repeats. 
BMC Bioinformatics 2007; 8:209. PubMed 
http://dx.doi.org/10.1186/1471-2105-8-209 

29. Edgar RC. PILER-CR: Fast and accurate identifica-
tion of CRISPR repeats. BMC Bioinformatics 2007; 
8:18. PubMed http://dx.doi.org/10.1186/1471-
2105-8-18 

30. Noguchi H, Park J, Takagi T. MetaGene: prokary-
otic gene finding from environmental genome 
shotgun sequences. Nucleic Acids Res 2006; 
34:5623-5630. PubMed 
http://dx.doi.org/10.1093/nar/gkl723 

31. Hyatt D, Chen GL, Locascio PF, Land ML, Lar-
imer FW, Hauser LJ. Prodigal: prokaryotic gene 
recognition and translation initiation site identifi-
cation. BMC Bioinformatics 2010; 11:119. Pub-
Med http://dx.doi.org/10.1186/1471-2105-11-119 

32. Rho M, Tang H, Ye Y. FragGeneScan: predicting 
genes in short and error-prone reads. Nucleic Ac-
ids Res 2010; 38:e191. PubMed 
http://dx.doi.org/10.1093/nar/gkq747 

33. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, 
Kiryutin B, Koonin EV, Krylov DM, Mazumder R, 
Mekhedov SL, Nikolskaya AN, et al. The COG 
database: an updated version includes eukary-
otes. BMC Bioinformatics 2003; 4:41. PubMed 
http://dx.doi.org/10.1186/1471-2105-4-41 

34. Finn RD, Mistry J, Tate J, Coggill P, Heger A, 
Pollington JE, Gavin OL, Gunasekaran P, Ceric G, 
Forslund K. The Pfam protein families database. 

Nucleic Acids Res 2010; 38:D211-D222. PubMed 
http://dx.doi.org/10.1093/nar/gkp985 

35. Mao X, Cai T, Olyarchuk JG, Wei L. Automated 
genome annotation and pathway identification 
using the KEGG Orthology (KO) as a controlled 
vocabulary. Bioinformatics 2005; 21:3787-3793. 
PubMed 
http://dx.doi.org/10.1093/bioinformatics/bti430 

36. Markowitz VM, Chen IM, Chu K, Szeto E, 
Palaniappan K, Grechkin Y, Ratner A, Jacob B, 
Pati A, Huntemann M. IMG/M: the integrated 
metagenome data management and comparative 
analysis system. Nucleic Acids Res 2012; 
40:D123-D129. PubMed 
http://dx.doi.org/10.1093/nar/gkr975 

37. Wu D, Hugenholtz P, Mavromatis K, Pukall R, 
Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu 
M, Tindall BJ. A phylogeny-driven genomic ency-
clopaedia of Bacteria and Archaea. Nature 2009; 
462:1056-1060. PubMed 
http://dx.doi.org/10.1038/nature08656 

38. Barberán A, Bates ST, Casamayor EO, Fierer N. 
Using network analysis to explore co-occurrence 
patterns in soil microbial communities. ISME J 
2012; 6:343-351. PubMed 
http://dx.doi.org/10.1038/ismej.2011.119 

39. Csardi, G. & Nepusz, T. The igraph software pack-
age for complex network research. InterJournal, 
Complex Systems 1695 (2006). 

40. Harrell, F. E. & And with contributions from many 
other users Hmisc (Harrell Miscellaneous). R 
package version 3.9-3 (2012).at 
http://biostat.mc.vanderbilt.edu/trac/Hmisc 

41. Pollard KS, Gilbert HN, Ge Y, Taylor S, Dudoit S. 
multtest: Resampling-based multiple hypothesis 
testing. R package version 2.12.0 (2012).at 
http://www.bioconductor.org/packages/2.10/bioc/
html/multtest.html 

42. Revol doMC: Foreach parallel adaptor for the 
multicore package. R package version 1.2.5 
(2012).at http://CRAN.R-
project.org/package=doMC 

43. Revolution Analytics foreach: Foreach looping 
construct for R. R package version 1.4.0 (2012).at 
http://CRAN.R-project.org/package=foreach 

44. Leschine SB, Canale-Parola E. Mesophilic cellulo-
lytic clostridia from freshwater environments. 
Appl Environ Microbiol 1983; 46:728-737. Pub-
Med 

45. Calusinska, M., Happe, T., Joris, B. & Wilmotte, A. 
The surprising diversity of clostridial 

http://standardsingenomics.org/�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20709691&dopt=Abstract�
http://dx.doi.org/10.1093/bioinformatics/btq461�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9254694&dopt=Abstract�
http://dx.doi.org/10.1093/nar/25.17.3389�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22039361&dopt=Abstract�
http://dx.doi.org/10.1371/journal.pcbi.1002195�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17577412&dopt=Abstract�
http://dx.doi.org/10.1186/1471-2105-8-209�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17239253&dopt=Abstract�
http://dx.doi.org/10.1186/1471-2105-8-18�
http://dx.doi.org/10.1186/1471-2105-8-18�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17028096&dopt=Abstract�
http://dx.doi.org/10.1093/nar/gkl723�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20211023&dopt=Abstract�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20211023&dopt=Abstract�
http://dx.doi.org/10.1186/1471-2105-11-119�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20805240&dopt=Abstract�
http://dx.doi.org/10.1093/nar/gkq747�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12969510&dopt=Abstract�
http://dx.doi.org/10.1186/1471-2105-4-41�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19920124&dopt=Abstract�
http://dx.doi.org/10.1093/nar/gkp985�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15817693&dopt=Abstract�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15817693&dopt=Abstract�
http://dx.doi.org/10.1093/bioinformatics/bti430�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22086953&dopt=Abstract�
http://dx.doi.org/10.1093/nar/gkr975�
http://dx.doi.org/10.1601/nm.419�
http://dx.doi.org/10.1601/nm.1�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20033048&dopt=Abstract�
http://dx.doi.org/10.1038/nature08656�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21900968&dopt=Abstract�
http://dx.doi.org/10.1038/ismej.2011.119�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16346388&dopt=Abstract�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16346388&dopt=Abstract�


Switchgrass-adapted consortia 

398 Standards in Genomic Sciences 

hydrogenases: a comparative genomic perspec-
tive. Microbiology (Reading, Engl.) 156, 1575–
1588 (2010). 

46. Schimel JP, Schaeffer SM. Microbial control over 
carbon cycling in soil. Front Microbiol 2012; 
3:348. PubMed 

47. Lovley DR, Holmes DE, Nevin KP. Dissimilatory 
fe (iii) and mn (iv) reduction. Adv Microb Physiol 
2004; 49:219-286. PubMed 
http://dx.doi.org/10.1016/S0065-2911(04)49005-
5 

48. Weber KA, Achenbach LA, Coates JD. Microor-
ganisms pumping iron: anaerobic microbial iron 
oxidation and reduction. Nat Rev Microbiol 2006; 
4:752-764. PubMed 
http://dx.doi.org/10.1038/nrmicro1490 

49. Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, 
Breznak JA. New Strategies for Cultivation and 
Detection of Previously Uncultured Microbes. 
Appl Environ Microbiol 2004; 70:4748-4755. 
PubMed 
http://dx.doi.org/10.1128/AEM.70.8.4748-
4755.2004 

50. Heuer, H. & Smalla, K. Plasmids foster diversifica-
tion and adaptation of bacterial populations in 
soil. FEMS Microbiology Reviews n/a–n/a (2012). 

51. DeAngelis KM, D'Haeseleer P, Chivian D, Fort-
ney JL, Khudyakov J, Simmons B, Woo H, Arkin 
AP, Davenport KW, Goodwin L. Complete ge-
nome sequence of ‘Enterobacter lignolyticus’ 
SCF1. Stand Genomic Sci 2011; 5:69-85. PubMed 
http://dx.doi.org/10.4056/sigs.2104875 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23055998&dopt=Abstract�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15518832&dopt=Abstract�
http://dx.doi.org/10.1016/S0065-2911(04)49005-5�
http://dx.doi.org/10.1016/S0065-2911(04)49005-5�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16980937&dopt=Abstract�
http://dx.doi.org/10.1038/nrmicro1490�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15294811&dopt=Abstract�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15294811&dopt=Abstract�
http://dx.doi.org/10.1128/AEM.70.8.4748-4755.2004�
http://dx.doi.org/10.1128/AEM.70.8.4748-4755.2004�
http://dx.doi.org/10.1601/nm.19526�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22180812&dopt=Abstract�
http://dx.doi.org/10.4056/sigs.2104875�

	Metagenomes of tropical soil-derived anaerobic switchgrass-adapted consortia with and without iron
	Kristen M. DeAngelis1,2*, Patrik D’Haeseleer2,3, Dylan Chivian4,5, Blake Simmons2,6, Adam P. Arkin4,5, Konstantinos Mavromatis7, Stephanie Malfatti7, Susannah Tringe7, Terry C.  Hazen2,8,9,10
	1Microbiology Department, University of Massachusetts, Amherst MA USA
	2Microbial Communities Group, Deconstruction Division, Joint BioEnergy Institute, Emeryville CA USA
	3Lawrence Livermore National Laboratory, Livermore CA USA
	4Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley CA USA
	5Technologies Division, Joint BioEnergy Institute, Emeryville CA USA
	6Sandia National Lab, Livermore CA USA
	7Department of Energy Joint Genome Institute, Walnut Creek CA USA
	8Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
	9Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
	10Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
	Introduction
	Metagenome sequencing information
	Metagenome project history
	Growth conditions and DNA isolation
	Metagenome sequencing and assembly
	Metagenome annotation

	Metagenome properties
	Taxonomic diversity
	Functional genetic diversity
	Functional Genes Related to Feedstock  Deconstruction
	Conclusion
	Acknowledgements
	References

