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Niabella soli Weon et al. 2008 is a member of the Chitinophagaceae, a family within the class 
Sphingobacteriia that is poorly characterized at the genome level, thus far. N. soli strain JS13-
8T is of interest for its ability to produce a variety of glycosyl hydrolases. The genome of N. 
soli strain JS13-8T is only the second genome sequence of a type strain from the family 
Chitinophagaceae to be published, and the first one from the genus Niabella. Here we de-
scribe the features of this organism, together with the complete genome sequence and anno-
tation. The 4,697,343 bp long chromosome with its 3,931 protein-coding and 49 RNA genes 
is a part of the Genomic Encyclopedia of Bacteria and Archaea project. 

Introduction 
Strain JS13-8T (= DSM 19437 = KACC 12604) is the 
type strain of the species Niabella soli [1], one out 
of five species in the genus Niabella [2]. The strain 
was originally isolated from soil sampled from 
Jeju Island, Republic of Korea [1]. The genus name 
was derived from the arbitrary word NIAB, Na-
tional Institute of Agricultural Biotechnology, 
where taxonomic studies of this organism were 
conducted [3]; the species epithet was derived 
from the Latin word soli, of soil [1]. Strain JS13-8T 
was found to assimilate several mono- and disac-
charides and to produce numerous glycosyl hy-
drolases [1]. There are no PubMed records that 
document the use of the strain for any biotechno-
logical studies; only comparative analyses per-
formed for the description of later members of the 

genus Niabella are recorded. Here we present a 
summary classification and a set of features for N. 
soli JS13-8T, together with the description of the 
genomic sequencing and annotation. 

Classification and features 
A representative genomic 16S rRNA sequence of N. 
soli JS13-8T was compared using NCBI BLAST [4,5] 
under default settings (e.g., considering only the 
high-scoring segment pairs (HSPs) from the best 
250 hits) with the most recent release of the 
Greengenes database [6]. The relative frequencies 
of taxa and keywords (reduced to their stem [7]) 
were determined, weighted by BLAST scores. The 
most frequently occurring genera were Niabella 
(34.8%), Terrimonas (21.0%), Flavobacterium 
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(14.9%), 'Niablella' (8.5%; an apparent misspelling 
of Niabella) and Niastella (8.2%) (13 hits in total). 
Regarding the single hit to sequences from mem-
bers of the species, the average identity within 
HSPs was 99.7%, whereas the average coverage by 
HSPs was 96.8%. Among all other species, the one 
yielding the highest score was 'Niablella koreensis' 
(DQ457019; again a misnomer, see Figure 1), 
which corresponded to an identity of 95.1% and an 
HSP coverage of 99.9%. (Note that the Greengenes 
database uses the INSDC (= EMBL/NCBI/DDBJ) 
annotation, which is not an authoritative source for 
nomenclature or classification.) The highest-
scoring environmental sequence was JF167633 
('skin antecubital fossa clone ncd2016g05c1'), 
which showed an identity of 95.3% and an HSP 
coverage of 95.7%. The most frequently occurring 
keywords within the labels of all environmental 
samples which yielded hits were 'sludg' (3.6%), 
'activ' (2.6%), 'skin' (2.3%), 'wast' (1.8%) and 'soil' 
(1.8%) (236 hits in total) and reveal no deeper in-
sight into the usual habitat of close relatives of the 
strain. Environmental samples which yielded hits 
of a higher score than the highest scoring species 
were not found, indicating that N. soli itself is rarely 
found in environmental screenings. 
Figure 1 shows the phylogenetic neighborhood of 
N. soli in a 16S rRNA based tree. The sequences of 
the two 16S rRNA gene copies in the genome differ 
from each other by one nucleotide, and differ by up 
to one nucleotide from the previously published 
16S rRNA sequence (EF592608), which contains 
three ambiguous base calls. 
In a preliminary phylogenetic analysis of the 16S 
rRNA sequences from the family, we observed that 
two genera, Balneola and Gracilimonas, listed as 
belonging to Chitinophagaceae by [17,28,29], 
formed the root of the tree and were separated 
from the remaining taxa by quite long branches. 
For this reason, they were omitted from the analy-
sis described above, and a second phylogenetic 
analysis involving the type species of the type gen-
era of all families within the phylum Bacteroidetes 
was conducted, either unconstrained or con-
strained for the monophyly of all families [30]. The 
alignment (inferred and filtered as described 
above) contained 17 operational taxonomic units 
and 1,384 characters. The best ML tree found had a 
log likelihood of -12,076.19, whereas the best trees 
found under the constraint had a log likelihood of -
12,132.94. The constrained tree was significantly 
worse than the globally best one in the Shimodaira-

Hasegawa test as implemented in RAxML [10] (α = 
0.01). The bestMP trees found had a score of 2,432, 
whereas the best constrained tree found had a 
score of 2,485 and was significantly worse in the 
Kishino-Hasegawa test as implemented in PAUP* 
[13] (α = 0.01). (See, e.g. chapter 21 in [31] for an 
in-depth description of such paired-site tests.) This 
confirms our view that Balneola and Gracilimonas 
are misplaced as members of Chitinophagaceae (as 
all other families were represented by a single tax-
on only, Chitinophagaceae is the only family that 
might have caused conflict in this setting). 
Chitinophagaceae should thus be regarded to only 
contain the genera listed by [23] together with the 
more recently published genus Flavitalea [28]. 
N. soli JS13-8T is a Gram-negative and non-motile 
aerobic bacterium [1]. Cells are short rods 0.8-1.4 
μm long and with a diameter of 0.5-0.7 μm ([1], 
Figure 2). Colonies are dark yellow due to the pig-
ment flexirubin [1]. Growth was observed between 
15°C and 35°C with an optimum at 30°C [1]. The pH 
range for growth was 5.0-8.0 with 6.0-7.0 as the 
optimum [1]. The salinity range for growth was 0-
1% NaCl [3]. N. soli JS13-8T grows on several 
monosaccharides, disaccharides, gluconate, and D-
mannitol [1]. It produces numerous glycosyl hydro-
lases including α-galactosidase, β-galactosidase, β-
glucuronidase, α-glucosidase, β-glucosidase, N-
acetyl-β-glucosaminidase, α-mannosidase, and α-
fucosidase [1]. However it did not hydrolyze starch, 
chitin, or carboxymethylcellulose [1]. 

Chemotaxonomy 
The major respiratory quinone found in N. soli JS13-
8T was MK-7, and the major fatty acids identified 
were iso-C15:0 (29.2%), iso-C15:1 G (18.4%), iso-C17:0 3-OH 
(11.8%), and summed feature 3 (11.1%), which is 
generally reported to include iso-C15:0 2-OH and/or 
C16:1 ω7c, although careful examination of the MIDI 
fatty acid reports generally allow a more precise 
identification [1]. Smaller amounts of anteiso-C15 : 0 
(1.2%), iso-C15:0 3-OH (2.2%), C16:0 (6.8%), C16:0 2-OH 
(1.3%), C16:0 3-OH (2.2%), C18:0 (3.8%), C18:1 ω7c (1.5%), 
C18:1 ω9c (1.0%), summed feature 5 (comprising 
anteiso-C18:0 and/or C18:2 ω6,9c 3.4%) and an unknown 
peak with an equivalent chain length of 13.565 
(1.1%) were also detected. The presence of major 
amounts of branched chain saturated and unsatu-
rated fatty acids, together with significant amounts 
of 3-OH and 2-OH fatty acids is characteristic of 
members of this evolutionary group and also points 
to the presence of characteristic lipids, for which 
data is missing from this strain. 
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Figure 1. Phylogenetic tree highlighting the position of N. soli relative to the type strains of the other species within 
the family Chitinophagaceae except for the genera Balneola and Gracilimonas. The tree was inferred from 1,395 
aligned characters [8,9] of the 16S rRNA gene sequence under the maximum likelihood (ML) criterion [10]. Root-
ing was done initially using the midpoint method [11] and then checked for its agreement with the current classifi-
cation (Table 1). The branches are scaled in terms of the expected number of substitutions per site. Numbers adja-
cent to the branches are support values from 950 ML bootstrap replicates [12] (left) and from 1,000 maximum-
parsimony bootstrap replicates [13] (right) if larger than 60%. Lineages with type strain genome sequencing pro-
jects registered in GOLD [14] are labeled with one asterisk, those also listed as 'Complete and Published' with two 
asterisks [15] (for Niastella koreensis see CP003178). 

 
Figure 2. Scanning electron micrograph of N. soli JS13-8T 
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Table 1. Classification and general features of N. soli JS13-8T according to the MIGS recom-
mendations [16], List of Prokaryotic names with Standing in Nomenclature [17] and the 
Names for Life database [2]. 

MIGS ID Property Term Evidence code 
  Domain Bacteria TAS [18] 
  Phylum Bacteroidetes TAS [19,20] 
  Class Sphingobacteriia TAS [19,21] 
 Current classification Order Sphingobacteriales TAS [19,22] 
  Family Chitinophagaceae TAS [23,24] 
  Genus Niabella TAS [3,23,25] 
  Species Niabella soli TAS [1] 
  Type-strain JS13-8 TAS [1] 
 Gram stain negative TAS [1] 
 Cell shape short rods TAS [1] 
 Motility non-motile TAS [1] 
 Sporulation non-sporulating NAS 
 Temperature range mesophile, 15-35°C TAS [1] 
 Optimum temperature 30°C TAS [1] 
 Salinity 0-1% NaCl (w/v) TAS [3] 
MIGS-22 Oxygen requirement aerobe TAS [1] 
 Carbon source mono- and polysaccharides TAS [1] 
 Energy metabolism chemoorganotroph TAS [1] 
MIGS-6 Habitat soil TAS [1] 
MIGS-15 Biotic relationship free living TAS [1] 
MIGS-14 Pathogenicity none NAS 
 Biosafety level 1 TAS [26] 
MIGS-23.1 Isolation soil sample TAS [1] 
MIGS-4 Geographic location Jeju Island, Republic of Korea TAS [1] 
MIGS-5 Sample collection time not reported  
MIGS-4.1 Latitude 33.378 TAS [1] 
Longitude MIGS-4.2 126.566 TAS [1] 
MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude not reported  

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); 
NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sam-
ple, but based on a generally accepted property for the species, or anecdotal evidence). Evi-
dence codes are from the Gene Ontology project [27]. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [32], and is part 
of the Genomic Encyclopedia of Bacteria and 
Archaea project [33]. The genome project is de-
posited in the Genomes On Line Database [14] and 
the complete genome sequence is deposited in 
GenBank. Sequencing, finishing and annotation 
were performed by the DOE Joint Genome Insti-
tute (JGI). A summary of the project information is 
shown in Table 2. 

Growth conditions and DNA isolation 
N. soli strain JS13-8T, DSM 19437, was grown in 
DSMZ medium 830 (R2A medium) [34] at 37°C. 
DNA was isolated from 0.5-1 g of cell paste using 
MasterPure Gram-positive DNA purification kit 
(Epicentre MGP04100) following the standard 
protocol as recommended by the manufacturer 
with modification st/DL for cell lysis as described 
in Wu et al. 2009 [33]. DNA is available through 
the DNA Bank Network [35]. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Five genomic libraries: two 454 pyrosequence standard libraries, two 
454 PE library (13 kb and 20 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 
MIGS-31.2 Sequencing coverage 113.0 × Illumina; 23.6 × pyrosequence 
MIGS-30 Assemblers Newbler version 2.3, Velvet version 1.0.13, phrap version SPS - 4.24 
MIGS-32 Gene calling method Prodigal 
 INSDC ID AGSA00000000 
 GenBank Date of Release January 19, 2012 
 GOLD ID Gi04680 
 NCBI project ID 61269 
 Database: IMG 2506783006 
MIGS-13 Source material identifier DSM 19437 
 Project relevance Tree of Life, GEBA 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Illumina and 454 sequencing platforms. All 
general aspects of library construction and se-
quencing can be found at the JGI website [36]. 
Pyrosequencing reads were assembled using the 
Newbler assembler (Roche). The initial Newbler 
assembly consisting of 15 contigs in one scaffold 
was converted into a phrap [37] assembly by mak-
ing fake reads from the consensus, to collect the 
read pairs in the 454 paired end library. Illumina 
GAii sequencing data (1,116.9 Mb) was assembled 
with Velvet [38] and the consensus sequences 
were shredded into 1.5 kb overlapped fake reads 
and assembled together with the 454 data. The 
454 draft assembly was based on 158.8 Mb of 454 
draft data and all of the 454 paired end data. 
Newbler parameters are -consed -a 50 -l 350 -g -m 
-ml 20. The Phred/Phrap/Consed software pack-
age [37] was used for sequence assembly and 
quality assessment in the subsequent finishing 
process. After the shotgun stage, reads were as-
sembled with parallel phrap (High Performance 
Software, LLC). Possible mis-assemblies were cor-
rected with gapResolution [36], Dupfinisher [39], 
or sequencing cloned bridging PCR fragments with 
subcloning. Gaps between contigs were closed by 
editing in Consed, by PCR and by Bubble PCR pri-
mer walks (J.-F. Chang, unpublished). A total of 45 
additional reactions were necessary to close gaps 
and to raise the quality of the finished sequence. 
Illumina reads were also used to correct potential 
base errors and increase consensus quality using a 
software Polisher developed at JGI [40]. The error 

rate of the completed genome sequence is less 
than 1 in 100,000. Together, the combination of 
the Illumina and 454 sequencing platforms pro-
vided 136.6 × coverage of the genome. The final 
assembly contained 354,991 pyrosequence and 
14,750,629 Illumina reads. 

Genome annotation 
Genes were identified using Prodigal [41] as part of 
the Oak Ridge National Laboratory genome annota-
tion pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [42]. The 
predicted CDSs were translated and used to search 
the National Center for Biotechnology Information 
(NCBI) non-redundant database, UniProt, TIGRFam, 
Pfam, PRIAM, KEGG, COG, and InterPro databases. 
These data sources were combined to assert a prod-
uct description for each predicted protein. Non-
coding genes and miscellaneous features were pre-
dicted using tRNAscan-SE [43], RNAmmer [44], 
Rfam [45], TMHMM [46], and signalP [47]. 

Genome properties 
The genome consists of one circular chromosome 
of 4,697,343 bp length with a 45.2% G+C content 
(Table 3 and Figure 3). Of the 3,932 genes predict-
ed, 3,882 were protein-coding genes, and 49 
RNAs; 34 pseudogenes were also identified. The 
majority of the protein-coding genes (71.9%) 
were assigned a putative function while the re-
maining ones were annotated as hypothetical pro-
teins. The distribution of genes into COGs func-
tional categories is presented in Table 4. 
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Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 4,697,343 100.00% 
DNA coding region (bp) 4,154,623 88.45% 
DNA G+C content (bp) 2,124,959 45.24% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 3,931 100.00% 
RNA genes 6 0.15% 
rRNA operons 2  
tRNA genes 40 1.25% 
Protein-coding genes 3,882 98.75% 
Pseudo genes 34 0.86% 
Genes with function prediction (proteins) 2,827 71.92% 
Genes in paralog clusters 1,833 46.63% 
Genes assigned to COGs 2,734 69.55% 
Genes assigned Pfam domains 2,915 74.15% 
Genes with signal peptides 1,273 32.38% 
Genes with transmembrane helices 924 23.51% 
CRISPR repeats 1  

 
Figure 3. Graphical map of the chromosome. From outside to the center: Genes on forward strand 
(colored by COG categories), Genes on reverse strand (colored by COG categories), RNA genes 
(tRNAs green, rRNAs red, other RNAs black), GC content (black), GC skew (purple/olive). 
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Table 4. Number of genes associated with the general COG functional categories 
Code value %age Description 

J 156 5.2 Translation, ribosomal structure and biogenesis 
A 0 0.0 RNA processing and modification 
K 204 6.8 Transcription 
L 115 3.9 Replication, recombination and repair 
B 0 0.0 Chromatin structure and dynamics 
D 21 0.7 Cell cycle control, cell division, chromosome partitioning 
Y 0 0.0 Nuclear structure 
V 68 2.3 Defense mechanisms 
T 132 4.4 Signal transduction mechanisms 
M 239 8.0 Cell wall/membrane biogenesis 
N 5 0.2 Cell motility 
Z 1 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 49 1.6 Intracellular trafficking and secretion, and vesicular transport 
O 123 4.1 Posttranslational modification, protein turnover, chaperones 
C 151 5.1 Energy production and conversion 
G 293 9.8 Carbohydrate transport and metabolism 
E 231 7.7 Amino acid transport and metabolism 
F 69 2.3 Nucleotide transport and metabolism 
H 143 4.8 Coenzyme transport and metabolism 
I 104 3.5 Lipid transport and metabolism 
P 178 6.0 Inorganic ion transport and metabolism 
Q 51 1.7 Secondary metabolites biosynthesis, transport and catabolism 
R 383 12.8 General function prediction only 
S 268 9.0 Function unknown 
- 1,197 30.5 Not in COGs 

Insights into the genome sequence 
Two other complete genomes are available in 
GenBank from the family Chitinophagaceae – 
Chitinophaga pinensis [15] and N. koreensis (un-
published) – and the permanent draft genome of 
Sediminibacterium sp. OR43 is available from the 
IMG/GEBA website [48]. Of these three organisms, 
N. soli is most closely related to N. koreensis (Fig-
ure 1). The genome size of N. soli is much smaller 
than those of N. koreensis and C. pinensis (9.0-9.1 
Mbp) but larger than that of Sediminibacterium sp. 
OR43 (3.8 Mbp). Using the genome-to-genome 
distance calculator [49,50] version 2.0 revealed 
that 83.72% of all positions within HSPs are iden-
tical between the type-strain genomes of N. soli 
and C. pinensis, which corresponds to a DNA-DNA 
hybridization value of 26.60±2.42%. For N. 
koreensis, these values were 78.29% and 
20.20±2.31%, respectively. 

A major feature of the previously sequenced ge-
nomes from this family is the presence of large 
numbers of glycosyl hydrolases. N. koreensis has 
228 glycosyl hydrolases, while C. pinensis has 187 
[51]. We analyzed the genomes of N. soli and 
strain OR43 and found that they encode 164 and 
86 glycosyl hydrolases, respectively. When viewed 
as a percentage of the total protein-coding se-
quences, glycosyl hydrolases constitute 4.2% of 
the N. soli genome and 3.1% of the N. koreensis 
genome. In the C. pinensis and OR43 genomes, 
glycosyl hydrolases account for 2.6% of the pro-
tein-coding genes. Thus N. soli has the highest 
density of glycosyl hydrolases in this family exam-
ined to date. In addition N. koreensis has 28 poly-
saccharide lyases while C. pinensis has only six 
[51]. We found that N. soli has 15 polysaccharide 
lyases and OR43 has only two. Thus N. soli also has 
a substantial number of polysaccharide lyases in 
addition to glycosyl hydrolases. 

http://dx.doi.org/10.1601/nm.14400�
http://dx.doi.org/10.1601/nm.8335�
http://dx.doi.org/10.1601/nm.10255�
http://dx.doi.org/10.1601/nm.19055�
http://dx.doi.org/10.1601/nm.14055�
http://dx.doi.org/10.1601/nm.10255�
http://dx.doi.org/10.1601/nm.14055�
http://dx.doi.org/10.1601/nm.10255�
http://dx.doi.org/10.1601/nm.8335�
http://dx.doi.org/10.1601/nm.19055�
http://dx.doi.org/10.1601/nm.14055�
http://dx.doi.org/10.1601/nm.8335�
http://dx.doi.org/10.1601/nm.10255�
http://dx.doi.org/10.1601/nm.10255�
http://dx.doi.org/10.1601/nm.10255�
http://dx.doi.org/10.1601/nm.8335�
http://dx.doi.org/10.1601/nm.14055�
http://dx.doi.org/10.1601/nm.14055�
http://dx.doi.org/10.1601/nm.10255�
http://dx.doi.org/10.1601/nm.8335�
http://dx.doi.org/10.1601/nm.14055�
http://dx.doi.org/10.1601/nm.10255�
http://dx.doi.org/10.1601/nm.8335�
http://dx.doi.org/10.1601/nm.14055�
http://dx.doi.org/10.1601/nm.14055�


Anderson et al. 

http://standardsingenomics.org 217 

Of the glycosyl hydrolase families with many 
members in N. soli, some are also prevalent in N. 
koreensis and C. pinensis, for example families 
GH2, GH28, GH29, GH43, and GH78. However, 
there are GH families in which N. soli has a greater 
number of members than the genomes from other 
Chitinophagaceae – GH20 and GH106. N. soli also 
has enzymes from GH116 and GH123, which are 
not found in the other three genomes. There is 
also one GH family (GH92) for which N. soli has 
only two members, while N. koreensis and C. 
pinensis have 10 and 9, respectively. 
In Bacteroides thetaiotaomicron, the SusC and 
SusD outer membrane proteins are required for 
starch utilization [52] and the B. thetaiotaomicron 
genome contains many proteins related to SusC 
and SusD [53]. The genomes from the family 

Chitinophagaceae also contain large numbers of 
these proteins. N. soli has 60 SusC family and 50 
SusD family proteins, which is about half as many 
as in the larger N. koreensis and C. pinensis ge-
nomes. 
The Chitinophagaceae appear to rely mainly on 
symporters for sugar transport. Only two sugar 
ABC transporters were found in N. soli, one in N. 
koreensis, and none in the other two genomes. The 
phosphotransferase system is not found in any of 
the four genomes. In contrast N. soli has 23 sugar 
symporters, N. koreensis has 27, C. pinensis has 14, 
and OR43 has 12. The sugar symporters belong to 
several families, with the most prevalent being the 
Major Facilitator Superfamily (TC 2.A.1) and the 
Solute:Sodium Symporter Family (TC 2.A.21). 
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