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Abstract 

Background Decreasing sea ice coverage across the Arctic Ocean due to climate change is expected to increase 
shipping activity through previously inaccessible shipping routes, including the Northwest Passage (NWP). Changing 
weather conditions typically encountered in the Arctic will still pose a risk for ships which could lead to an accident 
and the uncontrolled release of hydrocarbons onto NWP shorelines. We performed a metagenomic survey to charac‑
terize the microbial communities of various NWP shorelines and to determine whether there is a metabolic potential 
for hydrocarbon degradation in these microbiomes.

Results We observed taxonomic and functional gene evidence supporting the potential of NWP beach microbes 
to degrade various types of hydrocarbons. The metagenomic and metagenome‑assembled genome (MAG) tax‑
onomy showed that known hydrocarbon‑degrading taxa are present in these beaches. Additionally, we detected 
the presence of biomarker genes of aerobic and anaerobic degradation pathways of alkane and aromatic hydrocar‑
bons along with complete degradation pathways for aerobic alkane degradation. Alkane degradation genes were 
present in all samples and were also more abundant (33.8 ± 34.5 hits per million genes, HPM) than their aromatic 
hydrocarbon counterparts (11.7 ± 12.3 HPM). Due to the ubiquity of MAGs from the genus Rhodococcus (23.8% 
of the MAGs), we compared our MAGs with Rhodococcus genomes from NWP isolates obtained using hydrocarbons 
as the carbon source to corroborate our results and to develop a pangenome of Arctic Rhodococcus. Our analysis 
revealed that the biodegradation of alkanes is part of the core pangenome of this genus. We also detected nitrogen 
and sulfur pathways as additional energy sources and electron donors as well as carbon pathways providing alterna‑
tive carbon sources. These pathways occur in the absence of hydrocarbons allowing microbes to survive in these 
nutrient‑poor beaches.

Conclusions Our metagenomic analyses detected the genetic potential for hydrocarbon biodegradation in these 
NWP shoreline microbiomes. Alkane metabolism was the most prevalent type of hydrocarbon degradation observed 
in these tidal beach ecosystems. Our results indicate that bioremediation could be used as a cleanup strategy, 
but the addition of adequate amounts of N and P fertilizers, should be considered to help bacteria overcome the oli‑
gotrophic nature of NWP shorelines.
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Background
The continued reduction in sea ice area in the Canadian 
Arctic Ocean [1] is predicted to allow for open waters 
between July and October for most regions by the end 
of the century [2]. One of these regions is the Northwest 
Passage (NWP) which connects the Atlantic and Pacific 
Oceans through the Canadian high Arctic (Fig. 1). The 
predicted increase in shipping traffic through the NWP 
in the coming decades [3] will present environmental 
risks for the indigenous human populations and the 
marine and terrestrial environments of the area [4, 5]. 
This also increases the possibility of an accident leading 
to a hydrocarbon spill due to the movement of drift-
ing sea ice from the northernmost part of the Canadian 
Arctic Archipelago and Greenland into the NWP [6] 
or a rise in storm frequencies [7]. Released hydrocar-
bons can also be entrapped in and under drifting sea 
ice which can then be transported away from the spill 
location [8, 9]. These factors increase the likelihood of 
marine hydrocarbon spills reaching NWP shorelines. 
Spill response in the Arctic by governments, industry, 
and other stakeholders will most likely be limited and 
slow due to the lack of equipment and resources, high 
costs, and poor accessibility in highly remote regions 
[8–10]. For these reasons, simpler remediation options 

should be considered due to their feasibility and lower 
cost.

One such remediation option is microbially-mediated 
hydrocarbon degradation, also known as bioremedia-
tion [11, 12]. Indeed, it has been observed that micro-
organisms capable of biodegrading hydrocarbons are 
ubiquitous in marine Arctic environments [13]. Previ-
ous experimental spills such as the Baffin Island Oil Spill 
(BIOS) project (1980–1984) [14, 15], the In  situ Treat-
ment of Oiled Sediment Shorelines (ITOSS) program 
in Svalbard (1996–1998) [16–19], as well as real-world 
cleanup efforts following the Exxon Valdez oil spill (1989) 
[20, 21] have shown that bioremediation can be used 
to clean hydrocarbons released on Arctic and subarctic 
marine beach ecosystems.

Despite their efficacy, bioremediation treatments will 
only be effective in the Arctic if the native microbiota 
already contains microorganisms capable of hydrocarbon 
degradation under the extreme environmental conditions 
encountered in polar environments. For example, at the 
Bahía Paraiso spill in the Antarctic Archipelago (1989), 
biodegradation was a negligible as determined by the 
low mineralization rates in hydrocarbon radiorespiration 
experiments [22, 23]. The cold and sub-zero temperatures 
present during most of the year, no sunlight during the 
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Fig. 1 Map of the Canadian high Arctic with the locations of the study sites. Lines show approximate current (blue) and future (red) routes 
that could be used by the shipping industry to transit the NWP
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winter months, and the highly oligotrophic nature of the 
Arctic marine environment can slow down the biodegra-
dative activity of the microbial communities [10, 24–26]. 
For example, on some experimental plots from the BIOS 
project, oil remains in beach sediments almost 40 years 
later [27, 28]. Hydrocarbon biodegradation can also 
be affected by increased salinity on the upper intertidal 
and supratidal zones of a shoreline due to the salinity 
tolerance of different types of microorganisms [29, 30]. 
Likewise, sediment heterogeneity makes it complicated 
to compare results between beaches [26]. Accordingly, 
stakeholders and response teams should have a baseline 
awareness of which Arctic regions have microbial com-
munities with hydrocarbon degradation potential and 
which do not.

Previous studies have used conventional microbiologi-
cal methods such as plate counts to detect changes in 
oil-degrading microorganism abundances or  CO2 pro-
duction indicating respiration [15, 31, 32]. Others used 
indirect methods such as changes in the oil composition 
relative to specific hydrocarbon chemical markers such as 
hopane, pristane, or phytane, among others [19, 33, 34]. 
More recent studies have taken advantage of advance-
ments in molecular microbiology to help detect the pres-
ence and explain the activity of hydrocarbon-degrading 
microorganisms. For example, 16S rRNA gene, metagen-
omic, metatranscriptomic, and single-cell sequencing 
were all used by multiple research groups during the 
Deepwater Horizon oil spill to help describe the changes 
in the microbial communities in the water column, 
sediment, and shoreline and show how microbiomes 
responded to the spill at the functional level [35–37]. 
These techniques have also been applied to understand 
the microbial ecology of hydrocarbon biodegradation in 
Arctic soils [38–41], Arctic seawater and sea ice [42–46], 
Arctic beach sediments [47–49], and Arctic deep-sea 
sediments [50–52].

While these studies have increased our understanding 
of the ecology of hydrocarbon spills in Arctic terrestrial 
and marine environments, there is a scarcity of research 
on the interface connecting both areas, the shoreline. In 
this study, we performed a metagenomic survey of the 
microbial communities of 8 high Arctic beaches located 
along the NWP and an additional high Arctic beach 
that was impacted by a diesel spill. We aimed to under-
stand the hydrocarbon biodegradation potential of NWP 
beach sediments from both natural and human-impacted 
shorelines. We also described the overall community 
composition to provide an overview of scenarios where 
bioremediation could be used as one of the main cleanup 
strategies in the case of a spill in one of these types of 
beaches due to the delayed and limited response expected 
under Arctic conditions, as mentioned above [8]. We also 

compared the results obtained from our metagenomes 
with microcosm experiments and genome sequences of 
isolates from some of the same sites of this study grown 
on hydrocarbons as the sole source of carbon [48, 49, 53]. 
The corroboration of our metagenomic survey results 
with the proven metabolic capacity of these isolates 
serves as evidence that metagenome sequencing can be 
used as an initial surveying tool to determine the feasi-
bility of bioremediation as a cleanup strategy. Finally, we 
described other metabolic processes detected in these 
metagenomes to provide a better understanding of the 
microbial ecology of these shorelines, which can further 
help to determine if there are certain environmental con-
ditions that could be limiting the hydrocarbon degrada-
tion potential of these microorganisms. Our results serve 
as a baseline description of the microbial communities 
of these sites that have not experienced any documented 
spills which could be used to focus contingency plans to 
the most vulnerable shorelines as well as to determine 
remediation endpoints [54].

Methods
Sampling sites: description and sample collection
The 9 sites used in this study were spread across four 
regions in the Canadian high Arctic: Cambridge Bay, 
Resolute, Nanisivik, and Alert (Fig.  1; Table  S1). These 
sites were selected to represent both natural and human-
impacted beaches around the NWP. The hamlet of 
Cambridge Bay on Victoria Island is one of the most 
frequented stopover sites for vessels around the current 
NWP route (blue line on Fig.  1); beach sediment was 
sampled by the docks (sample referred to hereafter as 
“Cambridge Bay”). The hamlet of Resolute on Cornwal-
lis Island is expected to be a central stopover hub in the 
future once the ice on the most optimal route of the NWP 
has disappeared (red line on Fig. 1). For this reason, we 
sampled 5 beaches around Resolute. (1) “Dump beach”, 
near where the waste from the hamlet is deposited and 
later incinerated; (2) “Dynamite beach”, in close proxim-
ity to an abandoned dynamite storage site in the relatively 
pristine Allen Bay; (3) “Tank farm”, adjacent to the fuel 
storage tanks that supply the Resolute community year-
round; (4) Tupirvik, a territorial park on Allen Bay where 
local hunters often launch their boats; (5) Assistance Bay, 
an uninhabited beach approximately 17  km away from 
Resolute, was selected to represent a pristine location 
facing the NWP that is unlikely to be experiencing any 
kind of hydrocarbon contamination from anthropogenic 
sources. We additionally sampled two beaches on Baf-
fin Island near the docks of the former company mining 
town of Nanisivik. The town is being converted into a 
refueling station for the Canadian Navy and government 
ships following an extensive decontamination project to 
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remove metal and fuel contaminants left behind by the 
mining operations. These beaches are located east and 
west of the docks. Finally, while not directly on the NWP, 
we sampled a beach at the Canadian Forces Station—
Alert on Ellesmere Island, which is adjacent to areas that 
experienced diesel spills in 2006 and 2007 [38, 40]. A 
trench and pond were constructed shortly after a pipeline 
break to prevent the fuel from reaching the shoreline, but 
it has not been determined if any fuel was able to go past 
these barriers.

Between July and August 2018 (Table S1), beach sedi-
ment samples from the upper 5  cm of the intertidal 
zone of all beaches were collected aseptically into sterile 
Whirl–Pak bags and stored at − 20  °C until processed. 
To evaluate the stability of the microbial communities 
with time, the sites around Resolute were also sampled 
in July 2019 (Table  S1). For Assistance Bay, beach sedi-
ment samples were collected only in July 2019 from the 
upper 5 cm of both the intertidal and supratidal zones of 
the beach to evaluate how sediment heterogeneity within 
the same beach affects the microbial community of these 
two zones.

Physicochemical and hydrocarbon analyses
Salinity and dissolved oxygen were measured in  situ on 
the pore water of the beach sediments using a YSI probe 
(Xylem) for the 2019 samples from the Resolute region. 
Nitrate, nitrite, ammonia, and phosphate were meas-
ured using the same pore water with CHEMetrics test 
kits (K-6933, K-7003, K-1503, K-8503, respectively) using 
a CHEMetrics V-2000 photometer. A sub-sample of the 
collected sediments from 2018 and from the 2019 Assis-
tance Bay intertidal sediment were analyzed by SGS 
Canada Inc. to quantify petroleum hydrocarbons (PHCs), 
semi-volatile organic compounds (SVOCs) and volatile 
organic compounds (VOCs). PHCs were quantified using 
the Canadian Council of Ministers of the Environment 
Reference Method for the Canada-wide Standard for 
Petroleum Hydrocarbons in Soil—Tier 1. SVOCs were 
quantified using the USEPA methods 3541 and 8270D. 
VOCs were quantified using the USEPA methods 5035A, 
5030B, 8260C.

DNA extraction, library preparation, and sequencing
We extracted internal DNA (iDNA) from intact viable 
cells and from extracellular/environmental DNA (eDNA) 
separately from the collected beach sediments. We used 
this approach to account for the fact that shorelines are 
an active environment receiving microbial inputs from 
both land and sea which leads to the possibility that we 
could detect eDNA from different sources that is not an 
active part of the shoreline microbiome [55–57]. For this 
we followed the methods described elsewhere [58, 59]. 

Briefly, the beach sediment was suspended in a sodium 
phosphate buffer and cells were separated from the 
eDNA by shaking and centrifuging the solution so that 
cells and the remaining sediment particles were collected 
in a pellet and eDNA was obtained from the supernatant. 
The pellet was resuspended in sodium phosphate buffer 
and lysed using a PowerBead tube (Qiagen). iDNA and 
eDNA were recovered from their respective supernatants 
using silica beads in a guanidine hydrochloride solu-
tion. Libraries were prepared using the Nextera XT DNA 
Library Prep Kit (Illumina) and indexed using the Nex-
tera XT Index Kit v2 (Illumina) following the manufac-
turer’s instructions. The indexed libraries were sequenced 
by Genome Québec in an Illumina HiSeq 4000 platform 
using a PE100 flow cell.

Bioinformatics and statistical analyses
Reads were first trimmed with Trimmomatic v0.11.5 
[60] to remove low quality bases and sequencing adapt-
ers. iDNA and eDNA metagenomes were separately 
assembled with metaSPAdes v3.14.1 [61]. Reads were 
mapped to the assembled metagenomes with BBMap 
v38.87 [62]. Metagenomes were annotated and classified 
using MetaErg v1.2.0 [63]. We first tested for differences 
between the viable and potentially active (iDNA) and the 
inactive transient (eDNA) communities of the beaches 
based on the 16S rRNA gene sequences identified by 
MetaErg after removing reads classified as chloroplast 
or mitochondria (Fig.  S1). The Shannon index was cal-
culated for each metagenome using the phyloseq pack-
age v1.40.0 [64] and, after assessing the normality of the 
dataset with a Shapiro–Wilk test, a paired t-test was used 
to test differences in Shannon indexes between the two 
types of metagenomes (Fig.  S2). 16S rRNA gene counts 
were transformed using relative abundances to account 
for read depth, then Bray–Curtis dissimilarities were 
calculated with phyloseq and visualized using non-met-
ric multidimensional scaling (NMDS). PERMANOVA 
and PERMDISP were calculated with the vegan package 
v2.6–4 [65] to test for differences in community composi-
tion between iDNA and eDNA (Fig. S3). Alpha level for 
all tests was 0.05 and were performed in R v4.2.2.

Since we observed no statistical differences in Shannon 
index or Bray–Curtis dissimilarities between the iDNA 
and eDNA metagenomes (Figs.  S2 and S3), we merged 
the iDNA and eDNA metagenomes of each sample into 
a total DNA metagenome. The total DNA metagen-
omes contained 40,735,858 ± 14,414,163 paired reads per 
sample. After combining the two datasets for each sam-
ple, reads were co-assembled using metaSPAdes. Reads 
were mapped to the co-assembled metagenomes with 
BBMap, the metagenomes were annotated and classified 
with MetaErg. We used the 16S rRNA gene sequences 
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annotated from the co-assembled dataset by MetaErg to 
determine differences in alpha diversity and community 
composition among the beaches. We tested differences 
in Shannon index using a paired Wilcoxon signed ranked 
test for differences between years and ANOVA to test dif-
ferences among regions. Differences in community com-
position among regions and between years were analyzed 
with PERMANOVA and PERMDISP based on Bray–
Curtis dissimilarities. Given that we obtained a signifi-
cant result for the region PERMANOVA, we then tested 
for pairwise differences in community composition 
among regions using a pairwise PERMANOVA [66]. To 
further corroborate the community composition stability 
between years, we compared the Bray–Curtis dissimilari-
ties for all pairs of sites collected in 2018 and 2019 (e.g., 
Tank farm—2018 vs. Tupirvik—2018, etc. and Dynamite 
beach—2019 vs. Dump beach—2019, etc.) and with the 
Bray–Curtis dissimilarities between years for all samples 
(e.g., Tupirvik—2018 vs. Tupirvik—2019, etc.) using a 
Kruskal–Wallis rank sum test. As we observed the pres-
ence of aromatic and anaerobic degradation genes only 
for a few samples (see Results below), we tested for dif-
ferences in the overall community composition of these 
samples with a PERMANOVA against those which did 
not contain these types of genes.

Genome binning was performed with MetaBAT2 
v2.12.1 [67] after which the quality of the produced 
metagenome-assembled genomes (MAGs) was improved 
with RefineM [68]. Overall bin statistics were estimated 
with CheckM [68] and MAG completeness and con-
tamination was determined with CheckM2 [69]. MAGs 
were classified with GTDB-Tk v2.1.0 [70] using the 
Genome Taxonomy Database (GTDB) r207 and indi-
vidually annotated with MetaErg. A phylogenomic tree 
of the final MAG collection was created by first obtain-
ing the aligned and concatenated amino acid sequences 
of single-copy core genes of the anvi’o (v7.1) Bacteria_71 
collection [71]. The phylogenomic tree was then inferred 
by maximum likelihood using FastTree [72] within anvi’o 
and the resulting tree was manually midpoint rooted.

To further understand the microbial ecology in the 
absence of hydrocarbons, we manually explored the 
KEGG annotations obtained from MetaErg to detect 
the presence of nitrogen, sulfur, and carbon metabo-
lisms in the MAGs (Table S2). We used CANT-HYD (–
cut_nc) [73] to identify the presence of 37 marker genes 
involved in aerobic and anaerobic degradation pathways 
of a wide variety of aliphatic and aromatic hydrocarbons. 
To complement the CANT-HYD results, if we obtained 
a CANT-HYD hit for a given hydrocarbon degradation 
gene, we looked at the KEGG annotation to determine if 
the rest of the genes in the respective degradation path-
way were present in selected high-quality MAGs. The 

MAG1 and MAG12 cell diagram used to exemplify the 
genomic potential of the NWP beach microbiomes was 
created with Biorender.com.

Because we observed a high abundance of MAGs 
assigned to Rhodococcus, we created a pangenome of 
Arctic Rhodococcus to determine the ubiquity of hydro-
carbon degradation genes in genomes from this genus. 
The pangenome was created with anvi’o using Rhodococ-
cus MAGs obtained in this study along with Rhodococ-
cus genomes from NWP beach isolates capable of fuel oil 
degradation [53]. The genome sequences of these Rhodo-
coccus isolates are available on NCBI under the BioPro-
ject accession number PRJNA945214.

Results
Taxonomic composition of metagenomes and MAGs
Based on average relative abundances of the 16S rRNA 
gene sequences extracted from the metagenomes of 
all samples, the microbial communities of the stud-
ied NWP beaches are dominated by Pseudomonadota 
(43.4% ± 14.45), Actinomycetota (36.3% ± 27.9), and Bac-
teroidota (13.4% ± 8.1); fewer than 1% of 16S rRNA gene 
reads were classified as Archaea (Fig. 2). Similar patterns 
were observed for the taxonomic classification of the 
metagenomic reads based on the MetaErg annotation 
(Fig.  S4). The 20 most abundant genera all belonged to 
the same three dominant phyla (Fig.  S5, Table  S3) with 
Rhodococcus having the highest average relative abun-
dance among samples (24.7% ± 20.3).

We recovered 82 bins which recruited 48.9% of the total 
metagenomic reads. From these, we obtained 19 high-
quality (> 90% completeness and < 5% contamination) 
and 23 medium-quality (> 50% completeness and < 10% 
contamination) MAGs (Table S4). The MAGs were clas-
sified into 5 different phyla (Fig. 3A), with most of them 
belonging to Pseudomonadota (59.5%, 25 MAGs) and 
Actinomycetota (23.8%, 10 MAGs). We assessed genome 
novelty of these MAGs based on the taxonomic classifi-
cation rank assigned with the GTDB (Fig. 3B; Table S4). 
Most of the MAGs (71.4%, 30 MAGs) were unclassified 
at the species level and 4.8% (2 MAGs) further showed 
novelty at higher taxonomic ranks: 1 at the genus level 
(MAG26; family Porticoccaceae) and 1 at the family level 
(MAG38; order Woeseiales).

Beach communities are stable over time and among NWP 
regions
We observed no statistical differences in the Shan-
non index (Wilcoxon signed rank test: V = 1, p = 0.25; 
Fig.  S6) or Bray–Curtis dissimilarities (PERMANOVA: 
pseudo-F = 0.616,  R2 = 0.093, p = 0.857; Kruskal–Wallis: 
H = 1.550, p = 0.461; Fig. S7) for the beaches in the Res-
olute region sampled in 2018 and 2019. For differences 
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among the studied regions (Resolute, Alert, Nanisi-
vik, and Cambridge Bay), we detected no statistical dif-
ferences in the Shannon index (ANOVA: F = 2.529, 
p = 0.116; Fig. S8). PERMANOVA did detect statistically 
significant differences in community composition among 
regions (PERMANOVA: pseudo-F = 1.496,  R2 = 0.310, 
P = 0.012), but after pairwise comparisons were per-
formed with a pairwise PERMANOVA, the statistical 
differences were no longer observed (Table  S5; Fig.  S9). 
We observed a higher proportion of Gammaproteobacte-
ria in the intertidal zone of the Assistance Bay sediment 
compared to the supratidal zone sediment of the same 
beach. On the other hand, there was a higher proportion 
of Actinomycetia and Bacteroidia 16S rRNA gene reads 
in the supratidal zone compared to the intertidal zone 
(Fig. 2).

NWP beach microbiomes contain genes from multiple 
pathways associated with hydrocarbon degradation
We were able to detect 15 out of the 37 hydrocarbon 
degradation marker genes analyzed by CANT-HYD 
in our metagenomes (Fig.  4) with the most prevalent 
genes being associated with the aerobic degradation 
of alkanes. Genes associated with aerobic alkane deg-
radation were highly prevalent with alkB (associated 
with the degradation of  C5–C22 hydrocarbons [74, 75]), 
cyp153 (associated with the degradation of  C5–C10 

hydrocarbons [75]), and ladAα (associated with the 
degradation of  C15–C36 hydrocarbons [76]) being pre-
sent in all 9 beaches. Genes coding for the large (prmA) 
and small (prmC) subunits of the propane monooxy-
genase were also present in 7 beaches (77.8%). Genes 
associated with the degradation of mono- (MAH alpha/
beta and tmoA/E) and polycyclic (nboB/C and non-
ndoB) aromatic hydrocarbons were much less abundant 
with 62.5% of the sampled beaches (5 beaches) contain-
ing at least one gene from these pathways. Anaerobic 
hydrocarbon degradation genes were much less preva-
lent as they were only found in the Alert beach sedi-
ment. We also detected hydrocarbon degradation genes 
in 23 (54.7%) of our MAGs and 12 (30%) of our low-
quality bins (Fig.  5). Most of these contained one or 
more aerobic alkane degradation genes with cyp153 
and alkB being the most abundant and present in 22 
(52.3%) and 8 (20%) of the MAGs and bins, respectively. 
Aerobic aromatic degradation genes were detected in 6 
(7.3%) of the MAGs and bins, whereas genes involved 
in the anaerobic degradation pathway of alkanes (ahyA) 
and ethylbenzene (ebdA) were only present in MAG12. 
We observed statistical differences in the commu-
nity composition of samples where we detected aro-
matic and anaerobic degradation genes (Dynamite 
beach—2019, Tank farm—2018, Alert—2018, Cam-
bridge Bay—2018, Nanisivik East—2018) compared 
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Fig. 3 Taxonomy and novelty of NWP metagenome‑assembled genomes (MAGs). A Maximum‑likelihood phylogenomic tree 
of the medium‑ and high‑quality MAGs obtained from the sampled Arctic beaches. Samples are grouped by beach and phylum. B Percentage 
of MAG taxonomic novelty at various ranks based on their GTDB‑Tk classification. Numbers on the boxes represent the number of MAGs classified/
unclassified for a given rank
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to the samples that did not contain these genes (PER-
MANOVA: pseudo-F = 1.8141, R2 = 0.131, P = 0.043).

High‑quality MAGs reveal the functional potential of NWP 
beaches
Taxonomic classification showed that the genus Rhodo-
coccus were highly prevalent in most beaches with an 
average relative abundance of 26.1% ± 22.4 of 16S rRNA 
gene reads, 30.3% ± 27.8 overall metagenome reads, and 
10 (23.8%) of the MAGs were classified as Rhodococcus 
fascians with 5 of them having 100% completion and less 
than 0.5% contamination. Additionally, we also observed 
the presence of 13 (30.9%) MAGs that belonged to vari-
ous taxa within the phylum Pseudomonadota with 6 
(14.3%) having over 90% completion and less than 1% 
contamination. Therefore, we studied these MAGs in 
more detail to look for the presence of a larger variety of 
the genes comprising these degradative pathways. One 
of the limitations of the CANT-HYD pipeline is that it 
detects only one or a few key marker genes per pathway 
[73], usually associated with the first enzyme involved 
in the pathway, but it cannot determine whether the 
full biodegradative pathway is present. By complement-
ing the CANT-HYD results with the KEGG annotations 

obtained from MetaErg, we were able to reconstruct 
hydrocarbon degradation pathways with a higher resolu-
tion for MAG1, classified as R. fascians and representing 
the highly prevalent Rhodococcus clade, and MAG12, one 
of the Pseudomonadota MAGs classified to the puta-
tively novel genus QNFC01 of the family Immundisoli-
bacteraceae (Fig.  6). Through this method, we observed 
that MAG1 and MAG12 encoded a complete pathway 
for alkane degradation. The CANT-HYD results showed 
that MAG1 contains three copies of alkB and one copy 
each of cyp153, ladAα, prmA, and prmC, while MAG12 
contains two copies of cyp153. Alkanes are converted 
to fatty acids followed by β-oxidation (ko00071) and the 
resulting acetyl-CoA molecules are further metabolized 
via the TCA cycle (ko00020). MAG12 also contained a 
copy of the putative anaerobic alkane hydroxylase ahyA 
for which there is still not a concrete metabolic pathway 
defined after the hydroxylation step [77].

The CANT-HYD results showed no MAH or PAH 
genes in MAG1, but we did detect one copy each of the 
MAH beta subunit and ebdA, 7 copies of ndoB, 6 copies 
of ndoC in MAG12. While we did not obtain complete 
MAH and PAH degradation pathways, we detected a 
larger number of genes from the KEGG annotations 
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compared to the standalone CANT-HYD results. The 
KEGG annotations detected the presence of genes 
involved in the initial activation of the aromatic rings 
(phyA, tmoF, and xylA) as well as genes belonging to 
three intermediate pathways: the catechol ortho- (catA) 
and meta-cleavage (catE), and the protocatechuate 
(pcaGH) pathways [78]. Additionally, we observed the 
presence of a gene (bbsB) involved in an intermediary 
step of the anaerobic degradation of toluene [79].

On the other hand, complete and partial pathways 
for various anaerobic respiration metabolisms as well 
as other metabolisms that can be performed in the 
absence of hydrocarbons were present in MAG1 and 
MAG12 as well as in other high- and medium-quality 
MAGs (Fig. 6; Tables S8 and S9). Nitrite oxidation and 
DSR were the most prevalent pathways we observed 
with 31 (73.8%) and 30 (71.4%) MAGs having complete 
pathways for these processes, respectively. Anaplerotic 
pathways were also prevalent with 18 (42.9%) MAGs 
possessing the complete set of genes for these path-
ways and 24 (57.1%) having partial pathways. DNRA 
(39 MAGs, 92.9%), denitrification (41 MAGs, 97.6%), 
and the rTCA cycle (34 MAGs, 81.0%) were partially 
present in most MAGs. Ammonia oxidation was the 
least prevalent metabolism with 2 (4.8%) and 18 (42.9%) 
of MAGs possessing a complete or partial pathway, 
respectively.

The pangenome of Rhodococcus reveals the ubiquity 
of alkane degradation in the Arctic
Given the high prevalence of Rhodococcus MAGs in our 
dataset, we conducted a pangenomic analysis for NWP 
Rhodococcus (Fig.  7) by comparing our 10 Rhodococcus 
MAGs with the genomes of 7 Rhodococcus strains iso-
lated from Tupirvik beach sediments capable of growing 
on ultra-low sulfur fuel oil (ULSFO) as the sole carbon 
source [53]. Aerobic alkane degradation appears to be 
part of the core pangenome of Arctic Rhodococcus as 
alkB was present in all the MAGs and isolates with more 
than one copy detected in all but two MAGs (MAG10 
and MAG41). In addition, ladAα was present in 14 
(82.4%) of the studied genomes (Table  S6). Three other 
alkane degradation genes (cyp153 and prmA/C) were also 
detected in 52.9% of the genomes.

Discussion
To our knowledge this is the first metagenomic survey of 
Canadian high Arctic beaches describing their commu-
nity composition along with their functional potential, 
particularly with regards to hydrocarbon biodegrada-
tion. Our statistical comparison of the metagenomes of 
beaches sampled in two different years suggests that the 
microbial communities of these beaches might remain 
relatively constant throughout the years. This could 
indicate that the results in this study, as well as future 
metagenomic surveys on other Arctic beaches along the 
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NWP, could be valid longitudinally over moderate (sev-
eral years) timescales. The creation of a genomic database 
of NWP beach microbial communities, including those 
studied here, would be of value for the Canadian govern-
ment and other stakeholders to define baseline microbi-
ome profiles, high-risk shorelines, and safer travel routes, 
as well as improving preparedness and contingency plans 
in case of an oil spill [80–82]. With regards to the com-
parison of the microbial community among the four sam-
pled regions, we observed no statistical differences either. 
However, it should be noted that the limited number of 
samples for certain regions drastically reduces the sta-
tistical power of this analysis. This can also cause non-
homogeneous multivariate dispersions among groups 
(PERMDISP: F = 25.53, P = 0.001) that could lead to 
overly conservative PERMANOVA results [83]. Differ-
ences in the taxonomic composition of the supratidal 
and intertidal zone sediments from Assistance Bay were 
observed, but it was not possible to produce statisti-
cal evidence of these differences given that we only had 
one sample per zone. However, we did observe similar 
abundances of alkane degradation genes for both zones 
which suggests that bioinformatic analyses based solely 
on taxonomy are not sufficient to determine hydrocar-
bon degradation potential. Obtaining a larger number of 
samples from sites in these regions could help to deter-
mine more clearly the similarities and differences in the 
marine beach microbiomes of the various areas of the 
NWP. Future studies should also include robust environ-
mental and hydrocarbon concentration data to be able to 
associate patterns in the microbial community to these 
variables.

The microbial communities of these NWP beaches 
were dominated by Pseudomonadota, Actinomycetota, 
and Bacteroidota which is consistent with a previous 
study which described the community composition of the 
same beaches using 16S rRNA gene sequencing [48] and 
with a metagenomic study of the same area in Alert where 
our sample originated [38]. We observed a larger propor-
tion of Actinomycetota in our metagenomes, mostly due 
to the high abundance of Rhodococcus sequences, com-
pared to the composition of a clone library obtained from 
a beach in Spitsbergen, Norway [16] as well as for sea ice 
and seawater 16S rRNA gene and metagenomic libraries 
of samples taken around Cornwallis Island [84, 85] and 
for 16S rRNA gene sequencing of Labrador Sea seawa-
ter [42]. The higher proportion of this phylum has been 
associated with low (< 10%) organic matter in Arctic and 
sub-Arctic soils [39, 41]. This is consistent with the oli-
gotrophic nature of the beaches in this study which had 
organic matter contents ranging from 0.26 to 0.95% [48]. 
Our MAG novelty at the genus level is consistent with 
a compendium of marine environments [86], but lower 

than previous metagenomic studies conducted using 
water from the Baltic Sea (90.9%) [87] and from various 
sites across the Arctic Ocean (83.2%) [88].

The taxonomic classification obtained from our 
metagenomic survey suggests that the microbial commu-
nities of the studied NWP shorelines have the genomic 
capacity to bioremediate a hydrocarbon spill. Among 
the 20 most abundant genera, bacteria belonging to 
13 of those genera are known to be capable of degrad-
ing various types of hydrocarbons and the abundance 
of another 4 genera has been positively correlated with 
the presence of hydrocarbons (Table S3). Previous stud-
ies have also observed the increase in abundance of the 
genera Rhodococcus, Flavobacterium, and Psychrobacter 
in microcosms grown using Tank farm beach sediment 
and ULSFO as the sole source of carbon as well as Tupir-
vik beach sediment amended with marine diesel [48, 49]. 
We recovered MAGs belonging to known hydrocarbon-
degrading taxa such as the families Alcanivoracaceae 
[89] and Immundisolibacteraceae [90] and a bin from the 
family Cycloclasticaceae [91], as well as MAGs belong-
ing to 8 genera associated with hydrocarbon degradation 
(Table S4). Also among our MAGs are those classified to 
Ilumatobacter, Rhodococcus, Sulfitobacter, Cycloclasticus, 
Loktanella, and Granulosicoccus; genera that are present 
in the Tupirvik and Tank farm microcosm studies using 
fuels as a carbon source [48, 49]. This was further cor-
roborated with our CANT-HYD and KEGG annotation 
results which showed the presence of one or more key 
hydrocarbon-degrading genes as well as complete deg-
radation pathways in our metagenomes and MAGs. We 
obtained similar abundances of CANT-HYD biomarker 
genes compared to seawater samples taken by the TARA 
Oceans survey from marine environments around the 
world, including various polar sites [73].

Hydrocarbon analyses showed that PHCs, SVOCs, and 
VOCs were below the detection limit for most beaches, 
with the exception of Dump beach, Tank farm, and Nani-
sivik—East (Table S7). However, hydrocarbon concentra-
tions detected for those three beach sediments were still 
below the Canada-wide Standards for petroleum hydro-
carbons in soil for industrial use [92]. Based on this, our 
metagenomic results are consistent with previous studies 
that have shown the ubiquity of hydrocarbon degrada-
tion pathways in marine environments in the absence of 
a hydrocarbon spill [93, 94]. The presence of these organ-
isms and their pathways suggest that there is a natural 
hydrocarbon cycle occurring in marine environments 
that is sustaining hydrocarbon degrading populations in 
pristine environments. The first explanation for this phe-
nomenon is that some “obligate” hydrocarbon degraders 
can grow using non-hydrocarbon organic compounds 
such as dissolved organic carbon and cellular components 
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of lysed marine cells [95, 96]. The second explanation is 
presence of hydrocarbon seeps that release short-chain 
gaseous alkanes and liquid alkanes and aromatic hydro-
carbons [52, 97]. A hydrocarbon seep has been found 
in the Canadian Arctic near Scott Inlet (~ 900  km from 
Cornwallis Island), but it was observed that hydrocarbon 
concentrations decrease with distance from the seep and 
background methane levels are observed in the upper 
regions of the water column [97]. The third explanation 
is the existence of a cryptic marine alkane cycle in which 
cyanobacteria and eukaryotic phytoplankton produce 
long-chain alkanes and alkenes which are then quickly 
metabolized by hydrocarbon degraders that are closely 
associated with these photosynthetic organisms [94, 98, 
99]. Hydrocarbon biosynthesis is suggested to be a uni-
versal process in cyanobacteria [100] and alkanes and alk-
enes appear to be required to maintain their membrane 
flexibility, which is required for cell division and growth 
[101]. Alkane-synthesizing cyanobacteria have been iso-
lated and detected in metagenomic studies of Arctic 
ponds [98, 102]. However, we did not find any 16S rRNA 
gene sequences or MAGs assigned to cyanobacteria in 
our dataset. We did observe cyanobacterial sequences in 
the MetaErg classification, but they only accounted for 
0.2% ± 0.11 of the overall metagenomic reads.

Mono- or polycyclic aromatic hydrocarbon degrada-
tion pathways were less prevalent compared to the highly 
prevalent alkane metabolism detected in the shoreline 
metagenomes. MAHs and PAHs are generally more 
recalcitrant to biodegradation due to their greater size 
or complexity, thus requiring multi-operon metabolic 
pathways [11, 103]. The low prevalence of these complex 
pathways in the NWP beach microbiomes could explain 
why PAHs tend to remain in Arctic environments for 
longer periods of time compared to their aliphatic coun-
terparts [27, 28, 46, 50]. This is in line with the results of 
the microcosm experiment carried out previously using 
beach sediment from Tank farm which showed rela-
tively higher rates of alkane biodegradation compared 
to the PAH degradation rates [48]. This study also per-
formed radiorespiration assays using Tank farm, Nani-
sivik, and Cambridge Bay sediments supplemented with 
14C-labelled hexadecane and naphthalene and confirmed 
that respiration rates were higher in the hexadecane 
microcosms [48], which could be explained by the lower 
prevalence of genes in these pathways that we observed 
in the metagenomes of these beaches. Anaerobic hydro-
carbon degradation genes were only observed in the 
Alert beach sediment. While we did not quantify dis-
solved oxygen for the Alert sample, we did observe high 
oxygen concentrations in the Resolute samples. It has 
been observed that oxygen diffusion decreases in soils 
as water freezes [104] which, combined with the close to 

freezing temperatures of NWP shorelines, could result 
in microscopic particles of frozen beach sediment where 
anaerobic conditions could be occurring. Nonetheless, 
we observed the presence of genes encoding for other 
anaerobic metabolic pathways in multiple MAGs from 
the studied beaches (Tables  S8, S9). The reduced num-
ber of reference sequences that were used to create the 
HMMs for the anaerobic pathways in CANT-HYD could 
cause divergent sequences to not be detected [73], which 
could explain why we only observed anaerobic hydro-
carbon degradation genes at Alert. Additionally, increas-
ing the sequencing depth could help detect the presence 
of low abundance genes, such as those for an anaerobic 
metabolism in well oxygenated beaches.

It is worth noting that we found genes related to MAH 
and PAH biodegradation for the beaches that appear to 
have the highest baseline levels of hydrocarbon contami-
nation. Similar to Alert [38, 40] there is a known history 
of hydrocarbon contamination at Nanisivik, but we did 
not detect elevated levels of hydrocarbon contamination 
in the sampled sediments (Table S7). There are other sites 
where past and current human activity could be caus-
ing smaller undocumented releases of hydrocarbons. 
For example, there is a relatively high volume of shipping 
activity at the main dock where the sample from Cam-
bridge Bay was taken and the Tank farm is an active fuel-
ling station. This suggests that hydrocarbon-degrading 
microorganisms inhabiting NWP shorelines could thrive 
when hydrocarbons are released into their environment. 
This was demonstrated in the microcosm experiments 
using Tank farm and Tupirvik beach sediment in which 
a higher abundance of hydrocarbon-degrading bacte-
ria and genes were observed for samples incubated with 
fuels compared to the unoiled controls [48, 49].

The 16S rRNA gene and MAG taxonomies indicated 
a high prevalence of Rhodococcus in NWP shorelines. 
This is consistent with previous studies showing that 
Rhodococcus appears to be an abundant genus in Arc-
tic and Antarctic marine and terrestrial environments 
with the genus comprising up to 34% of the community 
[105–108]. While we detected sequences belonging to 
other Rhodococcus species in our metagenomes, we were 
only able to obtain MAGs classified as R. fascians. Previ-
ous studies have shown that R. fascians is often present 
in large proportions in Arctic marine environments [105, 
108] and seasonal dominance of this phytopathogenic 
species has been observed in a Norwegian fjord following 
the collapse of phytoplankton blooms [107].

Our hybrid annotation approach in which we com-
plemented CANT-HYD hits with KEGG orthologs 
allowed us to detect the presence of multiple marker 
genes for alkane degradation along with the complete 
downstream pathways required to fully metabolize these 
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hydrocarbons. This suggests that MAG1 is capable of 
degrading short-, medium-, and long-chain  (C3,  C5–C13, 
and  C15–C36) alkanes [74, 75, 109, 110] and MAG12 
has the genetic potential to degrade short- and medium 
 (C5–C13) alkanes aerobically [75] and anaerobically [77]. 
We observed the presence of the first step of the deg-
radation of phenols (phyA; K03380) in both MAGs and 
the catalytic subunits of the naphthalene 1,2-dioxyge-
nase (ndoBC) in MAG12. However, given that we only 
detected a subset of the genes required for complete 
degradation of aromatic compounds with this hybrid 
approach, we cannot conclusively state that these two 
MAGs can perform these metabolisms. R. fascians has 
been grown using various types of MAHs and PAHs 
[111]. R. fascians can also produce biosurfactants capa-
ble of solubilizing anthracene [112] and emulsifying 
kerosene [113]. Multiple Rhodococcus isolates, includ-
ing R. fascians, obtained from Tupirvik beach sediment 
have been grown using ULSFO as the carbon source at 
5  °C [53]. The genetic similarity of these isolates with 
our MAGs (Fig.  7) supports the hydrocarbon degrada-
tive potential of the R. fascians MAGs of NWP beaches 
even at cold temperatures. Immundisolibacter cernigliae, 
the only described species from Immundisolibacte-
raceae, is capable of growing on a wide range of PAHs 
at mesophilic temperatures [90], but its ability to grow 
under cold conditions has not been reported. The genus 
QNFC01 was first detected from deep oceanic sediments 
close to a hydrothermal vent [114], which is in accord-
ance with the cold tolerance and anaerobic metabolism 
we see for MAG12. This is important as the low temper-
atures encountered in the Arctic can limit hydrocarbon 
biodegradation rates [25].

Similar to the aerobic aromatic degradation pathways, 
we detected a limited number of genes for their anaero-
bic counterparts. While not direct evidence of anaero-
bic hydrocarbon biodegradation potential, we did detect 
pathways that could be coupled with these metabolisms. 
For example, denitrification, DNRA, and DSR were all 
present in the two studied MAGs and these processes 
often occur as anaerobic alternatives to aerobic respira-
tion of hydrocarbons when oxygen conditions are lim-
ited, using nitrate or sulfate as the terminal electron 
acceptors [77, 115]. We observed high levels of oxygen 
saturation in pore water from the beach sediments in the 
Resolute region (Table S1), which suggests that anaerobic 
processes are not occurring at high rates during the Arc-
tic summer.

Our metabolic reconstruction of MAG1 and MAG12 
also revealed that these strains not only have potential as 
hydrocarbon degraders, but also have pathways for other 
aerobic and anaerobic metabolic processes. These metab-
olisms include nitrite oxidation, denitrification, DNRA, 

DSR, sulfide oxidation, and carbon fixation through 
the rTCA cycle (Fig.  6). Rhodococcus strains are capa-
ble of performing simultaneous heterotrophic nitrifica-
tion and aerobic denitrification [116] and we observed 
the genomic potential for both processes in our MAGs. 
Autotrophic denitrification and DNRA can be coupled 
with sulfide [117] and sulfite [118, 119] oxidation, but 
these processes have not yet been shown to occur in Rho-
dococcus. For I. cernigliae, no growth under anaerobic 
conditions has been observed [90], but there is the poten-
tial for anaerobic metabolism in QNFC01 MAGs that 
were recovered from deep ocean sediments [114].

Finally, both sulfide and nitrite oxidation can be cou-
pled to  CO2 fixation in chemolithoautotrophic microbes 
[120]. We observed the presence of genes encoding 
fumarate reductase (frdABC), 2-oxoglutarate synthase 
(korAB), and ATP-citrate lyase (ACLY) in MAG12 and 
only frdABC in MAG1. These genes encode the key non-
reversible enzymes involved in the reverse TCA cycle 
[121] and further corroborate the genomic capacity of 
MAG12 to perform various anaerobic metabolisms. Cit-
rate synthase, which performs the opposite reaction to 
the ATP-citrate lyase in the TCA cycle, is also able to 
operate reversibly in a process that is not easily detect-
able bioinformatically but still present in many organisms 
not thought to be capable of  CO2 fixation [122], which 
could be the case for MAG1. A related species, Rhodococ-
cus erythropolis N9T-4, is capable of growth using trace 
 CO2 as a carbon source with a novel  CO2 fixation path-
way which has not yet been fully described [123]. Vari-
ous Rhodococcus strains can perform heterotrophic  CO2 
fixation as part of the propane and propylene degrada-
tion pathways [123–125] and to replenish TCA metabo-
lites as part of anaplerotic pathways [126, 127]. MAG1 
does possess a propane monooxygenase (prmAC) and 
the carboxylases involved in the anaplerotic pathways 
(pyruvate carboxylase, pycAB; phosphoenolpyruvate car-
boxylase, ppc; and malate dehydrogenase, maeB) and we 
detected pycAB and maeB in MAG12. Anaplerotic path-
ways appear to be ubiquitous in Arctic soils, particularly 
in permafrost, which tends to be the most carbon-poor 
soil horizon [128].

These carbon and nitrogen metabolisms are also pre-
sent in other medium- and high-quality MAGs (Tables S7 
and S8). We quantified nitrate, nitrite, and ammonia con-
centrations in the pore water from beaches of the Reso-
lute region with ammonia being the most abundant form 
present in these sediments (Table  S1). This could sug-
gest that ammonia has been produced which could indi-
cate that processes such as ammonification or DNRA 
could be occurring at high rates in these environments. 
We have also observed the presence of sulfide at Assis-
tance Bay in 2022 (unpublished data) which supports 
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the findings in the present study of a high prevalence of 
DSR genes in our metagenomes. Future research should 
use expression-based molecular techniques to determine 
whether these mechanisms are indeed occurring in the 
studied Arctic beaches.

The capabilities of these MAGs to perform such a wide 
variety of metabolic processes that tend to be associ-
ated with alternative sources of energy and nutrients are 
consistent with the oligotrophic conditions encountered 
across NWP beaches (Table S1). It is then very likely that 
bioremediation efforts on NWP shorelines will prob-
ably require the addition of N and P fertilizers in order 
to stimulate the microbial communities enough so that 
they can overcome their nutrient limitations, especially 
of decreased N and P concentrations expected after a 
hydrocarbon spill due to the increased metabolic activ-
ity from the growing hydrocarbon-degrading microbial 
populations colonizing the area of the spill [36]. The 
side effects of fertilizer use on the microbial communi-
ties besides stimulation of hydrocarbon degraders, for 
example eutrophication or anoxia [129], should also 
be evaluated before applying these products during a 
hydrocarbon spill. Further studies using the isolates we 
have obtained from these environments [53] will evalu-
ate the physiological capabilities of Arctic R. fascians and 
other microorganisms to perform the multiple metabo-
lisms that we described in MAG1 and MAG12. This will 
improve our understanding of the microbial ecology of 
these sites and help guide the optimization of bioreme-
diation strategies aimed at enriching these organisms in 
contaminated shorelines so they can be used to clean up 
impacted beaches.

Conclusions
In this study, we described the microbial communities of 
marine beaches across the Canadian high Arctic based on a 
metagenomic survey focusing on the genomic potential for 
hydrocarbon biodegradation in these microbiomes. Our 
results showed that the microbial communities on these 
beaches harbour various hydrocarbon degradation path-
ways, mostly for the degradation of alkanes. This suggests 
that the microbial communities of Arctic beaches may be 
able to adapt and respond in the case of a hydrocarbon 
spill, making bioremediation a potential clean up strat-
egy. We also described the presence of other nitrogen and 
sulfur metabolisms, such as nitrite oxidation, DNRA, and 
DSR, which these microbes might be performing in their 
environment using other sources of carbon. Future studies 
should focus on in situ and laboratory studies that confirm 
whether the microorganisms from these beaches are in fact 
capable of carrying out the metabolic processes described 

here under the cold and oligotrophic conditions that are 
observed across NWP shorelines.
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