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Background
Microbes are present on nearly every surface of plants 
where they play an important functional role for their 
hosts [56]. The root microbiome is the most diverse site 
of plant-microbe interactions, and its composition has 
been shown to have far-reaching effects [4]. For example, 
differences in the root microbiome have been linked to 
differences in crop yields [59] and the chemical defences 
in the leaves (Sharma, Anand and Kapoor, [55]). There-
fore the composition of the root microbiome affects the 
host’s growth (Berendsen, Pieterse and Bakker, [11]). 
There has been a large number of studies investigating 
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Summary
Background The composition of the root microbiome affects the host’s growth, with variation in the host 
genome associated with microbiome variation. However, it is not known whether this intra-specific variation of 
root microbiomes is a consequence of plants performing targeted manipulations of them to adapt to their local 
environment or varying passively with other traits. To explore the relationship between the genome, environment and 
microbiome, we sampled seeds from teosinte populations across its native range in Mexico. We then grew teosinte 
accessions alongside two modern maize lines in a common garden experiment. Metabarcoding was performed using 
universal bacterial and fungal primers to profile their root microbiomes.

Results The root microbiome varied between the two modern maize lines and the teosinte accessions. We further 
found that variation of the teosinte genome, the ancestral environment (temperature/elevation) and root microbiome 
were all correlated. Multiple microbial groups significantly varied in relative abundance with temperature/elevation, 
with an increased abundance of bacteria associated with cold tolerance found in teosinte accessions taken from high 
elevations.

Conclusions Our results suggest that variation in the root microbiome is pre-conditioned by the genome for the 
local environment (i.e. non-random). Ultimately, these claims would be strengthened by confirming that these 
differences in the root microbiome impact host phenotype, for example, by confirming that the root microbiomes of 
high-elevation teosinte populations enhance cold tolerance.
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how the environment influences the root microbiome, 
with soil pH [5], soil nutrients [25] and climate [6, 37], 
all influential. Differences have been observed in the root 
microbiome between plant species [26], and there is also 
interest in understanding within species variation of the 
root microbiome [14, 42]. Differences in the root micro-
biome between genotypes have been found repeatedly; 
direct correlations between the root microbiome and the 
phylogenetic relatedness of the hosts have yielded incon-
clusive results (i.e. whether more closely related plants 
also have more similar microbiomes) [14, 19, 42, 48]. Dif-
ferences in the root microbiome associated with genome-
wide variation (within species) are generally smaller than 
that of environmental variation [42]. However, intra-
specific variation in the root microbiome may contrib-
ute to differences in the phenotype, such as growth rates 
[39] and resilience to abiotic stresses [9, 52]. If this can 
be established, it would pave the way for crop microbi-
omes to be manipulated through breeding programmes 
(or directly through genetic modification) to provide 
additional growth benefits (Ravanbakhsh, Kowalchuk 
and Jousset, [51]). However, the relationship between the 
genome and microbiome is confounded by environmen-
tal variation [19]. Thus there is a need for large-scale sys-
tematic studies to disentangle the complex relationship 
between the host genome, microbiome and the environ-
ment before microbiome engineering can become a real-
ity [3].

As maize is one of the most widely grown crops glob-
ally [22], its root microbial community has been sub-
jected to extensive investigation. While results of such 
studies have revealed that maize’s root microbiome com-
position differs between lines [14], with increased abun-
dances of specific microbes linked to various traits, such 
as drought tolerance [9], it remains inconclusive whether 
such intra-specific differences are (i) deterministically 
encoded for within the genome, and (ii) contribute mean-
ingfully to differences in host functioning, such as toler-
ance to abiotic stresses. A major challenge to performing 
microbiome studies on maize, and indeed other common 
crop species, is that the domestication process has likely 
warped the relationship between the host and its micro-
biome. These crops have been bred with exogenous water 
and fertiliser application, which may have undermined 
their ability to utilise microbes to mitigate abiotic stresses 
(such as drought) and maximise nutrient use efficiency. 
Under favourable growing conditions, plants invest fewer 
resources (in the form of rhizoexudates) into their root 
microbiome [21]. Thus there may have even been active 
selection against supporting a diverse and robust root 
microbiome by breeders to minimise root exudates in 
favour of higher yields [46]. Meanwhile, wild crop rela-
tives have evolved with their local soil microbes in less 
favourable growing conditions and in competition with 

other plant species. Therefore, there is a selection pres-
sure on them to better utilise microbes to improve their 
tolerance to abiotic stresses and nutrient resource effi-
ciency. Studies attempting to link host genome variation, 
environmental variation and the root microbiome have 
predominantly been performed using domesticated crop 
species [14, 19, 48]. However, the genomes of modern 
crops are regulated by both natural selection and domes-
tication processes, which almost certainly confounds its 
relationship to the microbiome and environment, which 
is avoided by studying wild plant species.

Teosinte is the progenitor of modern-day maize. It 
grows naturally within a highly heterogeneous environ-
ment, where it is adapted to elevation and temperature 
gradients across Mexico [2]. Two sub-species that are 
endemic to Mexico have been identified, the lowland Zea 
mays subsp. Parviglumis from which modern maize lines 
were originally derived, and a highland form, Z. mays 
subsp. Mexicana [29] that has been demonstrated as the 
source of considerable post-domestication introgressions 
into maize lines [7]. It is known that the teosinte root 
microbiome differs from modern maize [15], however the 
root microbiomes of Parviglumis and Mexicana have not 
been compared. While the root microbiome of teosinte 
has had time to co-evolve over evolutionary timescales 
for the local environmental conditions, the selection 
pressures for modern maize are very different, and likely 
shaped by the domestication process. Studying teosinte 
plants therefore allows for the root microbiome to be 
investigated from natural populations that have known 
systematic genome variation (different sub-species) 
that are known to be adapted to different environments 
(lowland and highland regions of Mexico). Taking seeds 
from these teosinte accessions and growing them within 
controlled environments would allow for the effects of 
genome variation on the root microbiome to be quanti-
fied, without confounding environmental variation [3]. 
Further, correlations between the host genome, environ-
ment and the root microbiome would add considerable 
weight to the claim that the root microbiome is manipu-
lated by the host for specific functions (i.e. adaptation to 
local environmental conditions) and are not just random 
differences between genotypes.

In this project, our aim was to investigate whether the 
root microbiomes of teosinte accessions differed from 
their ancestral environment when grown in a common 
garden experiment. Seeds were taken from teosinte pop-
ulations that span their ancestral range in Mexico, which 
spans over a 2,500 m elevational gradient and grown in 
a common garden experiment. Additionally, modern 
lines (B73 and CML312) were grown alongside teosinte 
plants as comparisons. After 12 weeks of growth, roots 
were sampled, and the root bacteria and fungi were inde-
pendently profiled using universal primers for each. We 
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then assessed whether (a) both the modern inbred lines 
individually fell inside the natural variation of teosinte 
or had their own unique root microbial assembly and (b) 
whether the ancestral environment and/or genome varia-
tion of wild teosinte accessions are systematically associ-
ated with variation in the root microbiome.

Methods
Experimental overview
This work was performed as a common garden experi-
ment in Irapuato, Guanajuato, Mexico (20.720189°, 
-101.328720°) at 1,724  m in elevation, during the sum-
mer of 2017, with roots sampled from mature plants. 
In total, the roots of 9 and 10 different plants from the 
modern lines CML312 and B73 were sampled respec-
tively. Additionally, the roots from single teosinte plants 
were sampled from 47 accessions of teosinte (a mixture 
of Zea mays subsp. mexicana and Zea mays subsp. parvi-
glumis) that originated from a range of geographical loca-
tions and elevations but were grown together here. This 
included 23 Parviglumis samples (lowland), 17 Mexicana 
samples (highland) and 7 samples that were likely hybrids 
(found at intermediate elevations) (Fig. 1). 

Teosinte plants are unlikely to grow if directly planted 
in the field. Therefore, seeds from teosinte accessions 
and modern maize plants were germinated in sheet pots 
(0.5 L) under controlled greenhouse conditions, consist-
ing of an average temperature of 24  °C and humidity of 
48%. These sheet pots were filled with pre-wetted sub-
strate (consisting of homogenised soil taken from the 
common garden), with three seeds per pot added after 
scarification with overnight soaking. Teosinte and maize 
seedlings were thinned to one plant after germination. 
After approximately 30 days seedlings were transplanted 
to the common garden (Irapuato, Guanajuato, Mexico) 
as whole soil plugs to minimise disruption to the root 
networks.

The plot consisted of furrows (rows), with one fur-
row comprised of only CML312 plants, followed by a 
second comprised of only B73 plants. Accessions were 
then randomly planted in a snaked structure across fur-
ther furrows (no accession could be adjacent to each 
other). Furrows were 24 m long, and plants were planted 
with 0.5 m between them along the furrows, and 0.7 m 
between plants of adjacent furrows. Furrows had a mini-
mum of 2.5 m distance to the edge to avoid edge effects 
and were surrounded predominantly by modern maize 
lines.

Due to time and resource limitations, one plant of each 
teosinte accession was sampled, which was performed 12 
weeks after transplanting into the field, corresponding to 
approximately their flowering time. Meanwhile, repeated 
sampling of the CML312 (9 plants) and B73 (10 plants) 
lines across the entire row was performed to gauge any 

bias along the rows. Since modern NILs were not inter-
spersed with the teosinte accessions, there was a small 
risk that spatial variation drives differences between 
the two maize NILs, and between NILs and teosinte 
root microbiomes. However, the larger distances along 
the furrows (24  m) was taken into account within the 
experimental design compared to the smaller distances 
between furrows (0.7  m) that was not. Further, differ-
ences in the root microbiome between modern maize 
lines and teosintes have also been shown to be relatively 
large [15]; Favela, Bohn and Kent, [23]; Huang et al., [36, 
42, 58].

Sampling, root processing, and DNA extraction
Teosinte/maize roots were dug up ~ 20 cm away from the 
stalk and up to 20 cm in depth. Fine nodal roots (approxi-
mately under 2  mm in diameter) were randomly col-
lected from the upper 20 cm of the soil profile and placed 
into 50 mL Falcon tubes. For the collection of bulk soil 
samples, samples were collected from between rows 3 
and 4 approximately 1 one third from the top and bot-
tom edges. This was performed using a hand trowel and 
digging until the end of the blade (20 cm) was level with 
the ground and repeating to extract a 5 cm x 5 cm core. 
Root and bulk soil samples were stored at -80  °C until 
the following process. Before the DNA extraction, the 
roots were vigorously washed and sonicated with sterile 
phosphate-buffer saline solution (PBS; 1.37  M NaCl, 27 
mM KCl, 100 mM Na2HPO4, and 18 mM KH2PO4) at 
7.5 pH. Roots were placed in a new tube and were rinsed 
with sterile distilled water several times. After wash-
ing, roots were dried with paper towels and then frozen 
in liquid nitrogen to grind root samples using a Tissue-
lyzer II (QIAGEN) for 1 min at 30 Hz. DNA extraction 
was then performed in a dedicated pre-PCR laboratory 
within the Globe Institute of the University of Copenha-
gen. Initially, 100 mg of freeze-dried roots, and 250 mg of 
freeze-dried bulk soil, was weighed out into 1.5 mL plas-
tic tubes. These samples underwent DNA extraction as 
per the manufacturer’s protocol of the MoBio PowerSoil 
DNA Isolation kit (MoBio Laboratories, Solana Beach, 
CA, USA) Fig. 1.

Sequencing preparation
For bacterial data, metabarcoding was performed as per 
Lund et al. [42]. Briefly, PCRs were performed using the 
341F and 806R primers which target the v3-v4 region 
of the 16S bacterial gene. Fungi were analysed as per 
Frøslev et al. [27]. Briefly, PCR was performed using 
the gITS7 and ITS4, which target the ITS2 region. Both 
sets of primers had 8–9 bp internal tags within to mul-
tiplex samples. Each sample was run using three sepa-
rate primer combinations which served as technical 
replicates. The bacterial libraries were prepared using a 
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Fig. 1 (A) Map of sample collections. In total, 47 accessions of teosinte were sampled from across Mexico (illustrated as crosses). These came from two 
sub-species, spanning a considerable (B) elevational and (C) temperature gradients. These were grown alongside two modern lines in a common garden 
experiment (at the diamond) and their root microbiomes compared
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Blunt-End-Single-Tube (BEST) approach [18] that was 
specifically modified for metabarcoding, while the fungal 
libraries were built using a TruSeq PCR Free Kit (Illu-
mina, CA, US). For each, four library pools were created 
and run on two separate sequencing runs performed 
using an Illumina MiSeq v3 platform (250  bp paired-
ends). Extraction and PCR negatives were run in tripli-
cate (three of each negative type) alongside the bacterial 
and fungal primer sets.

Environmental data
We collected data that summarised the environment 
of origin for each teosinte individual. Climate data was 
extracted from the WorldClim database [24]. Monthly 
and annual average potential evapotranspiration (PET), 
and a measure of aridity (mean annual precipitation 
divided by mean annual PET) were collected from the 
CGIAR-CSI Globality-Arbitdty database [61]. Informa-
tion on inter-annual variability in precipitation was cal-
culated with data from the NCEP/NCAR Reanalysis 
project [38]. Inter-annual variability in precipitation was 
obtained by calculating each calendar month’s coefficient 
of variation (CV) across years for each month’s surface 
precipitation rate.

Edaphic chemical and physical properties were col-
lected from SoilGrids [35] and the Global Soil Dataset 
(GSD) [54]. Data from GSD includes soil features of the 
topsoil and 1 m below the surface. We found high con-
cordance of values for topsoil and 1 m below the surface 
and excluded the topsoil data from our dataset. All soil 
variables were cleaned by removing outliers and imputed 
missing values using the MICE package (Buuren and 
Groothuis-Oudshoorn, [16]).

Data processing
Bacterial data was analysed as in Lund et al. [42] using 
DADA2. Briefly, DADA2 was used to filter, predict error 
rates and correct them, combined ends and remove chi-
meras. DADA2 aggregates reads into amplicon sequence 
variants (ASVs), which represent error corrected exact 
sequences that can delineate closely related bacterial taxa 
[17]. ASVs were then annotated using DADA2’s native 
RDPClassifier algorithm against the Silva138 database. 
Here, ASVs not annotated to the bacterial kingdom were 
removed, and so too were reads assigned to chloroplast 
and mitochondria. The fungal data was processed as per 
Frøslev et al. [28]. Here fungal data was processed exactly 
as the bacteria until ASV formation. ASV sequences 
underwent extraction using ITSx to extract only the ITS2 
region. These ITS2 sequences then underwent clustering 
into operational taxonomic units (OTUs) using a 98.5% 
clustering threshold, whichbetter represents fungal spe-
cies, and was deemed adequate for addressing biodi-
versity questions [13] while avoiding inflating diversity 

with ITS repeats from the same fungus. Finally, OTU 
sequences were assigned taxonomy using the UNITE 
fungal general release database with dynamic OTU clus-
tering (28/10/2022 release) using BLAST. OTUs not 
assigned to the fungal kingdom were removed. For both 
datasets, technical replicates were combined by filtering 
out ASVs/OTUs that were detected in single samples, 
and then reads from replicates were pooled into single 
samples. At this point, the extraction and PCR nega-
tive control samples were left with nominal amounts of 
reads for both bacteria and fungi (> 100 reads), suggest-
ing low rate of contamination and no longer consid-
ered. For the bacteria, many reads were assigned to the 
chloroplast and removed, leaving 517,657 reads from an 
initial 17,441,683 reads, accounting for a mean of 7,613 
reads per sample. For the fungi, a total of 3,961,348 from 
a total of 16,984,327 reads were retained, accounting for 
a mean of 55,965 reads per sample. Raw read counts then 
underwent a fourth root transformation and converted 
to relative abundances for use in downstream composi-
tional analyses. For estimates of phylogenetic diversity, a 
RaxML tree was created using Geneious Prime software 
(v2003.2.1; for bacteria and fungi separately) and calcu-
lated using the relative abundance data using the Vegan 
package of R [47].

Phylogenetic analyses of teosinte accessions
Genomic data was available for 39 of our teosinte sam-
ples (the 7 undetermined, 18 Parviglumis samples and 14 
Mexicana), and therefore samples without genomic data 
were omitted from downstream phylogenetic analyses 
(but retained in all other analyses) (Fig. S1). Genome data 
consisted of allele frequency data present in the Seeds 
of Discovery database (Hearne, Franco and Chen, [34]), 
which we used to estimate the genetic distance between 
pairs of teosinte accessions. This public database con-
sists of allele frequency data generated through pool-
sequencing of many of the wild and domesticated maize 
accessions present in the CIMMYT repository. Data was 
downloaded from the CIMMYT repository for the rele-
vant accessions. Allele frequencies were used to estimate 
the FST [12] between pairs of accessions and to build a 
genomic distances matrix.

Statistical analyses
Initially, differences in Shannon’s diversity between teo-
sinte accessions, modern lines (analysed as separate 
groups) and soil were calculated using a Kruskal-Wallis 
test followed by a post-hoc Dunn Test. Compositional 
differences were calculated using PERMANOVA and a 
post-hoc analysis performed using the pairwiseAdonis 
function (adjusting for multiple comparisons).

Teosinte samples were subsetted from the modern 
lines and soil samples and compared to environmental 
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parameters, with subsequent statistics performed on 
the combined teosinte dataset, but also repeated on the 
individual sub-species datasets (Parviglumis and Mexi-
cana - excluding hybrids). Numeric metadata parameters 
underwent z-normalisation before principal component 
analyses were performed on the soil and climatic data 
sets independently to simplify data. Three PCs were used 
for soil and two for climatic variables which explained 
over 80% of cumulative variation. Additionally, a princi-
pal co-ordinates of neighbourhood matrix (PCNM) was 
constructed using the GPS co-ordinates of ancestral teo-
sinte accessions (using the geodist package). PCNM1 and 
2 were used in downstream statistics. Finally, elevation 
(z-normalised) was included as a predictor variable since 
sampling was performed over mountainous regions of 
Mexico. For analyses of alpha-diversity, Shannon’s diver-
sity was correlated against individual explanatory param-
eters using spearman’s rank coefficients. For community 
composition analyses, forward selection was manually 
performed by performing individual PERMANOVAs 
(between community and environmental parameters) 
and adding parameters with the largest effects sizes to a 
combined model, until the additional variables were no 
longer significant. Additionally, correlations between 
families and individual taxa (relative abundance) and ele-
vation were performed using Spearman’s rank correlation 
coefficient. The possible interaction between genome 
and microbiome was analysed using two approaches. A 
matrix approach was taken, whereby a Bray-Curtis simi-
larity matrix for the bacterial/fungal community was cor-
related against the phylogenetic distance matrix using 
Mantel statistics and Procrustes. A second approach 
involved performing a principal coordinate analysis on 
the phylogenetic distance matrix, and using the Phylo 
PCs (1–4) as explanatory variables within PERMANOVA 
tests. While it is also possible to assess for different evo-
lutionary processes by correlating the phylogeny to the 
microbiome (with Blomberg’s K and Pagel’s lambda), 
low percentages of the microbiome were summarised 
by PCAs of the microbiome, and much lower than the 
phylogeny, therefore the PCs of the phylogeny were per-
formed instead.

Results
The root microbiome of modern maize lines differs from 
the range of teosinte accessions
Initially, we tested whether the root microbiome of 
domesticated lines (B73 and CML312) was outside of 
the natural variation of teosinte. Shannon’s diversity was 
compared between samples. For bacteria, there were 
no significant differences in Shannon’s diversity found 
between the modern lines, teosinte accessions and soil 
(H = 1.99, P = 0.575; Table S1; Fig.  2A). However, for the 
fungi, there were significant differences between samples 

(Fig.  2B) (H = 11.15, P = 0.011), being the highest in the 
teosinte accessions (4.37 ± 0.30), followed by CML312 
(4.29 ± 0.18), B73 (4.16 ± 0.18) and soil had the least 
(3.88 ± 0.15) fungal Shannon’s diversity. A post-hoc Dunn 
test revealed no significant differences between individ-
ual comparisons (Table S1).

There were more significant differences between sam-
ple types when comparing community compositions. For 
bacteria, an initial PERMANOVA revealed significant 
differences between sample types (R2 = 0.110, P = 0.001), 
and post-hoc analysis revealed all sample types differed 
from each other (Table S1; Fig. 2C). Similarly, the com-
position of fungi was found to be significantly differ-
ent between samples using PERMANOVA (R2 = 0.083, 
P = 0.001). Post-hoc analyses revealed significant differ-
ences between all root communities (B73, CML312 and 
teosinte accessions), but neither modern line significantly 
differed from soil (Table S1). Interestingly, a greater per-
centage of fungal variation was explained by sample type 
compared to the bacteria, and they also showed more 
distinct clustering in the ordinations (Fig. 2D).

The root microbiome of teosinte correlates with their 
parents’ environment
As we have teosinte originating from different environ-
ments, we were next able to explore whether the teosinte 
root microbiome varied with their ancestral environ-
ment. The parental environment was then correlated 
with their progenies root microbiome from the common 
garden experiment. For both the bacteria and fungi, the 
community composition correlated with ancestral envi-
ronment in the forward selection models (Table S2), 
accounting for ~ 4% of variation in each of the bacterial 
and fungal communities (Bacteria - R2 = 0.045, P = 0.003; 
Fungi - R2 = 0.039, P = 0.002). However, there were also 
correlations between ancestral elevation, climate and 
original sampling geographic location (PCNM1), and cli-
mate (PC1) correlated with the community composition 
within individual community analyses (but did not cor-
relate after elevation was added in the forward selection 
models) (Table S2).

Shannon’s diversity was also explored in relation to the 
parent’s environment. Here we found that only PCNM1 
(ancestral geographic location) correlated with bacte-
rial Shannon’s diversity (Rs=0.42, P = 0.004) and no envi-
ronmental parameters correlated with fungal Shannon’s 
diversity (Table S2).

The temperature-elevation-geographic gradient was 
correlated with many individual taxa
Elevation (of the parent accession) was used in statisti-
cal analyses, but as a representative for itself, climate and 
geography. This was performed as elevation explained the 
most variation in the community analyses, and it remains 
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stable unlike the climatic variables. Initially, correlations 
between ancestral elevation and individual family relative 
abundances were performed (Table S3). There were five 
bacterial families that varied with elevation (P-values). 
However, due to low sample numbers and a high num-
ber of families (resulting in many tests), these variations 
were not significant when P-values were adjusted for 
multiple comparisons (FDR; q-values). This included 
the Erwiniaceae which declined in relative abundance in 
the roots of samples whose parents came from higher/
colder temperatures (Rs=-0.340, P = 0.021, q = 0.158) 
(Fig.  3A), while the Comamonadaceae also showed 
the inverse relationship (Rs=0.310, P = 0.035, q = 0.177; 
Table S3). The Caulobacteraceae (R2 = 0.334, P = 0.021, 
q = 0.158) and Xanthomonadaceae (Rs=0.292, P = 0.046, 
q = 0.175) increased in relative abundance with ancestral 
elevation, being almost absent in the accessions originat-
ing from sea level and rising to approximately 2% mean 
relative abundance at 3,000 m elevation. Meanwhile, the 

Rubritaleaceae showed almost the exact inverse relation-
ship (Rs=-0.332, P = 0.023, q = 0.158), falling from approxi-
mately 2% in accessions originating from sea level to 
absence in accessions taken at high elevations (3,000 m; 
Table S3).

For the fungi, there were fewer trends between rela-
tive abundance and ancestral elevation (Fig.  3B), with 
two families varying with elevation at the P-value level, 
and none were significant after being adjusted for mul-
tiple comparisons (q-values; Table S3). This included the 
Glomeraceae (Rs=-0.353, P = 0.015, q = 0.315), which were 
shown to decline with ancestral elevation from approxi-
mately 1.8% at sea level to 0.2% at 3,000 m in elevation. 
Additionally, the Mortierellaceae declined with ancestral 
elevation from approximately 2% at ancestral sea levels to 
1% at 3,000 m (Rs=-0.290, P = 0.048, q = 0.333).

We additionally searched for individual taxa that signif-
icantly changed in relative abundance with ancestral ele-
vation (Table S4). There was one bacterial ASV assigned 

Fig. 2 Differences in bacterial (A) and fungal (B) Shannon’s diversity were visualised in boxplots, finding limited differences between sample types. Bars 
represent the lower and upper quartiles, and the line represents the median. Whiskers represent the end of observed data points, except for the dots, 
which represent outliers (defined as greater than 1.5 times the inter quarter range). Soil Shannon’s diversity from soil was 3.2 and 4.3 for bacteria, and 3.8 
and 4.0 for fungi. However, the bacterial (C) and fungal (D) composition each differed between each sample type (i.e. maize lines differed from each other, 
teosinte accessions and soil), which were visualised using non-metric multidimensional scaling
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to Chitinophaga ginsengisoli (ASV81) that significantly 
increased with ancestral elevation (Rs=0.550, P = 0.001, 
q = 0.010), which was absent in the accessions taken from 
sea level and rose to approximately 1% of the total com-
munity in accessions taken at high elevations (3,000  m; 
Fig. 4). There were however a further 33 ASVs that sig-
nificantly varied in the unadjusted P-values but not after 
correction for multiple comparisons (Fig. S2A).

As in the family analyses, analyses of individual fungal 
OTUs showed fewer significant patterns of variation with 
elevation than the bacteria, with no OTUs correlating 
within q-values, and 23 OTUs correlating using P-values 
(Fig. S2B; Table S4). These were from a range of differ-
ent families, but dominated by the Ascomycota phylum, 
including multiple potential pathogens. There were two 
OTUs assigned to Fusarium oxysporum that were cor-
related with elevation (at P-value only), with one sig-
nificantly increasing, while the other decreasing (Table 
S4). There were further OTUs assigned to a Phoma spe-
cies (OTU360), Bipolaris sorokiniana (OTU372) and 

Exserohilum turcicum (OTU328) that were putative 
pathogens that increased in relative abundance with 
ancestral elevation.

The evolutionary history of teosinte accessions correlated 
with the root microbiome
A phylogenetic distance matrix was calculated from 
genome data and used to correlate the host genetic 
similarity against the root bacterial and fungal commu-
nities (Bray-Curtis matrices) (for the 39 out of 49 teo-
sinte samples that had genome data available). Here, the 
bacterial community did not correlate with phylogeny 
using both Mantel (R = 0.074, P = 0.191) and Procrustes 
(R = 0.745, P = 0.142) analyses. However, the fungal com-
munity did for both Mantel (R = 0.248, P = 0.001) and 
Procrustes (R = 0.824, P = 0.002) statistics (Table 1). Since 
these statistics greatly simplify the phylogenetic varia-
tion, principal coordinate analysis was also performed on 
the phylogenetic distance matrix, and the resulting prin-
cipal coordinates (phylo-PCs) were used as explanatory 

Fig. 3 The relevant abundances of abundant families (present in 5 or more samples) were correlated against ancestral elevation revealing many potential 
correlations between both the bacteria and fungi (significance at P-levels but not after correction for multiple comparisons). Note for visualisation pur-
poses only, untransformed elevation was plotted (by z-normalised within statistics)
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variables within PERMANOVAs for the microbial com-
munities (Table S5). Within these PERMANOVAs, the 
Phylo-PC1 correlated with both the bacteria and fungi, 
accounting for approximately 4% of community variation 
in each (Bacteria - R2 = 0.045, P = 0.003; Fungi - R2 = 0.039, 

P = 0.002). Additionally, Phylo-PC4 correlated with the 
fungal community, accounting for another 4.5% of com-
munity variation (R2 = 0.045, P = 0.008). As a support-
ing analysis, phylogeny was correlated directly against 

Fig. 4 The relative abundances of abundant taxa were correlated against ancestral elevation revealing a Chitinophaga ginsengisoli (ASV81) that positively 
increased in abundance with ancestral elevation after adjusting for multiple comparisons. Note for visualisation purposes only, untransformed ancestral 
elevation was plotted (by z-normalised relative abundance was used within statistics)
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ancestral elevation, explaining 14.7% of phylogenetic 
variation (using PERMANOVA - R2 = 0.147, P < 0.001).

We assigned samples to highland and lowland sub-
species using morphology and phylogenetic data and 
explored for differences in their root microbiomes. In 
total there were 23 Parviglumis samples (lowland), 17 
Mexicana samples (highland) and 7 that were likely 
hybrids based on genomic and morphological data. These 
were samples taken from intermediate elevations, fur-
ther suggesting they were likely hybrids. Therefore, we 
excluded the likely hybrid samples and re-analysed for a 
sub-species effect, finding a significant difference in com-
munity between them (Bacteria - R2 = 0.045, P = 0.005; 
Fungi - R2 = 0.041, P = 0.005) but not in Shannon’s diver-
sity (Bacteria - W = 0.042, P = 0.837; Fungi - W = 0.651, 
P = 0.420). Finally, we reran a PERMANOVA test to cor-
relate ancestral elevation against the microbial communi-
ties while using sub-species as a conditional variable (i.e. 
controlling for it), finding a significant effect of elevation 

across sub-species (Bacteria - R2 = 0.052, P = 0.002; Fungi 
- R2 = 0.047, P = 0.006). We therefore explored the differ-
ences in the root microbiome associated with ancestral 
elevation between this sub-species (Fig. 5).

Patterns of variation with mexicana and Parviglumis
Sub-species were re-analysed individually to explore for 
associations between the ancestral elevation/tempera-
ture variation (i.e. their adapted regions) and their root 
microbiomes (Table S6). The composition of the root 
bacteria from Parviglumis significantly correlated with 
climate PC2 (R2 = 0.089, P = 0.004) and ancestral elevation 
(R2 = 0.068, P = 0.018) within the final model. Bacterial 
Shannon’s diversity significantly varied with the ancestral 
climate PC2 (Rs=-0.513, P = 0.012), soil PC2 (Rs=0.577, 
P = 0.004), and PCNM1 (Rs=0.449, P = 0.032) using Par-
viglumis samples only (Table S6). Meanwhile there were 
no significant correlations (neither composition nor 
Shannon’s diversity) between the root fungi of Parviglu-
mis plants and any ancestral environmental properties. 
For the Mexicana samples, there were no correlations 
between the ancestral environment and bacterial com-
position, but PCNM1 (ancestral geography) negatively 
correlated with bacterial Shannon’s diversity (Rs=-0.657, 
P = 0.005). However, the fungal communities of Mexicana 
correlated with ancestral elevation, explaining 8.6% of 
community variation (R2 = 0.086, P = 0.022). There were 
also no correlations with fungal Shannon’s diversity and 
the explanatory variables (Table S6).

Table 1 Teosinte genome data was used to construct a 
phylogenetic distance matrix. This was then correlated against 
the Bray-Curtis similarity matrices for the bacteria and fungi using 
Mantel and Procrustes statistics

Mantel statistic Procrustes 
permutation

Comparison correlation p-value correlation p-value
Phylogenetic and 
bacterial dataset

0.074 0.191 0.745 0.142

Phylogenetic and 
fungal dataset

0.248 0.001 0.824 0.002

Fig. 5 A phylogenetic tree was created using genomic data from 39 teosinte accessions. Here the interplay between the phylogeny was linked to the 
bacterial (as principal components 2 and 5 [PC2 and PC5]) and fungal (also PC2 and 5) communities, elevation and sub-species using heatmaps
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Correlations between individual families and ancestral 
elevation were repeated using the divided sub-species 
datasets (Table S7). In general, the change in both fun-
gal and bacterial abundance was consistent between 
sub-species, but significance was further limited by low 
sampling number. For example, the Chitinophagaceae 
(Parviglumis: Rs=0.289, P = 0.181 q = 0.426; Mexicana: 
Rs=0.056, P = 0.831, q = 0.873) and Comamonadaceae 
(Parviglumis: Rs=0.430, P = 0.041 q = 0.285; Mexicana: 
Rs=0.302, P = 0.240, q = 0.623) increased in abundance 
with ancestral elevation in both sub-species and the 
Erwiniaceae decreased in both (Parviglumis: Rs=-0.464, 
P = 0.026 q = 0.270; Mexicana: Rs=-0.305, P = 0.233, 
q = 0.622) (Table S7), but none significantly.

Since the Chitinophagales ginsengisoli OTU(81) sig-
nificantly increased in abundance with ancestral eleva-
tion in the combined dataset, it was analysed between 
sub-species. It trended upwards within both Parviglumis 
(Rs=0.346, P = 0.001 q = 0.814) and Mexicana (Table S8), 
although non-significantly (Rs=0.345, P = 0.174, q = 0.814). 
Meanwhile, the other individual taxa were not robustly 
explored between sub-species as there were simply too 
few positive occurrences in the low number of samples to 
proceed reliably with.

Finally, we correlated the phylogeny to the microbial 
communities of each sub-species. However, there were 
no significant correlations between the genome and 
microbiome within neither the matrix-based approaches 
(Mantel and Procrustes) nor the principal coordinate-
based approach (Table S9).

Insights into the root microbiome of modern maize from 
teosinte accessions
Since the modern maize lines used in this study were 
domesticated for colder, temperate regions (as most 
are), we expected the two modern lines to cultivate 
more microbes associated with colder temperatures/
higher elevation. We therefore compared the relative 
abundances of the families of the five bacterial and fun-
gal species that correlated most strongly with ancestral 
elevation (Table S10). For the bacteria, only the Rubrita-
leaceae significantly differed (H = 28.89, P < 0.001), with it 
being markedly higher in the CML312 line compared to 
all other sample types (Fig. S3A). While not significantly 
different, the modern lines cultivated equal to or higher 
abundances of Caulobacteraceae (H = 8.15, P = 0.008), 
Comamonadaceae (H = 5.53, P = 0.237) and Xantho-
monadaceae (H = 9.02, P = 0.060), all of which increased 
with elevation. For the fungi, only the Pleosporaceae sig-
nificantly differed between groups (H = 10.32, P = 0.035; 
Table S10), being significantly higher in the B73 line than 
all other sample types, while CML312 and the lowland 
teosinte accessions had lowest relative abundances (Fig. 
S3B). The other fungal families showed little difference in 

relative abundance between the elevations, and between 
the teosinte accessions and modern lines.

Discussion
In this work, we shed new information on understanding 
the regulation of the root microbiome, finding that the 
ancestral environment correlates with the root microbi-
ome of the progeny. While it has been well documented 
that there are differences in the root microbiome both 
between and within plant species [32, 42], there are con-
flicting results as to whether this variation is random 
[48], or vary as a consequence of differences in regulation 
by the plant [14]; Matus-Acuña, Caballero-Flores and 
Martínez-Romero, [43]; Lund et al., [42]. Here we found 
that the microbiome and genome (phylogeny) were cor-
related, suggesting this variation is non-random. Further, 
we found a correlation between this genome-microbi-
ome pattern and the ancestral environment (elevation/
temperature), suggesting differences in the genome pre-
condition the root microbiome for their environment. 
Further, these effects might be obfuscated within mod-
ern crops during the domestication process, of which 
the majority of this type of research has been tested in 
[14, 53]; Gholizadeh, Mohammadi and Salekdeh, [31]). A 
strength of this work is that the common garden experi-
ment was performed at an intermediate elevation within 
teosinte’s natural range, likely exposing them to much of 
their native soil microbiome which they have potentially 
co-evolved with [50]. However, one additional consider-
ation is that the teosinte accessions found at the lowest 
and highest elevations were likely exposed to increasingly 
dissimilar soil microbiomes, and future experiments 
would benefit from performing reciprocal transplants 
(i.e. growing lowland species in highland and vice versa) 
to confirm that differences in the regulation of the root 
microbiome are consistently observed despite changing 
soil microbiomes.

Further support for teosinte accessions being able to 
manipulate their root microbiome comes from more 
detailed analyses of these compositional changes. Inter-
estingly, the bacterial families Comamonadaceae, Cau-
lobacteriaceae and Xanthomonadaceae were all found to 
be enriched in domesticated maize under cold stress [10], 
and here we found these to be in higher abundance in 
the plants taken from higher ancestral elevations/lower 
temperatures (before P-adjusting), and in higher abun-
dances in the modern maize lines that have been bred for 
a temperate environments that are more exposed to cold/
chilling stresses. Despite the underlying spatial varia-
tion potentially confounding this relationship (the mod-
ern lines were not interspersed with the modern lines, 
but grown adjacently), several of these families have also 
been found to be enriched in other plant species under 
cold-stress [30, 49]. Together, these suggest that teosinte 
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plants can shape their root microbiome for specific func-
tions, and cold tolerance in this instance. Microbial sym-
bionts have been proven to be capable of improving their 
host’s resilience to low temperatures [1], and increases 
in the abundance of these microbes would clearly ben-
efit the host. While the process of fine-scale manipulat-
ing the root microbiome must undoubtedly be complex, 
multiple mechanisms by which this could be achieved 
have been identified. For example, changes in root mor-
phology [40], and changes in the composition and rate of 
rhizoexudates have been shown to affect the composition 
of the root microbiome (Baudoin, Benizri and Guckert, 
[8]), with the root morphology of teosinte accessions 
previously linked to their ancestral environment [44]. 
While less is known about the rhizoexudates of teosinte, 
the benzoxazoids are rhizoexudates produced by maize 
[20] (and other cereal crops [41]) that have been shown 
to attract and repel specific bacteria [45]. Therefore, this 
process of root microbiome optimisation is not outside of 
the realm of possibility. Indeed, a recent study of maize 
landraces linked a single gene to ancestral soil nitrogen 
and the root bacteria [33].

For fungi, the Glomeraceae are arbuscular mycor-
rhizal fungi (AMF) which correlated negatively with 
ancestral elevation/temperature. Results here are in line 
with previous findings suggesting that AMF colonisa-
tion decreases under cold stress within maize plants 
(Zhu, Song and Xu, [60]). However, AMF colonisation 
also provided a greater fitness benefit under cold condi-
tions, emphasising the need to consider the interactions 
between the host genome, microbiome and environment.

The results were confounded by sampling teosinte 
accessions from two sub-species associated with low- and 
highlands [29]. When samples were partitioned into indi-
vidual sub-species, the power of statistical analyses was 
limited by low sampling numbers (particularly of Mexi-
cana). However, within sub-species, we still observed 
correlations between ancestral elevation/temperature 
and the root microbiome (but not between host genomic 
variation and the root microbiome within sub-species). 
Further investigations of the bacterial and fungal fami-
lies suggested that they trended similarly over the ances-
tral elevation/temperature gradient across sub-species, 
although again,  results were limited in statistical power. 
It therefore seems likely that results here were not exclu-
sively driven by differences in sub-species. Repeating this 
experiment with larger sampling numbers, biological 
replicates and incorporating the temporal-spatial vari-
ability of the microbiome into analyses would improve 
the robustness of these results. Finally, it needs to be con-
firmed that the observed compositional differences in the 
root microbiome do impact the host’s cold tolerance in a 
biologically meaningful way [57].

Conclusions
Here we found that the host genome, ancestral environ-
ment and root microbiome were correlated. This would 
suggest that plants can, at least partially, influence their 
root microbiome to promote specific functions. How-
ever, we next need to go beyond correlations to deter-
mine whether these differences in the composition 
influence the host phenotype. Given the importance of 
microbes to many plant functions [56], and the number 
of mechanisms which plants can influence root microbes 
(Baudoin, Benizri and Guckert, [8]; King et al., [40], we 
strongly believe they do. Ultimately, if this can be com-
prehensively proven, it would confirm that the root 
microbiome can be manipulated as a trait within breed-
ing programmes to promote the growth and resilience of 
crops (Ravanbakhsh, Kowalchuk and Jousset, [51]).
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