
Standards in Genomic Sciences (2011) 4:244-251 DOI:10.4056/sigs.1223234 

The Genomic Standards Consortium

The IGS Standard Operating Procedure for Automated 
Prokaryotic Annotation 

Kevin Galens*, Joshua Orvis, Sean Daugherty, Heather H. Creasy, Sam Angiuoli, Owen 
White, Jennifer Wortman, Anup Mahurkar, Michelle Gwinn Giglio 

Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 
USA 

* Corresponding Author: kgalens@som.umaryland.edu 

Keywords: Institute for Genome Sciences, functional annotation, structural annotation, mi-
crobial genomics, prokaryotic genomics, annotation pipeline, pFunc, Glimmer, HMM, BER, 
Ergatis, Manatee, IGS Annotation Engine 

The Institute for Genome Sciences (IGS) has developed a prokaryotic annotation pipeline that 
is used for coding gene/RNA prediction and functional annotation of Bacteria and Archaea. 
The fully automated pipeline accepts one or many genomic sequences as input and produces 
output in a variety of standard formats. Functional annotation is primarily based on similarity 
searches and motif finding combined with a hierarchical rule based annotation system. The 
output annotations can also be loaded into a relational database and accessed through visua-
lization tools. 

Introduction 
The IGS prokaryotic annotation pipeline can be 
used for the annotation of Bacteria and Archaea. 
This pipeline forms the core of the IGS Annotation 
Engine [1], a free annotation service for prokaryo-
tic sequences. It is also used as the annotation sys-
tem for prokaryotes sequenced under the IGS Ge-
nome Sequencing Center for Infectious Disease 
[2]. The IGS prokaryotic annotation pipeline can 
be applied to both draft and finished sequences 
and has been successfully used in the annotation 
of hundreds of genomes. The pipeline includes 
gene finding, protein searches, and the pFunc evi-
dence hierarchy that produces automated func-
tional annotation. The output of this pipeline can 
be stored in a Chado [3] relational database and 
can be accessed with Manatee [4] for annotation 
visualization and curation (Figure 1). Output of 
the pipeline is also available in a variety of flat file 
formats. The pipeline is managed using the Ergatis 
[5] framework and is available on Sourceforge. 

Requirements 
The IGS prokaryotic annotation pipeline accepts a 
multi-sequence nucleotide fasta file as input. An-
notation can also be performed on an existing set 
of gene predictions, which simply skips the struc-

tural prediction steps of coding sequences. In ad-
dition, the name and locus tag prefix (if applica-
ble) of the organism are also required. Structural 
prediction is performed on the input sequences, 
followed by similarity searches against public da-
tasets. The final steps of the pipeline include run-
ning polypeptide analysis tools as well as auto-
mated functional annotation. The output is then 
converted to various output formats as required. 
The pipeline uses open source or free software 
whenever possible. All unique tools written specif-
ically for the pipeline are written in PERL and dis-
tributed under the GNU public license on the Erga-
tis Sourceforge website. 

Procedure 
Structural Annotation
The pipeline starts by splitting the multi-sequence 
nucleotide fasta file into individual files. Non-
coding RNA and protein coding genes are pre-
dicted first, in parallel on each input sequence. 

Non-coding RNA Structural Annotation 
Non-coding RNA genes are predicted using 
RNAmmer [6] and tRNA-scanSE [7]. RNAmmer 
predicts rRNA genes (5s, 16s, and 23s) using the 
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standard HMM dataset distributed with the soft-
ware. Transfer RNA genes are predicted using 
tRNA-scanSE using default values except where 
specifying the organism type (bacteria are se-
lected by default for the pipeline). 

Coding Gene Structural Annotation 
Protein coding genes are predicted using a self-
training method with Glimmer3 [8]. A set of non-
overlapping long ORFs is produced from the input 
nucleotide sequences and used as a training set to 
further refine the gene structural predictions in a 
second iteration of Glimmer3. An upstream posi-
tion weight matrix is created and aids in identify-
ing ribosomal binding sites. In addition, the rela-
tive frequency of start sites is calculated. The posi-
tion weight matrix and start site frequencies, 
along with the original long ORFs training set, are 
used as input into the second Glimmer3 iteration. 
The results from the second run are used as the 
working prediction and this set is automatically 
curated later in the pipeline. 

Similarity Searches (Round 1) 
An initial blastx [9] is run against UniRef100 [10] 
to generate first pass pairwise alignments. These 
pairwise alignments are then used as input into 
BER [11] (Blast Extend Repraze). BER is a mod-
ified Smith-Waterman [12] algorithm that aligns 
an extended query nucleotide sequence against a 
protein match. The nucleotide query sequence 
(including extensions of 300 nucleotides upstream 
and 300 nucleotides downstream) are translated 
and aligned to each protein match from the blastx 
analysis resulting in up to 150 alignments. Includ-
ing the extensions in the alignment aids in the de-
tection of potential sequencing errors or muta-
tions that may result in frameshifts or in-frame 
stop codons. Once a region of alignment is de-
tected, the BER tool is able to extend the align-
ment through potential frame shifts or in-frame 
stop codons. These extensions allow such align-
ments to continue past the original boundaries of 
the predicted gene, thus enabling better curation 
of the gene models. In essence, BER shows similar-
ity between sequences beyond gene boundaries. 
Only one round of extensions is performed. Fur-
ther manual assessment of flanking regions must 
be employed to resolve regions of similarity that 
extend beyond 300 nucleotides upstream or 
downstream of the predicted gene. BER matches 
are evaluated and ranked as described in the 

Functional Annotation section below and in Table 
1.  
The HMMER package [13] is then used to search 
the predicted polypeptides against two databases: 
TIGRFams [14] and PFams [15]. The output of the 
HMM search is used in the automated structural 
curation as well as functional annotation portions 
of the pipeline. 

Automated Similarity-Based Structural Cura-
tion 
In order to refine the gene predictions, a round of 
automated evidence-directed structural curation 
is performed. The first step is to evaluate the start 
sites of predicted genes. There can be multiple 
potential start sites in the upstream region of an 
open reading frame and BER sequence alignments 
can be used to give us a better idea of the correct 
start site. For this, we run a start site curation tool, 
which uses a voting based algorithm to determine 
the most likely start site for a particular open 
reading frame. The top BER alignments are consi-
dered and if the start of a match protein aligns 
with a start site in the query, this is counted as a 
vote. The upstream regions of potential start sites 
are also compared against a simple consensus se-
quence to determine if a ribosomal binding site is 
likely to be present. If the consensus sequence 
matches the region upstream, this is also consi-
dered as a vote. At the end of the algorithm, the 
start site with the most votes is kept. In the case of 
a tie, the BER matches with the best p-values are 
weighted more than other evidence. In the majori-
ty of cases, this agrees with the Glimmer3-called 
start site. 
In order to identify false positive gene predictions, 
all overlapping genes (both ncRNA and protein 
coding) are identified. This is especially necessary 
in genomes with higher GC content, due to the 
lower frequency of stop codons, resulting in an 
increased frequency of long, random open reading 
frames. When an overlap of greater than 60 base 
pairs is found, both genes involved in the overlap 
are evaluated with respect to evidence from BER 
and HMM. If a gene with no evidence overlaps a 
gene with evidence, this suggests that the former 
is a false positive. That gene is then removed from 
the predicted set. If an overlap of greater than 60 
base pairs is found between a predicted RNA and 
a gene with no evidence, the gene is removed from 
the prediction set. All other overlaps of greater 
than 60 base pairs are flagged for manual review. 
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There are possible false negatives in the gene pre-
diction at this point. In order to reduce the fre-
quency of these errors, we search interevidence 
regions against UniRef100 using blastx. Interevi-
dence regions can be defined as contiguous se-
quences of intergenic regions and predicted genes 
that do not contain any evidence from BER or 
HMM searches. The pairwise alignments produced 
by blastx are available for manual review and 
genes can be added where appropriate. 

Similarity Searches (Round 2) 
After the automatic curation of start sites, the 
newly changed gene models are retranslated. 
These new polypeptides are then run through 
another set of blastx, HMM and BER searches to 
update similarity evidence for functional annota-
tion. 

Motif Prediction 
Each polypeptide is run through a set of motif 
prediction tools. SignalP [16] is used to predict the 
existence and location of signal peptide cleavage 
sites and LipoP [17] is used to predict the exis-
tence of lipoprotein signal peptides. TMHMM [18] 
is used to predict transmembrane helices. Each 
polypeptide is also scanned with PROSITE [19] 
using ScanProsite to identify consensus patterns 
that are indicative of binding sites, active sites, etc. 
The -s option is used in order to skip the frequent-
ly matching, unspecific patterns. In addition, each 
polypeptide is run against the NCBI COGs [20] da-
taset. Finally, each polypeptide is searched against 
the Priam [21] dataset using reverse PSI-Blast 
(RPS-Blast) [22] in order to aid in the assignment 
of EC numbers [23]. 

 

 
Figure 1. Flow of data and logic for IGS automated microbial annotation pipeline. Protein coding genes and 
RNAs are predicted from nucleotide sequence, which are then structurally curated and assigned a function. 
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Functional Annotation 
The functional annotation portion of the pipeline 
uses a combination of sequence similarity 
searches and other bioinformatics tools to assign a 
common name, a gene symbol, GO terms [24], EC 
numbers and TIGR roles to each polypeptide. 
These annotations are assigned by the program 
pFunc (prokaryotic protein functional predic-
tion.) pFunc is a modular tool which parses vari-
ous evidence types and filters this set based on a 
set of cutoffs. The program then applies an evi-
dence hierarchy to all available information to as-
sign the best possible annotation for each poly-
peptide. The current implementation of the pipe-
line uses information from BER, HMM, LipoP and 
TMHMM searches to assign a common name, a 
gene symbol, EC numbers, GO terms and TIGR 
roles to each polypeptide, as applicable. pFunc 
first evaluates each evidence type individually to 
choose the best annotation for that type. 

BER 
Matches that show less than 40% identity are re-
moved from consideration for annotation. Each 
remaining match is then evaluated to determine if 
it is considered trusted. Trusted matches are those 

which a) have been characterized through experi-
mental means (usually determined from the litera-
ture) b) are considered by Uniprot to have experi-
mental evidence confirming annotated function or 
c) were annotated in a GO association file using an 
experimental evidence code (EXP, IDA, IPI, IMP, IGI, 
IEP.) These types of matches are considered more 
reliable than other, non-trusted BER matches. 
The percent coverage for both the query and match 
proteins is also considered when determining the 
best BER match for functional annotation. A cutoff 
score of 80% coverage is used to determine partial 
vs full matches. Coverage is considered separately 
for both query and match proteins. For example, a 
BER match with 85% coverage of the query protein 
and 75% of the match protein would be considered 
a “full query, partial match” alignment. 
Any non-trusted BER matches that contain ambi-
guous terms (e.g. putative, probable) in the com-
mon name are replaced with “conserved hypotheti-
cal protein” and the root GO terms, as well as the 
TIGR role, are assigned as conserved hypothetical 
proteins. The best BER match is chosen from the 
remaining set following the hierarchy in Table 1. 

Table 1. BER annotation hierarchy 
Trusted Query % Cov. Match % Cov. Rank Name Modifier GO Terms/ TIGR roles 

Yes Full Full 1 None copied from match 

Yes Full Partial 2 … domain protein 
GO root terms/ 
TIGR unknown 

Yes Partial Full 2 … domain protein copied from match 

No Full Full 3 possible … copied from match 

No Partial Full 4 
possible… 
domain protein GO root/TIGR unknown 

No Full Partial 4 
possible… 
domain protein GO root/TIGR unknown 

with  
ambiguous term Full/Partial Full/Partial 5 

“conserved  
hypothetical protein” 

GO root/ 
TIGR conserved hypothetical 
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HMM 
Each HMM is considered separately, based on the 
isology types of HMM and also the individual cu-
toff scores. Any HMM match that does not pass 
trusted cutoff is not considered for annotation. 
The best annotation from the HMM set of evidence 
is chosen at this stage and a suffix is appended to 
the end of the common name depending on the 
isology as seen in Table 2. With the exception of 
the “Pfam” isology type, all isologies included in 
this hierarchy are from TIGRfams. 

LipoP and TMHMM 
LipoP (lipoprotein predictions) are also consi-
dered when assigning annotations. Polypeptides 

containing a LipoP prediction but no BER or HMM 
evidence will be annotated with the common 
name “putative lipoprotein”, GO term component: 
membrane (GO:0016020) and the TIGR role “cell 
envelope: other” (88). 
A polypeptide is considered for annotation by 
TMHMM when it has 5 or more predicted mem-
brane-spanning regions. When this occurs, the 
annotation from TMHMM is considered. The anno-
tation is the same as that from LipoP with the ex-
ception of the common name, “putative integral 
membrane protein” 

Table 2. HMM annotation hierarchy* 
Isology Rank Name Modifier 

Equivalog 1 None 

Equivalog Domain 2 None 

Subfamily 3 … family protein 

Superfamily 4 … family protein 

Subfamily Domain 5 … domain protein 

Domain 6 … domain protein 

Pfam 7 … family protein 

Hypothetical Equivalog 7 None 

*In all cases, GO terms and TIGR roles are copied from the HMM. 

pFunc 
Following the parsing and initial filtering of possi-
ble annotations, pFunc will apply a final annota-
tion hierarchy to the set of best annotations pro-
vided by the previous steps. See Table 3 for the 
hierarchy. Any protein not containing evidence 
from one of the 18 ranks will be called “hypotheti-
cal protein” and assigned the GO root terms and 
the TIGR role id for “hypothetical protein.” In the 
rest of the cases, the annotation will be trans-
ferred directly from the top-scoring evidence 
based on the hierarchy in Table 3.  

Functional Annotation Post-Processing 
Post-processing is necessary to verify common 
names, assign additional information and fix 

common mistakes when automatically assigning 
annotation. Nonsensical common names can often 
result when appending various suffixes depending 
on annotation type. These types of errors are cor-
rected by changing suffixes to fit accordingly. In 
addition, the common names are searched for 
other assertions (i.e. gene symbols, EC numbers) 
present from transferring names from public da-
tasets, which are then moved to the proper loca-
tion. EC numbers are not modified during this step 
and partial EC numbers are left as valid annota-
tions. The common names are also scanned for 
functional keywords and assigned high-level TIGR 
roles based on these keywords if no other role has 
been assigned. 
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Table 3. Final annotation hierarchy 
Evidence Criterion Query Match Rank 

HMM Equivalog N/A N/A 1 

BER Trusted Full Full 2 

HMM Equivalog Domain Full Full 3 

BER Trusted Partial Full 4 

HMM Subfamily N/A N/A 5 

HMM Superfamily N/A N/A 6 

HMM Subfamily Domain N/A N/A 7 

HMM Domain Partial Full 8 

HMM Pfam Full Full 9 

BER Trusted Full Partial 10 

TMHMM > 5 membrane spans N/A N/A 11 

LipoP Presence of prediction N/A N/A 12 

HMM Hypothetical Equivalog N/A N/A 13 

BER Not trusted Full Full 14 

BER Not trusted Partial Full 15 

BER Not trusted Full Partial 16 

BER With ambiguous term Full/Partial Full/Partial 17 

Output Formats 
The IGS prokaryotic annotation pipeline supports 
various output formats. Initially, an XML represen-
tation of the nucleotide sequences and annotation 
is generated. Each gene (ncRNA and protein cod-
ing) is assigned a locus tag using the input locus 
tag prefix. The genes are numbered sequentially, 
starting with the first predicted gene of the long-
est input nucleotide sequence. 
The XML can be automatically reformatted into 
tbl, asn or Genbank formats. The XML representa-
tion is often used to load a Chado database for use 
with the manual annotation tool Manatee. 
Through this interface, tab files, CDS sequence 
files, polypeptide sequence files, Genbank and GO 
annotation files can be generated. 
Future Development 
Further development is planned for capturing 
more complex protein functions in annotations. 
Currently, since annotation is only transferred 
from the top-scoring source, bifunctional or multi-
functional genes will only receive one function 
assignment automatically. In many cases, this will 
also be annotated as a “domain protein”.  Future 
work will involve developing a strategy to detect 
bifunctional proteins and assign them annotations 
as such. 

Another area for future development is handling 
multiple copies of a gene within a genome. Cur-
rently, the pipeline will not detect the assignment 
of the same gene symbol to multiple genes. In the 
future, a system that evaluates the relative 
strengths of the evidence for each gene with the 
same gene symbol could be put into place. The 
gene with the most functional evidence will be 
assigned the gene symbol and all other instances 
of that gene symbol in the genome will be re-
moved. 
Finally, we plan to automatically flag genes that 
have putative frameshifts or in-frame stop codons 
based on the presence of such features in BER 
alignments and produce a report for manual re-
view. 

Implementation 
The IGS prokaryotic annotation pipeline is imple-
mented as a template inside of the Ergatis 
workflow system. Each step is run in parallel 
where it makes sense to do so. If not otherwise 
specified, each of the steps is written in the PERL 
programming language. Table 4 shows the ver-
sions and parameters of third-party software used 
in the pipeline. 
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Table 4. Software versions and parameters 
Section Tool Version Parameters 
Structural tRNA-scanSE 1.23 -q -b -B 
Annotation RNAmmer 1.2 -S bac -m lsu,tsu,ssu, -xml -gff 
 Glimmer3 3.02 -o50 -g110 -t30 -z11 -l -X 
Functional blastall -p blastx 2.2.17 -e 1e-5 -F T -b 150 -v 150 -M BLOSUM62 
Annotation HMMer 2.3.2 -acc 
 SignalP 3.0b -m ‘nn+hmm’ -trnc 1000 -graphics ‘gif+eps’ 
 TMHMM 2.0c --libdir TMHMM/lib 
 LipoP 1.0a -short -cutoff -3 
 Prosite (ps_scan) 1.34 -s 
 RPS-blast 2.2.17 -e 1e-5 -F T -b 150 -v 150 
 Blastp 2.2.17 -e 1e-5 -F T -b 150 -v 150 -M BLOSUM62 

Summary 
The IGS prokaryotic annotation pipeline has been 
used for the annotation of hundreds of genomes. It 
provides gene predictions and automated func-
tional annotation accessible via a Chado relational 
database and the associated curation tool Manatee 
or through flat files. The core of the pipeline is the 
evidence hierarchy of the pFunc software. The 

general scientific public can have access to the 
pipeline through the IGS Annotation Engine, which 
provides free automated annotation for prokaryo-
tic sequences. As additional prediction tools and 
search databases are developed they will be as-
sessed and added to the pipeline and the pFunc 
hierarchy as appropriate. 
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