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Cellulophaga lytica (Lewin 1969) Johansen et al. 1999 is the type species of the genus Cellu-
lophaga, which belongs to the family Flavobacteriaceae within the phylum 'Bacteroidetes' 
and was isolated from marine beach mud in Limon, Costa Rica. The species is of biotechno-
logical interest because its members produce a wide range of extracellular enzymes capable 
of degrading proteins and polysaccharides. After the genome sequence of Cellulophaga algi-
cola this is the second completed genome sequence of a member of the genus Cellulophaga. 
The 3,765,936 bp long genome with its 3,303 protein-coding and 55 RNA genes consists of 
one circular chromosome and is a part of the Genomic Encyclopedia of Bacteria and Archaea 
project. 

Introduction 
Strain LIM-21T (DSM 7489 = ATCC 23178 = JCM 
8516) is the type strain of the species Cellulopha-
ga lytica, which is the type species of the genus 
Cellulophaga [1]. The genus currently consists of 
five more validly named species [2]: C. algicola [3], 
C. baltica, C. fucicola [1], C. pacifica [4] and C. tyro-
sinoxydans [5]. The species was first described in 
1969 by Lewin as 'Cytophaga lytica' [6], and was 
subsequently transferred to the novel genus Cellu-
lophaga as type strain C. lytica [1]. The genus 
name is derived from the Neo-Latin word 
'cellulosum' meaning 'cellulose' and the latinized 
Greek word 'phagein' meaning 'to eat', yielding the 
Neo-Latin word 'Cellulophaga' meaning 'eater of 

cellulose' [2]. The species epithet is derived from 
the Neo-Latin word 'lytica' (loosening, dissolving) 
[2]. Here we present a summary classification and 
a set of features for C. lytica strain LIM-21T, to-
gether with the description of the complete ge-
nomic sequencing and annotation. 

Classification and features 
A representative genomic 16S rRNA sequence of 
strain LIM-21T was compared using NCBI BLAST 
under default settings (e.g., considering only the 
high-scoring segment pairs (HSPs) from the best 
250 hits) with the most recent release of the 
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Greengenes database [7] and the relative frequen-
cies, weighted by BLAST scores, of taxa and key-
words (reduced to their stem [8]) were deter-
mined. The five most frequent genera were Cellulo-
phaga (37.3%), Flavobacterium (8.5%), Cytophaga 
(6.3%), Aquimarina (5.8%) and Arenibacter (5.7%) 
(141 hits in total). Regarding the ten hits to se-
quences from members of the species, the average 
identity within HSPs was 99.0%, whereas the aver-
age coverage by HSPs was 93.3%. Regarding the 
eleven hits to sequences from other members of 
the genus, the average identity within HSPs was 
94.0%, whereas the average coverage by HSPs was 
93.1%. Among all other species, the one yielding 
the highest score was Cytophaga lytica (M62796), 
which corresponded to an identity of 99.2% and an 
HSP coverage of 96.9%. (Note that the Greengenes 
databases uses the INSDC (= EMBL/NCBI/DDBJ) 
annotation, which is not an authoritative source for 
nomenclature or classification). The highest-
scoring environmental sequence was EU246790 

('Identification microorganism Libya untreated 
Mediterranean sea water feed reverse osmosis 
plant isolate RSW1-4RSW1-4 str. RSW1-4'), which 
showed an identity of 100.0% and an HSP coverage 
of 96.2%. The five most frequent keywords within 
the labels of environmental samples which yielded 
hits were 'sea' (5.6%), 'water' (4.8%), 'marin' 
(3.6%), 'sediment' (3.1%) and 'surfac' (2.8%) (109 
hits in total). The single most frequent keyword 
within the labels of environmental samples which 
yielded hits of a higher score than the highest scor-
ing species was 'feed, identif, libya, mediterranean, 
microorgan, osmosi, plant, revers, sea, untreat, wa-
ter' (9.1%) (1 hit in total). 
Figure 1 shows the phylogenetic neighborhood of C. 
lytica in a 16S rRNA based tree. The sequence of 
the four 16S rRNA gene copies in the genome dif-
fer from each other by up to four nucleotides, and 
differ by up to 15 nucleotides from the previously 
published 16S rRNA sequence (D12666), which 
contains 19 ambiguous base calls. 

 

Figure 1. Phylogenetic tree highlighting the position of C. lytica relative to the other type strains within the ge-
nus. The tree was inferred from 1,458 aligned characters [9,10] of the 16S rRNA gene sequence under the max-
imum likelihood criterion [11] and rooted with the type strain of the type species of the family. The branches are 
scaled in terms of the expected number of substitutions per site. Numbers next to bifurcations are support values 
from 450 bootstrap replicates [12] if larger than 60%. Lineages with type strain genome sequencing projects tha 
are registered in GOLD [13] but remain unpublished are labeled with one asterisk, published genomes with two 
asterisks [14]. 
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The cells of C. lytica are slender flexible rods, cylin-
drical with blunt ends. Their lengths and widths 
range from 1.5-10 and 0.3-0.4 µm, respectively 
(Figure 2 and Table 1) [25]. C. lytica is motile by 
gliding [25]. Colonies have a bright yellow color 
caused by zeaxanthin as the main pigment; flexiru-
bin-type pigments are not formed [24,28]. C. lytica 
requires Na+ and grows at NaCl concentrations up 
to 8% [3,5], in the presence of 10% NaCl no growth 
was observed [4]. The temperature range for 
growth is between 4°C [4] and 40°C [25], with an 
optimum between 22-30°C [25]. 
C. lytica is aerobic and chemoorganotrophic [24]. 
The organism can degrade agar, alginate, gelatin 
and starch [24,25], but not casein, cellulose (filter 
paper), chitin, alginic acid, elastin or fibrinogen 
[1,25]. There are conflicting observations describ-
ing the ability of C. lytica to degrade carboxy-
methylcellulose (CMC). Whereas most authors 
[3,5,24,25] describe the hydrolysis of CMC, Ne-
dashkovskaya et al. 2004 [4] did not observe its 
degradation by C. lytica. Nitrate reduction and de-
nitrification are negative [25]. C. lytica is catalase 

[24] and oxidase positive [25]. Acid is formed oxi-
datively from cellobiose, galactose, glucose, lac-
tose, maltose and xylose [4]. C. lytica is sensitive to 
oleandomycin, lincomycin and shows resistance to 
benzylpenicillin, carbencillin, gentamicin, kana-
mycin, neomycin, ampicillin, streptomycin and 
tetracycline [4]. 

Chemotaxonomy 
The fatty acid profiles of four C. lytica strains were 
analyzed by Bowman in 2000 [3]. The predomi-
nant cellular acids of these four analyzed C. lytica 
strains were branched-chain saturated and unsa-
turated fatty acids and straight-chain saturated 
and monounsaturated fatty acids, namely i-C15:0 
(18.9%), i-C15:1ω10c (10.3%), i-C17:1ω7c (5.1%), 
C15:0 (9.3%), C16:1ω7c (9.0%), i-C15:0 3-OH (6.2%), 
i-C16:0 3-OH (5.2%) and i-C17:0 3-OH (20.8%) [3]. 
The isoprenoid quinones of C. lytica were not de-
termined, but for C. pacifica the presence of MK-6 
as the major lipoquinone was described [4]. Polar 
lipids have not been studied. 

 

 
Figure 2. Scanning electron micrograph of C. lytica LIM-21T 
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Table 1. Classification and general features of C. lytica LIM-21T according to the MIGS recommendations [15]. 
MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [16] 

Phylum 'Bacteroidetes' TAS [17] 

Class Flavobacteria TAS [18] 

Order 'Flavobacteriales' TAS [19] 

Family Flavobacteriaceae TAS [18,20-23] 

Genus Cellulophaga TAS [1] 

Species Cellulophaga lytica TAS [1] 

Type strain LIM-21 TAS [1] 

 Gram stain negative TAS [24] 

 Cell shape rod-shaped TAS [24] 

 Motility motile by gliding TAS [24] 

 Sporulation none TAS [24] 

 Temperature range 4-40°C TAS [4,25] 

 Optimum temperature 22-30°C TAS [25] 

 Salinity up to 8% NaCl TAS [3,5] 

MIGS-22 Oxygen requirement aerobic TAS [24] 

 Carbon source carbohydrates TAS [24] 

 Energy metabolism chemoheterotroph TAS [24] 

MIGS-6 Habitat mud TAS [24] 

MIGS-15 Biotic relationship free-living NAS 

MIGS-14 Pathogenicity none NAS 

 Biosafety level 1 TAS [26] 

 Isolation beach mud TAS [24] 

MIGS-4 Geographic location Limon, Costa Rica TAS [24] 

MIGS-5 Sample collection time 1969 NAS 

MIGS-4.1 Latitude 10.1 NAS 

MIGS-4.2 Longitude -83.5 NAS 

MIGS-4.3 Depth not reported NAS 

MIGS-4.4 Altitude not reported NAS 

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author State-
ment (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly 
observed for the living, isolated sample, but based on a generally accepted property for the species, or 
anecdotal evidence). These evidence codes are from of the Gene Ontology project [27]. If the evidence 
code is IDA, then the property was directly observed by one of the authors or an expert mentioned in the 
acknowledgements. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [29], and is part of 
the Genomic Encyclopedia of Bacteria and Archaea 
project [30]. The genome project is deposited in the 
Genomes On Line Database [13] and the complete 

genome sequence is deposited in GenBank. Se-
quencing, finishing and annotation were performed 
by the DOE Joint Genome Institute (JGI). A sum-
mary of the project information is shown in Table 
2. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used Three genomic libraries: one 454 pyrosequence standard library, 
one 454 PE library (8 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 
MIGS-31.2 Sequencing coverage 1,605.2 × (Illumina); 22.9 × (pyrosequence) 

MIGS-30 Assemblers Newbler version 2.5-internal-10Apr08, Velvet version 0.7.63, 
phrap version SPS-4.24 

MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 
 INSDC ID CP002534 
 Genbank Date of Release February 28, 2011 
 GOLD ID Gc01668 
 NCBI project ID 50743 
 Database: IMG-GEBA 2504136007 
MIGS-13 Source material identifier DSM 7489 
 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
C. lytica LIM-21T, DSM 7489, was grown in DSMZ 
medium 514 (BACTO marine broth) [31] at 28°C. 
DNA was isolated from 0.5-1 g of cell paste using 
MasterPure Gram-positive DNA purification kit 
(Epicentre MGP04100) following the standard 
protocol as recommended by the manufacturer 
with modification st/DL for cell lysis as described 
in Wu et al. [30]. DNA is available through the DNA 
Bank Network [32]. 

Genome sequencing and assembly 
The genome was sequenced using a combination of 
Illumina and 454 sequencing platforms. All general 
aspects of library construction and sequencing can 
be found at the JGI website [33]. Pyrosequencing 
reads were assembled using the Newbler assemb-
ler version 2.5-internal-10Apr08 (Roche). The ini-
tial Newbler assembly consisting of 28 contigs in 
one scaffold was converted into a phrap version 
SPS - 4.24 [34] assembly by making fake reads 
from the consensus, to collect the read pairs in the 
454 paired end library. Illumina GAii sequencing 
data (3,907 Mb) was assembled with Velvet [35] 
and the consensus sequences were shredded into 
1.5 kb overlapped fake reads and assembled to-
gether with the 454 data. The 454 draft assembly 
was based on 156.1 Mb 454 draft data and all of 
the 454 paired end data. Newbler parameters are -
consed -a 50 -l 350 -g -m -ml 20. The 
Phred/Phrap/Consed software package [34] was 
used for sequence assembly and quality assess-
ment in the subsequent finishing process. After 
the shotgun stage, reads were assembled with pa-

rallel phrap (High Performance Software, LLC). 
Possible mis-assemblies were corrected with ga-
pResolution [33], Dupfinisher [36], or sequencing 
cloned bridging PCR fragments with subcloning or 
transposon bombing (Epicentre Biotechnologies, 
Madison, WI). Gaps between contigs were closed 
by editing in Consed, by PCR and by Bubble PCR 
primer walks (J.-F.Chang, unpublished). A total of 
238 additional reactions and two shatter libraries 
were necessary to close gaps and to raise the qual-
ity of the finished sequence. Illumina reads were 
also used to correct potential base errors and in-
crease consensus quality using a software Polisher 
developed at JGI [37]. The error rate of the com-
pleted genome sequence is less than 1 in 100,000. 
Together, the combination of the Illumina and 454 
sequencing platforms provided 1,628.1 × coverage 
of the genome. The final assembly contained 
282,018 pyrosequence and 78,832,334 Illumina 
reads. 

Genome annotation 
Genes were identified using Prodigal [38] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [39]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
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within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [40]. 

Genome properties 
The genome consists of a 3,765,936 bp long chro-
mosome with a G+C content of 32.1% (Figure 3 
and Table 3). Of the 3,358 genes predicted, 3,303 
were protein-coding genes, and 55 RNAs; 19 

pseudogenes were also identified. The majority of 
the protein-coding genes (65.5%) were assigned 
with a putative function while the remaining ones 
were annotated as hypothetical proteins. The dis-
tribution of genes into COGs functional categories 
is presented in Table 4. 

 

Figure 3. Graphical circular map of the chromosome. From outside to the center: Genes on forward strand (color by 
COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other 
RNAs black), GC content, GC skew. 
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Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 3,765,936 100.00% 
DNA coding region (bp) 3,443,047 91.43% 
DNA G+C content (bp) 1,209,276 32.11% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 3,358 100.00% 
RNA genes 55 1.64% 
rRNA operons 4  
Protein-coding genes 3,303 98.36% 
Pseudo genes 19 0.57% 
Genes with function prediction 2,200 65.52% 
Genes in paralog clusters 344 10.24% 
Genes assigned to COGs 2,098 62.48% 
Genes assigned Pfam domains 2,346 69.86% 
Genes with signal peptides 1,005 29.93% 
Genes with transmembrane helices 794 23.65% 
CRISPR repeats 0  

Table 4. Number of genes associated with the general COG functional categories 
Code value %age Description 
J 154 6.7 Translation, ribosomal structure and biogenesis 
A 0 0.0 RNA processing and modification 
K 181 7.9 Transcription 
L 107 4.7 Replication, recombination and repair 
B 1 0.0 Chromatin structure and dynamics 
D 18 0.8 Cell cycle control, cell division, chromosome partitioning 
Y 0 0.0 Nuclear structure 
V 41 1.8 Defense mechanisms 
T 125 5.5 Signal transduction mechanisms 
M 193 8.4 Cell wall/membrane/envelope biogenesis 
N 4 0.2 Cell motility 
Z 0 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 30 1.3 Intracellular trafficking, secretion, and vesicular transport 
O 99 4.3 Posttranslational modification, protein turnover, chaperones 
C 122 5.3 Energy production and conversion 
G 122 5.3 Carbohydrate transport and metabolism 
E 194 8.5 Amino acid transport and metabolism 
F 59 2.6 Nucleotide transport and metabolism 
H 121 5.3 Coenzyme transport and metabolism 
I 79 3.5 Lipid transport and metabolism 
P 159 6.9 Inorganic ion transport and metabolism 
Q 29 1.3 Secondary metabolites biosynthesis, transport and catabolism 
R 276 12.1 General function prediction only 
S 177 7.7 Function unknown 
- 1,260 37.5 Not in COGs 
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Insights from the genome sequence 
A closer look at the genome sequence of strain 
LIM-21T revealed a set of genes which might be 
responsible for the yellow-orange color of C. lytica 
cells by encoding enzymes that are involved in the 
synthesis of carotenoids. Carotenoids are pro-
duced by the action of geranylgeranyl pyrophos-
phate synthase (Celly_1682), phytoene synthase 
(Celly_0459), phytoene desaturase (Celly_0458), 
lycopene cyclase (Celly_0462) and carotene hy-
droxylase (Celly_0461). Geranylgeranyl pyro-
phosphate synthases start the biosynthesis of ca-
rotenoids by combining farnesyl pyrophosphate 
with C5 isoprenoid units to C20-molecules, gera-
nylgeranyl pyrophosphate. The phytoene synthase 
catalyzes the condensation of two geranylgeranyl 
pyrophosphate molecules followed by the removal 
of diphosphate and a proton shift leading to the 
formation of phytoene. Sequential desaturation 
steps are conducted by the phytoene desaturase 
followed by cyclization of the ends of the mole-
cules catalyzed by the lycopene cyclase [41]. This 
above mentioned set of genes was also found in 
the genome of C. algicola [14]. 
Strain LIM 21T produces a wide range of extracel-
lular enzymes degrading proteins and polysaccha-
rides. C. lytica, like the other members of the ge-
nus Cellulophaga, cannot hydrolyze filter paper or 
cellulose in its crystalline form, though they can 
hydrolyze the soluble cellulose derivative carboxy-
methylcellulose (CMC). The genome sequence of 
strain LIM 21T revealed the presence of three cel-
lulases (Celly_0269, Celly_0304, Celly_0965), 
probably responsible for the hydrolysis of CMC. In 
addition two β-glucosidases (Celly_3249, Cel-
ly_1282) were identified in the genome, catalyzing 
the breakdown of the glycosidic β-1,4 bond be-
tween two glucose molecules in cellobiose. The 
deduced amino acid sequence of Celly_0304 
shows 90% identity to the deduced sequence of 
the C. algicola cellulase coding gene Celly_0025. 
The identity of the deduced amino acid sequences 
of the cellulase encoding genes Celly_0269 and 
Celly_2753 is 65%. The neighborhoods of these 
two C. lytica cellulase genes have a similar struc-
ture like the respective genome regions in C. algi-
cola, with orthologs belonging to different COG 
categories. 
The LIM 21T genome contains 15 genes coding for 
sulfatases, which are located in close proximity to 
glycoside hydrolase genes suggesting that sulfated 
polysaccharides may be used as substrates. α-L-

fucoidan could be a substrate, as three α-L-
fucosidases (Celly_0440, Celly_0442, Celly_0449) 
are located in close proximity to nine sulfatases 
(Celly_0432, Celly_0425, Celly_0426, Celly_0436, 
Celly_0431, Celly_0433, Celly_0435, Celly_0438, 
Celly_0444). Sakai and colleagues report the exis-
tence of intracellular α-L-fucosidases and sulfa-
tases, which enable 'Fucophilus fucoidanolyticus' to 
degrade fucoidan [42]. 
The above mentioned sulfatases and fucosidases 
containing region of C. lytica is similar to the re-
cently described region of C. algicola with five α-L-
fucosidases and three sulfatases [14]. This fucoi-
dan degrading ability could be also shared by Co-
raliomargarita akajimensis, as the annotation of 
the genome sequence revealed the existence of 49 
sulfatases and 12 α-L-fucosidases [43]. 

Comparative genomics 
The genomes of the two recently sequenced Cellu-
lophaga type strains differ significantly in their 
size, C. lytica having 3.8 Mb and C. algicola 4.9 Mb 
and their number of pseudogenes, 19 (0.6%) and 
122 (2.8%), respectively. Liu et al., 2004 have 
shown that pseudogenes in prokaryotes are not 
uncommon; the analysis of 64 genomes, including 
archaea, pathogen and nonpathogen bacteria, re-
vealed an occurrence of pseudogenes of at least 1-
5% of all gene-like sequences, with some genomes 
containing considerably higher amounts [44]. 
To estimate the overall similarity between the ge-
nomes of C. lytica and C. algicola the GGDC-
Genome-to-Genome Distance Calculator [45,46] 
was used. The system calculates the distances by 
comparing the genomes to obtain HSPs (high-
scoring segment pairs) and interfering distances 
from the set of formulas (1, HSP length / total 
length; 2, identities / HSP length; 3, identities / 
total length). The comparison of the genomes of C. 
lytica with C. algicola revealed that 25% of the av-
erage of both genome lengths are covered with 
HSPs. The identity within these HSPs was 82%, 
whereas the identity over the whole genome was 
only 20%. These results demonstrate that accord-
ing to the whole genomes of C. lytica and C. algico-
la the similarity is not very high, although the 
comparison of 16S rRNA gene sequences showed 
only 7.7% differences. 
In order to compare the C. lytica and C. algicola 
genomes, correlation values (Pearson coefficient) 
according to the similarity on the level of COG cat-
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egory, pfam, enzymes and TIGRfam were calcu-
lated. The highest correlation value (0.98) was 
reached on the level of pfam data; the correlation 
values on the basis of COG, enzyme and TIGRfam 
data were 0.88, 0.92 and 0.93, respectively. As a 
correlation value of 1 indicates the highest corre-
lation, we can find a quite high correlation be-
tween the genomes of C. lytica and C. algicola at 
least considering the pfam data [40]. 
The comparison of the number of genes belonging 
to the different COG categories revealed no large 
differences in the genomes of C. lytica and C. algi-
cola. A slightly higher fraction of genes belonging 
to the categories transcription (C. lytica 8.63%, C. 
algicola 6.85%), translation (C. lytica 7.34%, C. 
algicola 6.30%), amino acid metabolism (C. lytica 
9.25%, C. algicola 8.19%), inorganic ion transport 
and metabolism (C. lytica 7.58%, C. algicola 
6.85%) and posttranslational modification (C. lyti-
ca 4.72%, C. algicola 3.90%) were identified in C. 
lytica. The part of genes belonging to the following 
COG categories was slightly smaller in C. lytica 
than in C. algicola: carbohydrate metabolism (C. 
lytica 5.82%, C. algicola 6.77%), defense mechan-
isms (C. lytica 1.95%, C. algicola 2.48%), second-
ary metabolites biosynthesis (C. lytica 1.38%, C. 
algicola 2.05%). 
The synteny dot plot in Figure 4 shows a nucleo-
tide based comparison of the genomes of C. lytica 
and C. algicola. Only in some parts of the genome a 
relatively high degree of similarity becomes visi-
ble. There exists a fragmented collinearity be-
tween the two genomes. 

The Venn-diagram (Figure 5) shows the number 
of shared genes. C. lytica and C. algicola share a 
great number of genes (592 genes) that are not 
present in the genome of Flavobacterium johnso-
niae [47]. This fraction of genes includes genes 
coding for enzymes that are responsible for the 
degradation of polysaccharides, for example fu-
coidan and agar. While 15 sulfatases and three α-
L-fucosidases were identified in the genome of C. 
lytica, and 22 sulfatases and five α-L-fucosidases 
were identified in the genome of C. algicola, only 
four sulfatase genes and no α-L-fucosidase genes 
were identified in the genome of F. johnsoniae. In 
addition, three agarases were i*ntified in the ge-
nomes of C. lytica and C. algicola, each, whereas 
the genome of F. johnsoniae contains no agarase 
gene. F. johnsoniae is a chitin hydrolyzing organ-
ism; the genes involved in the utilization of chitin 
were described by McBride et al. (2009) [47]. C. 
lytica [1,25] and C. algicola [3] are non-
chitinolytic, and there were no homologs to the 
chitin utilizing loci of F. johnsoniae identified in 
their genomes. To the group of genes that are 
shared by all three genomes belong the genes that 
code for enzymes which are involved in the bio-
synthesis of carotenoids, e.g. phytoene desaturase 
and phytoene synthase. But in contrast to the Cel-
lulophaga species F. johnsoniae also produces flex-
irubin. The genes which are involved in the flex-
irubin synthesis of F. johnsoniae were identified by 
McBride et al. (2009) [47]. 

Figure 4. Synteny dot blot based on the genome sequences 
of C. lytica and C. algicola. Blue dots represent regions of 
similarity found on parallel strands and red dots show re-
gions of similarity found on anti-parallel strands.  
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Figure 5. Venn-diagram depicting the intersections of protein sets (total numbers in paren-
theses) of C. lytica, C. algicola and F. johnsoniae. 
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