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Background
Genome-centric metagenomics allows the reconstruc-
tion of draft genomes of single microorganisms called 
metagenome-assembled genomes (MAGs) [1]. Analysis 
of diverse MAGs from both phylogenetic and functional 
perspectives enables a comprehensive exploration of the 
taxonomic composition and functional processes within 
the sampled microbial community [2, 3]. From an eco-
logical standpoint, metagenomics studies offer invalu-
able insights into ecosystem functions and responses 
to environmental dynamics [4]. Associations of micro-
organisms to specific functional roles are pivotal for 
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Abstract
Background In recent years, there has been a rapid increase in the number of microbial genomes reconstructed 
through shotgun sequencing, and obtained by newly developed approaches including metagenomic binning and 
single-cell sequencing. However, our ability to functionally characterize these genomes by experimental assays 
is orders of magnitude less efficient. Consequently, there is a pressing need for the development of swift and 
automated strategies for the functional classification of microbial genomes.

Results The present work leverages a suite of supervised machine learning algorithms to establish a range of 86 
metabolic and other ecological functions, such as methanotrophy and plastic degradation, starting from widely 
obtainable microbial genome annotations. Tests performed on independent datasets demonstrated robust 
performance across complete, fragmented, and incomplete genomes above a 70% completeness level for most 
of the considered functions. Application of the algorithms to the Biogas Microbiome database yielded predictions 
broadly consistent with current biological knowledge and correctly detecting functionally-related nuances of archaeal 
genomes. Finally, a case study focused on acetoclastic methanogenesis demonstrated how the developed machine 
learning models can be refined or expanded with models describing novel functions of interest.

Conclusions The resulting tool, MICROPHERRET, incorporates a total of 86 models, one for each tested functional 
class, and can be applied to high-quality microbial genomes as well as to low-quality genomes derived from 
metagenomics and single-cell sequencing. MICROPHERRET can thus aid in understanding the functional role of 
newly generated genomes within their micro-ecological context.
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understanding their role in the community, and to elu-
cidate ecological niches [5–7]. Consequently, predicting 
the functional association of organisms from metage-
nomic data emerges as a critical task in community 
analysis. Advancements in sequencing technologies and 
metagenomics, together with the increase in the num-
ber of metagenomic studies, led to a massive generation 
of sequencing data from various microbial communities. 
Large-scale initiatives such as the Tara Oceans Project 
[8], the Earth Microbiome Project [9], and the Unified 
Human Gastrointestinal Genome [10] have significantly 
expanded our understanding through in-depth sequenc-
ing of microbial communities. Additionally, there is an 
increasing capacity for obtaining a high number of Sin-
gle-Amplified Genomes (SAGs) from single microbial 
cells through single-cell sequencing techniques [11]. The 
abundance of data obtained resulted in the creation of 
databases of MAGs and SAGs from different environ-
ments such as the genomes from the Earth Microbiome 
Project, Ocean Microbiomics Database, and the Human 
Gastrointestinal Genome catalog [12–14].

The high number of MAGs obtained from metage-
nomic experiments, and the issues associated with their 
quality, represent a challenge for manual functional asso-
ciation, necessitating the development of specialized 
bioinformatics tools [15–17]. The functional annotation 
of MAGs typically involves the identification of specific 
genes that are recognized for their association with dis-
tinct functions or metabolic pathways [10–12]. This pro-
cess often relies on information sourced from databases 
such as the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) [18]. Since the genomic sequences are frequently 
incomplete, it could be hard to define functional asso-
ciations based on the identification of complete KEGG 
functional pathways. The efficacy of genomic annota-
tions and subsequent mapping onto databases is con-
tingent upon the availability of functional information, 
thereby limiting its applicability to well-known micro-
bial communities. Moreover, information on annotated 
genes may be absent from databases, and genes associ-
ated with unknown functions might lack categorization 
[19]. Additionally, genes crucial for a particular function 
may belong to pathways not directly linked to that func-
tion or they can lack functional annotation [20]. Thus, 
tools such as METABOLIC [16] and NCycDB [21] are 
widely used and map the proteins predicted from MAGs 
onto several databases to recover the annotations and to 
infer functional traits related to metabolites. These tools 
are very efficient when the traits are associated with well-
defined metabolic pathways, but they fall short when the 
target is to discover functions that are not associated 
with existing KO codes or cannot infer them if genes 
are missing. Another possible strategy is to exploit the 
knowledge gathered in the last few years into extensive 

databases for functional association [17]. These databases 
store functional information of several phenotypic traits 
linked to many different microbes, allowing the connec-
tion of the stored organisms to their metabolic or func-
tional traits [17, 22, 23]. These collections of data mostly 
result from literature-based assignments and can either 
be specific for a metabolic process of interest or general, 
containing information on several different metabolic/
functional traits [24, 25]. One prominent example is the 
Functional Annotation of Prokaryotic Taxa (FAPRO-
TAX), a literature-based database designed for the func-
tional classification of taxa [26]. It currently includes 92 
phenotypic traits associated with more than 5,000 dis-
tinct taxonomic entries, and it has been used in several 
studies as a source of microbial functional information, 
and to classify organisms into functional groups [27–30]. 
The functions within FAPROTAX predominantly encom-
pass metabolic functions attributed to microbial species, 
such as their ability to use, convert, or produce specific 
compounds. Notably, while FAPROTAX offers a valu-
able resource for associating microbial species with their 
functional capabilities, the analysis is challenging. The 
process can be prone to inaccuracies, time-consuming, 
and computationally demanding due to the high dimen-
sionality of the dataset. For example, the analysis of 
species not present in the database, such as the major-
ity of MAGs from metagenomics studies, is unfeasible 
and there may be cases where genomes that are present 
may not contain genes for particular functions due to 
deletions or can have additional genes for functions not 
explored in FAPROTAX. Moreover, the database by itself 
is a text file that is hard to query and contains outdated 
taxonomic names for certain species. Thus, verifying 
whether a genome possesses a particular function is not 
always straightforward and may require extensive analy-
ses. In the case of MAGs, which frequently have incom-
plete genomes, entire pathways could not be present due 
to the intrinsic limitations of the approach.

Consequently, alternative approaches must be explored 
to efficiently harness and glean insights from the vast 
knowledge stored in FAPROTAX in a faster and more 
user-friendly manner.

The application of supervised machine learning in 
diverse biological domains, including genomics, evolu-
tionary biology, ecology, structural biochemistry, and 
drug discovery, has been instrumental for predictive pur-
poses [31–33]. Within this framework, machine learning 
methods have proven effective in functionally classify-
ing organisms based on their genomic content [34–36]. 
Notably, these techniques exhibit enhanced predictive 
efficiency for metabolic traits in non-model organisms 
compared to constraint-based modeling [37, 38]. Indeed, 
this approach does not need prior knowledge about the 
non-model organisms, since the classifier learns the 
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required information for the prediction from data of 
the model organisms used during the training step. To 
obtain efficient models, extended datasets for training are 
needed. The high amount of data stored in FAPROTAX 
is suitable to be used as a training set for machine learn-
ing algorithms to obtain a tool that classifies organisms 
according to their FAPROTAX functional group.

This approach was previously undertaken by Farrell 
and colleagues [34], who integrated FAPROTAX func-
tional associations with a set of NCBI genomes in a data-
set comprising 9407 samples. Through these data, they 
devised a machine learning approach to infer phenotypic 
traits from genomic annotations, successfully identifying 
genetic markers associated with phenotypic functions 
stored in FAPROTAX. The tool demonstrated efficacy by 
accurately classifying 65 phenotypic traits across large-
scale metagenomic datasets from diverse environments. 
However, the strategy applied to choose the best super-
vised machine learning algorithm might not have been 
optimal. The choice was based on the model that gen-
erally outperformed others across all trained classifiers, 
potentially overlooking subtle performance variations 
within each functional group. Furthermore, the absence 
of an optimization step for model hyperparameters may 
have influenced classifier performance. Importantly, the 
FAPROTAX dataset was solely employed as a source 
of functional information for genomes collected from 
NCBI, neglecting its potential as a reservoir of genetic 
information. Since the taxa-function links in the database 
imply that every organism in a taxon can perform the 
associated functions, a more effective approach would 
involve initially compiling the taxonomic groups from 
FAPROTAX and collecting genomes from these taxa 
across various public databases. By training the models 
on the retrieved genomes it would be possible to increase 
the available data and fully leverage the information 
stored in the FAPROTAX database.

Building on the promising finding described above, the 
primary objective of this work is to develop a tool dedi-
cated to inferring microbial functional traits from vectors 
of gene annotations. The approach involves the opti-
mization of various supervised machine learning algo-
rithms, fine-tuned and trained using data extracted from 
the FAPROTAX database. The end goal is to systemati-
cally classify organisms into functions and evaluate the 
efficacy of the selected models in handling incomplete 
genomes. The tool was employed to predict the functions 
of MAGs previously recovered from anaerobic digestion 
environments, showcasing its applicability in unraveling 
the functional attributes of microbial communities within 
specific ecological niches and providing practical insights 
into the functional dynamics of microbial communities.

Methods
Dataset generation
A comprehensive representation of the dataset genera-
tion procedure is provided in Figure S1. To extract rele-
vant information from the FAPROTAX database (version 
1.2.6), a custom FAPROTAX parser written in Python 
was developed. The FAPROTAX information, stored in 
a plain text file (txt), featured 92 functions, i.e. the name 
of the functional group, followed by a list of affiliated 
taxa. Each group entry in the database consists of a list of 
descending taxonomic levels separated and delimited by 
asterisks (“*”) characters. The asterisks indicate that there 
might be higher or lower taxonomic levels that have 
been included in the name. The database allows overlaps 
between groups and the presence of duplicate entries 
within a group. Set operations like sum, subtraction, and 
intersection are supported between functional groups, 
generating a hierarchical structure of the database. The 
script, taking the .txt file as input, identified functional 
group names and stored associated entries without rep-
etitions in a dictionary. This process yielded a 5,008 × 92 
matrix, with taxonomic groups as rows, functional 
groups as columns, and binary values (“1” or “0”) indicat-
ing membership in functional groups. This list of unique 
taxonomic entries was used to associate FAPROTAX 
taxonomic units with their NCBI ID [39]. This step was 
crucial to retrieve the genomes of organisms stored in 
FAPROTAX from the NCBI microbial genome database, 
but it was hindered by several factors, including typos, 
the use of legacy taxonomy, and the frequent updates of 
the NCBI taxonomy database which sometimes make the 
stored taxonomy obsolete. Information such as organ-
isms’ IDs, ranks and lineages was retrieved from files 
downloaded from the NCBI taxonomy database. Differ-
ent strategies were implemented to couple the taxonomy 
names to NCBI IDs, searching for perfect and imperfect 
matches between the database entries and the taxonomic 
groups stored in NCBI files. Among the 5,008 database 
entries, 513 referred to the same organisms, and redun-
dancy was removed by considering the entries only once. 
The resulting IDs were combined with the ones obtained 
from searching the list of 5,008 unique database entries 
on the NCBI taxonomy browser. Some of the undetected 
IDs were manually searched and checked. 4,732 taxa 
were successfully identified, while the remaining 276 
could not be detected because of typos or because they 
referred to obsolete NCBI versions. Identifiers wrongly 
associated with more than one entry were also present. 
In total, 4,214 unique IDs were retrieved.

With the obtained NCBI IDs, genomes associated with 
taxa were downloaded from the NCBI database to con-
struct a custom dataset for training the machine learning 
tool. The FAPROTAX database includes entries at sev-
eral different taxonomic ranks: among the detected 4,214 
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unique NCBI IDs, 3,268 were associated with species or 
lower ranks (subspecies, serotype, strain, and isolate), but 
IDs referring to higher taxonomic levels were also fre-
quently present (Table S1).

The script gimme_taxa.py, from ncbi-genome-down-
load (version 0.3.3) [40], was used to fetch all the descen-
dants’ taxa IDs of the 3,382 IDs found as perfect matches 
between FAPROTAX and NCBI entries.

The remaining IDs were kept aside for validation pur-
poses. The script returned 115,446 descendant IDs, with 
a subsequent check revealing 34,441 genomes in the 
RefSeq database, including 4,329 complete genomes. A 
Python pipeline was developed to investigate the taxo-
nomic distribution of the available genomes at any given 
taxonomy level. The script associated each genome with 
its NCBI ID and with its rank and traced back the ances-
tors with the desired rank. The script returned outputs 
describing the distribution of the genomes at the given 
rank, as a file with the percentage of genomes sharing a 
common ancestor. Investigating the distribution of the 
number of genomes per species revealed that most of the 
species (98.9%) were characterized by a maximum of 30 
genomes, with only 84 species with more genomes. Thus, 
a threshold of 30 genomes per species was set for down-
loading. These genomes were chosen at random from the 
available ones, prioritizing complete genomes if available, 
selecting 14,725 for the download. Quality control was 
performed by CheckM2 [41], to assess microbial genome 
quality, and genomes were filtered removing those with 
completeness lower than 90% and contamination higher 
than 5% [42]. The remaining 14,364 genomes were anno-
tated by eggNOG-mapper (version 2.1.10) [43] to obtain 
the list of KEGG orthologs mapped to each genome. 
The gene finding step was performed by using Prodi-
gal [44]. A dataset composed of two matrices was cre-
ated: a features (KOs) matrix, which stored the genomic 
information as the copy number of the KOs, and a label 
(function) matrix, which associated each genome to the 
FAPROTAX functional groups.

Machine learning classifiers
This study aimed to train a supervised machine learning 
tool with as many classes as the number of FAPROTAX 
groups that allowed each genome to perform multiple 
functions. Thus, separate binary classifiers were trained 
for all the classes. Here, we use the term “functional class” 
to refer to the set of genomes associated with each spe-
cific function. Functional classes were used in the con-
struction of function-specific binary classifiers: genomes 
belonging to a class served as positive labels for training 
the associated model, while the remaining genomes in 
the custom dataset served as the negative ones. Func-
tional classes differ from FAPROTAX functional groups, 
which consist of taxonomic units rather than genomes. 

Each functional class was derived from extracting infor-
mation from the corresponding FAPROTAX group as 
described above.

Three FAPROTAX groups, namely “nonphotosynthetic 
cyanobacteria,” “anammox,” and “chloroplasts,” were 
excluded due to the limited sample size of their corre-
sponding classes (less than 3 genomes). Eighty-nine func-
tion-specific classifiers were trained on 80% of the dataset 
created from the FAPROTAX database (training set) and 
their performances were evaluated on the remaining 20% 
(test set) (Figure S2) [45].

Normalization of datasets, involving KO copy num-
bers, was performed to enhance model performance by 
converting them into normally distributed data with zero 
mean and unit variance during the preprocessing stage.

Given the dataset’s high imbalance, genomes were 
distributed between the train and test sets in a strati-
fied manner. Evaluation metrics, particularly Matthew’s 
correlation coefficient (MCC), were employed for their 
reliability in assessing both balanced and imbalanced 
datasets [46, 47]. Three supervised machine learning 
algorithms—logistic regression (LR), random forest (RF), 
and support vector machines (SVM)—were implemented 
using the Python scikit-learn library (version 1.2.2) [48], 
along with a neural network algorithm implemented 
using Keras (version 2.11.0) [49]. The training process 
involved the development of 89 function-specific classi-
fiers, each evaluated on the corresponding test set. The 
best-performing model for each class (Table S2), based 
on the highest MCC score, was selected and stored in 
.sav files for sklearn implementations and .hdf5 for the 
neural network.

A nested cross-validation procedure was performed for 
LR, RF, and SVM on the train set to reduce the bias in 
combined hyperparameter (HP) tuning and model evalu-
ation. This approach consists of two nested CV loops, HP 
selection is performed in the inner one, while the outer 
one computes an unbiased estimate of the expected accu-
racy of the algorithm. The procedure returns the perfor-
mance score of n trained and tuned models. Results can 
be compared to select the optimized model.

HP were tuned with the grid search approach, by evalu-
ating all the possible combinations of a given set of HP 
and selecting the combination with the highest evalua-
tion score.

In LR models, the regularization strength (C) and pen-
alty were optimized (Table S2). For RF, the grid search 
procedure was applied for tuning the employed number 
of used trees and the size of the random subsets of fea-
tures to consider when splitting a node of the decision 
trees. Finally, the kernel and penalty value (C) were tuned 
for SVM. 3-fold stratified cross-validation was used both 
on the outer and inner loops. A three-element list of best 
HP combinations was returned, along with their average 
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MCC scores calculated during the grid search procedure 
and their MCC scores obtained from testing the model 
on the k set in the outer loop. These results were com-
pared to choose the best HP combination.

For neural networks, the hyperparameter optimization 
process was carried out using 80% of the total FAPRO-
TAX dataset by testing different combinations of Drop-
out values and the number of Units in the Dense layer. 
The optimization was carried out 5 times and the best set 
of hyperparameter combinations was selected based on 
the best results on the 20% of the remaining dataset, as 
previously described for the other models. The chosen 
hyperparameters were used on the whole training set to 
get the final MCC value of the model.

Function-specific models were grouped at a higher 
level to investigate the performance of the tool in a more 
biologically contextualized manner. The 89 predicted 
functions were clustered into 7 superclasses with differ-
ent sizes: “carbon metabolism”, “nitrogen metabolism”, 
“sulfur metabolism”, “parasites or symbionts”, “photot-
rophy”, “arsenic ions metabolism” and “metals metabo-
lisms”. 4 functions were not grouped due to their peculiar 
characteristics. The evaluation metrics for each func-
tional superclass were obtained by combining predictions 
and observations from the individual models to calculate 
a comprehensive value.

In this project, feature importance (FI) was computed 
to infer the relationship between gene KOs and func-
tions and to retrieve the more relevant KOs for the clas-
sification [50]. Model-dependent methods were used to 
extract the importance scores directly from the models. 
In logistic regression, the weights or coefficients of the 
model features were retrieved and the coefficients with 
scores different than 0, indicating that they affected the 
classification process, were stored. The number of result-
ing KOs varied greatly according to the penalty used, 
which was chosen in the HP tuning step. In the RF classi-
fiers, scores representing the features’ relative importance 
were directly extracted from the models. These were 
estimated by the expected fraction of samples in which 
a feature contributes to the final prediction decision. In 
SVM models, feature importance extraction strongly 
depends on the used kernel. In linear kernel algorithms, 
it was possible to retrieve the trained linear weights asso-
ciated with features as a measure of their importance. 
On the other hand, models with non-linear kernels did 
not allow extracting this information since the data are 
transformed by the kernels into a space different from the 
input one. To retrieve the desired scores without employ-
ing time-consuming approaches, SVM models with lin-
ear kernels were exclusively trained to obtain the list of 
the features trained linear coefficients. NN models were 
analyzed with SHAP [51] however, it was not possible 
to retrieve meaningful genes from them due to the large 

number of features. Considering that SHAP returns the 
importance of each feature for each prediction, there was 
not a consensus on the main KOs contributing to the 
classification. To obtain the list for all the classifiers for 
comparison, the second best trained algorithm was used 
for the functions trained with NN. The resulting lists of 
ranked KOs per classifiers were filtered for scores differ-
ent from 0 (Table S3). If the number of features was too 
high to be analyzed, only 10% of KOs at the top and bot-
tom of the lists were investigated.

Tool validation
The final tool underwent validation across three distinct 
datasets to ensure its robustness and reliability. First, 
MICROPHERRET was tested on an independent set of 
complete genomes from the FAPROTAX database; these 
genomes were retrieved from the 1,350 NCBI IDs which 
were associated with the database taxa as non-perfect 
matches and were not included in the initial dataset 
creation process (Figure S1). The genome filtering and 
download processes previously reported were applied, 
and overlaps between the detected genomes and the 
training dataset were checked. 4,146 complete genomes 
were obtained and associated with the FAPROTAX func-
tional groups for comparison with the classifiers’ results 
(Table S2).

Moreover, a dataset of simulated fragmented genomes 
(SGF) was created by randomly fragmenting the col-
lected 4,146 genomes to test MICROPHERRET perfor-
mance on metagenomic data. A previously developed 
Python script (De Bernardini N., personal communica-
tion) was used for the fragmentation procedure. The 
tool fragments genomes by removing random sequences 
of selected lengths sampled from a normal distribution 
until the desired completion percentage is achieved. 
Genome completion is estimated with respect to the spe-
cies’ genome size, thus not considering the direct effect 
on gene content. Three separate datasets were obtained, 
based on the target percentage of completeness: 90%, 
70%, and 50%, corresponding to the 10%, 30% and 50% of 
genome length removed.

MICROPHERRET was further tested on the Biogas 
Microbiome database, composed of 4,568 metagenomes 
assembled genomes from 314 samples from anaerobic 
digestion environments [52, 53]. 635 MAGs were found 
to be present in FAPROTAX and were associated with 
their functional groups by using taxonomic information 
only. These MAGs were used for validation purposes 
(Table S4), while the remaining ones were excluded since 
the missing association with the database groups did not 
allow information to be used as a comparison with the 
prediction results. However, the tool was also used on the 
remaining portion of the dataset to predict the associated 
functions.



Page 6 of 20Bizzotto et al. Environmental Microbiome           (2024) 19:58 

Each dataset was functionally annotated with eggNOG-
mapper and was made consistent with the training set of 
the final tool by adjusting the number of KOs to match. 
Subsequently, the datasets were scaled and trained with 
function-specific scalers and classifiers. If functions asso-
ciated with genomes were known, the MCC and confu-
sion matrix of each classifier were calculated to evaluate 
the performance on the validation sets.

The computational time required for training the entire 
89-function specific classifiers on the largest used vali-
dation set (4,146 complete genomes) was 1 h 9 min and 
41  s (4,181  s), with an average of ≈ 1 predicted genome 
per second. The measured peak memory was 6.1 Gbyte. 
The analysis was performed using a 12th Gen Intel(R) 
Core(TM) i9-12900KF CPU with 32GB of RAM.

Pipeline to refine functional classifiers
A pipeline to allow the creation of a curated classifier for 
a class of interest was developed. The classifier is trained 
on a modified version of the FAPROTAX database, with 
genomes associated with the target function provided 
directly as input to the pipeline. The script takes as input 
the name of the functional class for training the classifier, 
and the folder containing the genomes belonging to the 
class annotated by eggNOG-mapper. If the given func-
tional class is already present in the training set, the pre-
viously associated genomes are removed, and replaced 
by those provided by the user. Moreover, if the genomes 
provided by the user as part of the new class are already 
present in the training set from FAPROTAX, they are 
removed from the dataset and left only in the new class. 
This precaution is taken to prevent these genomes from 
being part of both the set associated with the function 
and not associated with the function. Such a situation 
could introduce a misleading signal for the model and 
potentially impede accurate classification.

Genomes associated with the function might not be 
used to create the new classifier class, e.g., some genomes 
may be kept aside for validation. The eggNOG-mapper 
output files are used to build the feature matrix with KOs 
as columns and genomes as rows. The newly created 
training set is then used to train the new classifier with 
the same methods explained above. The new classifier is 
provided as output by the pipeline, ready to be used for 
predicting whether the input species of interest can per-
form the newly defined function.

Case study: acetoclastic methanogenesis
The described pipeline was used to create a curated 
classifier for the functional class “acetoclastic methano-
genesis”. Fifteen genomes belonging to the Methanosar-
cina, Methanothrix, and Methanocalculus genera were 
included in the class. The genomes were annotated with 
eggNOG-mapper and the output files were provided as 

input to the pipeline. A list of genomes of 17 Methano-
sarcina species associated with the function, which were 
kept aside for validation purposes, was removed from the 
original training set. Among these 17 genomes, 9 were 
positively associated with the FAPROTAX group “metha-
nogenesis by disproportionation of methyl groups” but 
were erroneously not included in the acetoclastic class. 
This was a consequence of the structures of these two 
groups in FAPROTAX, where the “acetoclastic metha-
nogenesis” group consisted of four Methanosarcina 
species and the entire Methanosaetaceae family, while 
the “methanogenesis by disproportionation of methyl 
groups’’ group was characterized by the entire Methano-
sarcinaceae. The new dataset included a total of 14,352 
genomes and 11,470 KOs, with the provided 15 genomes 
positively associated with the function, and the remain-
ing ones from the FAPROTAX-created dataset as nega-
tively associated. The curated classifier was utilized on 
the two previously employed datasets, namely the col-
lection of 4,146 genomes obtained from FAPROTAX 
and the Biogas Microbiome database. Additionally, it 
was applied to a custom-created dataset, comprising the 
mentioned 17 genomes of Methanosarcina associated 
with acetoclastic methanogenesis, and 100 genomes of 
organisms engaged in cellulolysis, fermentation, sulfate 
reduction, and hydrogenotrophic methanogenesis. The 
genomes of organisms performing these functions were 
sourced from the BacDive database and annotated using 
eggNOG-mapper.

Results
Genomic and functional data characterization
In order to develop classifiers for inferring functions, 
a custom dataset with genomes and information on 
their functions was developed for training the machine 
learning tool. The FAPROTAX database was used in a 
two-step process as a source of information. Initially, 
taxonomic groups within the database were employed to 
assemble the dataset by fetching corresponding genomes 
from the NCBI database [54] (cited December 2023). 
Subsequently, the detected taxa and the FAPROTAX 
functional groups were associated with their correspond-
ing entry in the database (Fig. 1).

By parsing the FAPROTAX database it was found that 
it encompassed 5,008 taxonomic groups, unevenly dis-
tributed across 92 functional groups. Most of the data-
base entries (94.5%) were successfully assigned to NCBI 
IDs in order to fetch and download the genomes from 
NCBI (Figure S3). Starting from 3,382 NCBI IDs at dif-
ferent taxonomic levels, a total of 14,725 genomes were 
recovered (Figure S1), representing 7,948 species span-
ning 39 phyla.

Quality assessments of the downloaded genomes, tak-
ing into account contamination and completeness levels, 
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Fig. 1 Number of genomes associated with different bacteria (A) and archaeal (B) phyla in FAPROTAX and NCBI databases. Values on top of the bars rep-
resent the percentage of genomes over the total number of the database. (C) Number of genomes associated with specific functions. A single genome 
can be linked with more than one function
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revealed that 14,364 genomes met the defined quality cri-
teria, with completeness higher than 90% and contamina-
tion lower than 5% (Figure S4). The remaining genomes 
were excluded from the analysis. The 14,364 high quality 
genomes underwent gene finding and the predicted pro-
teins were functionally annotated with eggNOG-mapper 
[43], resulting in the retrieval of lists of KEGG Orthologs 
(KOs) associated with each genome (Figure S1).

Analysis of the taxonomic distribution within the cus-
tom dataset revealed the presence of 14,037 bacterial and 
327 archaeal genomes. The acquired data facilitated the 
creation of the dataset for training and evaluating the 
machine learning model, comprising KOs as features and 
the functions associated as label matrices. Analysis of the 
feature matrix showed that 11,469 KOs were annotated 
to the genomes. The number of genes annotated by at 
least a KO ranged from 24 to 99%, with a mean KO cov-
erage of 40%.

The structure of FAPROTAX groups, together with 
problems in entry-ID associations and availability of 
some genomes in the NCBI database caused two classes, 
“chloroplast” and “nonphotosynthetic cyanobacteria”, to 
be empty, while the “anammox” class was characterized 
by a single genome. Overall, the FAPROTAX-derived 
dataset offers a diverse and representative sample for 
functional trait inference in microbial communities.

Machine learning model evaluation
To infer microbial functional traits from the genome con-
tent, MICROPHERRET was developed by combining dif-
ferent supervised machine learning algorithms. The tool 

consisted of 89 function-specific binary classifiers, tuned 
and trained on the custom dataset represented by the 
14,364 genomes obtained from the FAPROTAX database. 
Each classifier can predict the association of an organism 
to a function of interest using as input the KEGG anno-
tation of all its genes and also the copy number of each 
KO ID. Classifier performance was evaluated using Mat-
thew’s Correlation Coefficient (MCC), and a classifier 
was considered successful when its MCC exceeded 0.7. 
The global mean MCC for each algorithm was obtained, 
indicating the support vector machines (SVM) as the 
best method (0.83), followed by logistic regression (LR) 
with 0.81 MCC, and random forest (RF) with 0.79 MCC. 
Neural networks (NN) performed the worst out of all the 
classifiers with 0.69 MCC.

For each functional class, the performance scores on 
the test sets of the tuned algorithms were compared to 
identify the most efficient approach to be included in 
the tool. In most cases, the three conventional machine 
learning methods obtained similar MCC values, but there 
were exceptions (Fig. 2, Figure S5). For example, the “aer-
obic nitrite oxidation” model obtained high classification 
performance for RF and SVMs, while LR performance 
was as good as a random classifier. The performance of 
NN models was similar in most cases, although with 
MCC values slightly lower than the other techniques 
employed. On the other hand, for three classes, “dark sul-
fite oxidation”, “oil bioremediation”, and “anoxygenic pho-
toautotropy Fe oxidizing”, the NN classifier obtained a 
MCC value higher than the traditional counterpart which 

Fig. 2 MCC scores on the test sets of the four applied algorithms and MCC score of the selected best algorithm per functional class. Only the 25 classes 
with top-performing models are included in the plot, while the full results are reported in Figure S5
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was not able to be trained properly on these functions 
(Figure S5).

The majority of models were successful, with 81 out of 
89 classifiers achieving an MCC greater than 0.7. Among 
the remaining 8 classifiers, 5 attained MCC values higher 
than 0.5. Notably, three classifiers, “anoxygenic photo-
autotrophy Fe oxidizing”, “dark sulfite oxidation” and “oil 
bioremediation,” exhibited low MCC values, with 0.39, 
0.24, and 0.09, respectively. The models’ performance 
showed no correlation with the average KO coverage 
of the genomes in the corresponding functional class 
(Spearman’s correlation coefficient ≈ 0.14, p-value ≈ 0.18, 
Figure S6).

Among all the best classifiers for each functional class, 
23 were LR models, 30 were RF models, 29 were SVM 
models and 7 were NN models (Table S2). However, it 
is worth noting that for many classifiers, the overall dif-
ference between models was very small (Figure S5). The 
scores on the test sets were consistent with the valida-
tion performance scores for most classifiers. The pre-
dicted functions were grouped at a higher functional 
level according to their biological role to provide a gen-
eral indication of which general phenotypes are predicted 
better by the tool (Table S5). Among the resulting 7 func-
tional superclasses, “carbon metabolism” is associated 
with the highest MCC (≈ 0.97), followed by “parasites or 
symbionts” (≈ 0.94). In general, the tool obtained high 
performances in 5 superclasses (MCC > 0.7), while it was 
less efficient in the prediction of sulfur-related (≈ 0.57) 
and phototrophy-related functions (≈ 0.37).

On the test sets, there is no correlation between the 
number of genomes associated with classifiers and the 
performance efficiency (measured as MCC) (Spearman’s 
correlation coefficient ≈ 0.15, p-value = 0.17, Figure S7A).

The list of ortholog genes employed by the models for 
classification was extracted to infer genes linked to the 
analyzed phenotypic traits for LR, RF, and SVM. For each 
of the NN models, all the features were used for inferring, 
and the resulting analysis with SHapley Additive exPla-
nations (SHAP) [51], which was performed in order to 
indicate the contribution of each feature to the model’s 
output, did not reveal any specific gene with significant 
importance over others. To enable the retrieval of genes 
for all the classifiers, the second-best model among the 
remaining ones was utilized for functions whose model 
was trained using NN.

Among the 11,469 KOs present in the dataset, 11,266 
were identified as important for at least one function. 
The number of genes per function exhibited considerable 
variation (Table S3). The range extended from 0 relevant 
genes for the ineffective “dark sulfite oxidation” model, 
where all algorithms but NN scored 0, to over 11,000 
(Figure S7B, S7C, S7D). These counts displayed a strong 
relationship with the used algorithms, with SVM models 

having the highest average number of inferred genes, and 
LR exhibiting relevance for either a remarkably small (l1 
logistic regression) or extremely large (l2 logistic regres-
sion) number of KOs. Analysis of the classifier’s perfor-
mances revealed that models with both low and high 
amounts of retrieved genes showed high classification 
performance (MCC > 0.7). Poorly performing classifiers 
can exhibit both a small number of inferred genes (e.g. 0 
genes for “dark sulfite oxidation”) or a high number (e.g. 
11,267 for “anoxygenic photoautotrophy Fe oxidizing”). 
Notably, most models utilized a high number of genes, 
including “fermentation” using 7,358 genes, and “mam-
mal gut” employing 11,309, for an average of around 
7,000. Only three classifiers - “methanogenesis”, “arsenite 
oxidation energy yielding” and “fish parasites” - achieved 
accurate performance while using fewer than 100 genes 
(37, 26, and 66 respectively).

No correlation was present between the number of 
detected genes and the number of genomes in the cor-
responding functional class (Spearman’s correlation coef-
ficient ≈ 0.07, p-value = 0.51, Figure S7C).

Analysis of the retrieved genes confirmed that most 
of the classes were associated with KOs with low feature 
importance rather than a few more relevant ones (Table 
S3), as confirmed by the strong negative correlation 
between the number of positively associated genes and 
the average value of the importance score (Spearman’s 
correlation coefficient ≈ -0.61, p-value = 2.26 × 10− 10). 
For instance, over 350 KOs were identified as important 
for predicting the “methanogenesis by disproportion-
ation of methyl groups” class (MCC of 1 in the test set), 
in contrast with the 37 genes associated with the broader 
“methanogenesis” class. While some of the identified 
genes were already recognized to be involved in the pro-
cess, such as the mcrC gene, others selected by the clas-
sifier were not associated with the corresponding KEGG 
modules, but were present in related pathways such as 
“coenzyme biosynthesis”.

Validation on independent genomes
An additional set of 4,146 genomes, which were not part 
of the initial training set, but belonged to taxa stored in 
FAPROTAX, was gathered along with their correspond-
ing functions. These real genome-function associa-
tions were treated as true positives, enabling their use in 
evaluating the performance of the tool. A total of 11,195 
functions were assigned across the entire dataset, with 
chemoheterotrophy being the most abundant, associated 
with over 3,000 organisms. The analysis revealed that 
only 67 out of the 89 functions were performed by at least 
one of the organisms in the dataset. For all these classes 
with associated genomes, the MCC score was calculated 
to measure the performance (Figure S8, Table S2).
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In general, the tool performance was lower than in the 
test set: only 20 classifiers had MCC > 0.7, and 29 had 
MCC < 0.4. However, the performance efficiency might 
have been affected by the small number of true posi-
tives associated with some functions. Indeed, of the 67 
functions carried out in the validation dataset, 13 were 
performed by single genomes. The low number of true 
positives in the validation set associated with some func-
tions, independently from the number of genomes per 
functional class used in the training, was not considered 
by the evaluation metric and also penalized the obtained 
results (Table S2). Because the MCC score highly values 
the ability to predict true positives, if a classifier does not 
succeed, the score drops independently from how small 
their number might be. For instance, the “arsenate detox-
ification” classifier, despite showing high performance in 
the test set, received an MCC of 0 due to the lack of pre-
diction of the single organism performing the function. A 
similar result was found for the “hydrogenotrophic meth-
anogenesis” class: despite successfully predicting the 
single actual hydrogenotrophic methanogen, it obtained 
a low score due to also predicting 9 false positives out of 
4,146.

It was not possible to use MCC to evaluate the per-
formance of the tool for the remaining 22 classes, since 
this metric is equal to 0 when no true positive samples 
are present in the dataset. Thus, confusion matrices were 
computed to investigate the efficiency of the tool (Table 
S2). With this approach, a perfect classification was 
achieved by 4 of these classifiers, while the other 18 per-
formed fairly well. Some false positives were predicted, 
but their number was very low if compared with the true 
negatives.

The performance of MICROPHERRET was compared 
with GenePhene, a machine learning tool previously 
developed [34]. The latter could predict organisms’ abil-
ity to perform 84 functions, 83 of which were shared 
with the newly developed tool. By using these predic-
tions, MCC was computed for all the classes with at 
least one true positive, which were 63 when considering 
those in common between the tools. Among these 63 
classes, MICROPHERRET outperformed GenePhene in 
63% of the cases, matched performance in 8%, and was 
outperformed in 29% (Fig. 3, Table S6). In three cases – 
“methanogenesis”, “methanogenesis using formate” and 
“methanogenesis by CO2 reduction with H2” – both 
tools correctly predicted all the species with no false 
positives. Regarding the 20 classes without true posi-
tives for GenePhene, MICROPHERRET performed bet-
ter in 19 cases. GenePhene typically produces a higher 
number of false positives compared to MICROPHERRET 
(14,206 for GenePhene vs. 6,156 for MICROPHERRET, 
Table S6), resulting in a higher false positive rate for 18 
classes (22%). Notably, 3,052 false positives predicted by 

GenePhene were assigned to classes where no true posi-
tives were expected, highlighting its lower specificity.

Validation on simulated fragmented genomes
The randomic removal of genomic regions from each 
genome present in the initial set of 4,146 genomes was 
performed to assess the performance of MICROPHER-
RET on partial genomes simulating the characteristics 
of MAGs. This process resulted in the generation of a 
dataset of simulated fragmented genomes (SFGs). Three 
distinct completeness levels were simulated, namely 90%, 
70%, and 50% (Fig.  4A) (see Methods). The resulting 
SFGs underwent gene finding and annotation with the 
same tools previously selected for the complete genomes. 
The outcomes were compared with the 67 classifiers pre-
viously obtained for the original dataset.

As expected, the performance of classifiers in the 90% 
SFG decreased in comparison to the original dataset 
(Fig. 4B-C) More specifically, 25 out of 67 classifiers evi-
denced a decreased performance, and notably, the “aero-
bic nitrite oxidation” class demonstrated a substantial 
decline of 40% in classification power (Table S2). This 
could be attributed to the low number of genomes in this 
class that can determine a strong impact of a single mis-
classification on the MCC calculation. For the remaining 
24 classifiers, 11 exhibited a decrease between 9% and 
1%, while for others, the change was less than 1%. More 
surprisingly, 31 classifiers demonstrated increased MCC 
values, although for 18 of them by less than 1%, and for 
the other 13 the increase ranged between 1% and 9%. The 
remaining classifiers showed no change.

Comparable trends were observed for genomes frag-
mented to a 70% level, with 38 classifiers performing bet-
ter with complete genomes, 6 exhibiting no difference, 
and 23 demonstrating better performance with incom-
plete genomes. However, for genomes fragmented at 
50%, the overall performance of all classifiers was consis-
tently lower across all the functions. Surprisingly, classes 
describing certain functions, such as methanogenesis and 
nitrification, maintained high MCC values. While certain 
classifiers displayed improved performance, they per-
tained to classes with low MCC values even for the com-
plete genomes. In all other instances, the performance 
was suboptimal, with only two classifiers achieving an 
MCC higher than 0.7.

A Wilcoxon test was employed to assess potential 
variations in the performance of all classifiers across dis-
tinct levels of genome fragmentation. Results indicated 
no statistically significant differences between the per-
formance of classifiers on complete genomes and those 
fragmented at 90%. However, a significant divergence in 
performance was observed between 90% and 70% com-
pleteness, as well as between 70% and 50% completeness. 
Concurrently, Pearson’s correlation test was conducted 
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Fig. 3 Comparison of MCC scores obtained in the described validation set by MICROPHERRET and by GenePhene
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to examine the association between the MCC values of 
classifiers tested on complete genomes and their frag-
mented counterparts. The analysis revealed a high degree 
of correlation between complete genomes and those frag-
mented at 90% and 70% completeness, with correlation 
coefficients of 0.99 and 0.91, respectively. In contrast, the 
correlation was comparatively lower for the 50% com-
pleteness scenario, yielding a correlation coefficient of 
0.76.

Application to the Biogas Microbiome database
In order to evaluate the performance of MICROPHER-
RET in a real-case scenario, it was tested on a dataset 
with well-known functional characteristics that allow the 
comparison between the actual data and the predictions. 

Thus, the tool was applied to the Biogas Microbiome 
database [52], comprising 4,568 MAGs found in anaero-
bic digesters of four different continents [53]. In contrast 
to the genome sets utilized above, these MAGs presented 
a certain level of contamination, albeit generally low, with 
a maximum of 10%. This introduced a source of con-
founding for the generated models, whose robustness to 
contamination noise could thereby be tested.

MAG taxonomy was utilized to cross-reference them 
against the FAPROTAX database, resulting in 635 MAGs 
being successfully identified as associated with 74 func-
tions. Their completeness was assessed and 69 MAGs 
were between 50% and 70% complete, 213 between 70% 
and 90% complete and the remaining 355 had complete-
ness over 90% (Table S7). The average MCC value is 0.66 

Fig. 4 (A) Generation of simulated fragmented genomes (SFG) at different completeness levels through randomic genome fragmentation. (B) Classifica-
tion performance distributions on complete genomes and at the different SFG completeness levels, with p-values from Wilcoxon tests expressing perfor-
mance differences across groups. (C) Comparison of functional classifiers performance on complete genomes and SFGs at different completeness levels
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for the first group (completeness < 70%), while it increases 
to over 0.74 for the other groups. The established MAG-
function links were employed as “true labels” for com-
parison and evaluation, wherein MICROPHERRET 
predicted the functions of these 635 MAGs. MCC was 
computed for the 74 classes exhibiting any true positives 
in the dataset (Table S4). Out of the 74 classes, 61 classi-
fiers demonstrated satisfactory performance (MCC > 0.4), 
with 19 models exhibiting high classification efficiency 
(MCC > 0.7). Notably, models specific to methanogen-
esis, except “methanogenesis using formate,” performed 
exceptionally well, including the “hydrogenotrophic 
methanogenesis” class, which had previously shown poor 
performance in the validation set. The remaining 15 clas-
sifiers, without corresponding functions in the dataset, 
exhibited some false positive and negative classifications. 
Among these, 12 functions were correctly not predicted 
from any MAGs, while three models produced only a 
limited number of false positives, reaching a maximum of 
0.8% for “aliphatic non-methane hydrocarbon degrada-
tion (Table S4).

Following the evaluation of this subset of 635 MAGs, 
the tool was employed to predict phenotypes associated 
with the complete set in the Biogas Microbiome data-
base. In total, 9,468 functions were predicted. Figure 5A 
shows the percentage of MAGs performing functions 
exhibited by over 0.5% of the genomes.

The subsequent analysis focused on the 198 detected 
archaeal MAGs, aiming to more closely verify the agree-
ment of model predictions with previous characteriza-
tion of low-level taxa. Among these, 153 genomes were 
associated with methanogenesis, with 140 predicted to 
belong to the higher-level “methanogenesis” class. Fur-
ther examination of the remaining 13 MAGs, linked to 
methanogenesis subclasses but not to the main class, 
revealed that these genomes were missing at least half 
of the 37 relevant genes detected by the model. The 
identified methanogens were predominantly within the 
Euryarchaeota phylum, which is well known for includ-
ing organisms involved in methane metabolism [55, 56].

The analysis also identified 46 archaea not linked to 
any form of methanogenesis, primarily classified at the 
phylum level. These were mostly non-Euryarchaeota 
genomes - such as the 13 Candidatus Batyarchaeota and 
the 12 Candidatus Diapherotrites MAGs - and were all 
correctly classified as non-methanogens due to their lack 
of relevant genes (Table S8). Specifically, 42 MAGs lacked 
copy numbers of the 10 most critical KEGG Orthologs 
(KOs) for the function, reinforcing their correct classifi-
cation as non-methanogens. In total, the archaeal MAGs 
were identified as associated with 18 functions (Fig. 5B). 
As anticipated, the predictions aligned with existing 
knowledge, with methanogenesis exclusively linked to 
taxa within the Euryarchaeota phylum [55, 57].

New acetoclastic methanogenesis classifier
A curated version of the “acetoclastic methanogenesis” 
class was formulated to investigate whether the inclusion 
of more genomes exhibiting this specific function could 
enhance the classification performance. This curation 
also served as a benchmark for testing the incorporation 
of new user-defined classes.

In the FAPROTAX database, the “acetoclastic metha-
nogenesis” group originally comprised four Methanosar-
cina species and the Methanosaetaceae family. However, 
it is established that additional members within the 
Methanosarcina genus can also perform methanogen-
esis from acetate [58, 59]. The revised class included 
a greater number of genomes, encompassing 11 from 
the Methanosarcina genus, 3 from Methanothrix, and a 
single genome belonging to the Methanocalculus alka-
liphilus species [60]. 17 additional strains from Metha-
nosarcina and Methanosaeta were reserved for validation 
purposes. Throughout the model selection process, it was 
determined that the SVM with a linear kernel exhibited 
superior classification compared to LR, which was the 
previously identified best model. Training the classifier 
with the updated genomes resulted in enhanced perfor-
mance across all previously tested datasets (Figure S9). 
Initially, the model underwent validation on a dataset 
comprising the aforementioned 17 acetoclastic methano-
gens and 100 genomes associated with alternative func-
tions, including hydrogenotrophic methanogens.

The new model showcased a greater improvement 
compared to the original acetoclastic classifier (0.45 
MCC previously, now 0.86). Out of the 17 acetoclastic 
methanogens, the new model accurately predicted 13 
without any false positives, while the previous model 
only correctly identified 5 and incorrectly classified a 
hydrogenotrophic methanogen as acetoclastic. Notably, 
the new model achieved perfect predictions in the sepa-
rate dataset of 4,146 genomes from the FAPROTAX data-
base (MCC = 1), accurately classifying the two existing 
acetoclastic methanogens. In stark contrast, the old clas-
sifier failed to classify any of them. Furthermore, this new 
model outperformed the “acetoclastic methanogenesis” 
model in GenePhene (MCC = 0.35). Substantial improve-
ments were also observed in the anaerobic digestions 
MAGs dataset. The new model successfully predicted 
19 members of the Methanosarcinaceae and Methanot-
richaceae families as acetoclastic methanogens. Addi-
tionally, two MAGs previously misclassified were now 
correctly assigned as non-acetoclastic methanogens.

Discussion
This study implemented a machine learning approach 
that integrated various supervised learning algorithms to 
predict microbial functions based on their genomic con-
tent. Inspired by previous work [34], the implemented 
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Fig. 5 (A) The percentage of MAGs present in the Biogas Microbiome database that were associated with specific functions is displayed. For visualization 
purposes, only functions exceeding 0.5% of genomes are reported. (B) Distribution of the performance of the 18 functions predicted for archaeal MAGs 
in the anaerobic digestion dataset across the archaeal taxonomic groups. The organisms were grouped at family level or higher, according to the avail-
able taxonomy. The values were normalized to the number of genomes in each rank and the displayed color scale represents the proportion of genomes 
associated with the functions per taxonomic rank. The number of genomes associated with the functions is indicated in each cell

 



Page 15 of 20Bizzotto et al. Environmental Microbiome           (2024) 19:58 

strategy involved training and optimizing 89 function-
specific binary classifiers using a dataset extracted from 
the FAPROTAX database, leveraging KEGG Orthologs 
as the genetic information source. KO coverage var-
ied across the training set, but the average coverage 
was consistent with literature values [61]. While Pfam 
entries covered 90 ± 3% of annotated genes, domain-
based annotation methods like Pfam might lead to not 
realistic annotation coverage because the presence of 
a domain in a predicted protein sequence may not be 
sufficient to assign function, requiring more stringent 
annotation methods. KOs were specifically chosen for 
this study since their orthology-based origin allows us to 
exploit knowledge of model organisms to infer informa-
tion in less-studied ones. Additionally, KEGG’s compre-
hensiveness facilitates the contextualization of genes in 
more general networks. GenePhene developers tested for 
the best gene annotation for the classification compar-
ing KEGG and Pfam, obtaining a better average perfor-
mance using KOs, further supporting the validity of our 
decision. Analysis of the KOs coverage across functional 
classes proved that KO coverage does not affect the mod-
els performance. However, integration of different gene 
annotations might increase the performance efficiency.

Notably, our program demonstrates enhanced accuracy 
and efficacy in functional predictions when compared 
with GenePhene. Several differences emerged when com-
paring the two tools. First, employing FAPROTAX as a 
source for both functional and genomic information 
resulted in a larger number of genomes in the training 
set in this study, with over 14,000 genomes against 9,000 
of GenePhene. This allowed to increase the classifica-
tion potential by expanding the number of positive and 
negative samples in all classes. Additionally, the incor-
poration of multiple supervised learning methods within 
this strategy, as opposed to the training of only LR mod-
els in GenePhene, boosted the prediction accuracy and 
enhanced the extraction of functional information. This 
helped to capture hidden relationships between certain 
functions and genes previously not found, as in the meth-
anogenesis case. Moreover, the integration of optimiza-
tion techniques in the present approach aimed to obtain 
high quality level models, further increasing the predic-
tion accuracy. MICROPHERRET also allows the classifi-
cation of MAG functions even with incomplete genomes, 
as seen in the validation of the Biogas Microbiome data-
base. The tool also has the capability of generating new 
classifiers with tailored functions, allowing customiza-
tion to both existing and unknown classes by the users.

A total of 81 models with excellent performance and 
5 models with good performance were obtained. There 
was not a single machine learning method that showed 
overall a better performance over others. High variance 
in the performance of some classifiers was seen across 

validation and tuning sets during training. For example, 
the “aerobic nitrite oxidation” classifier exhibited high 
performance in the test set but lower performance in the 
validation set, indicating potential generalization instabil-
ity. To address this, future efforts may focus on targeted 
optimization strategies tailored to improve the robust-
ness and generalization capabilities. This may involve 
expanding the number of available genomes, as shown 
in the case of the acetoclastic methanogenesis classifier. 
The high number of features used for the prediction (over 
10,000 KOs) affected the classification power of NNs. 
Grouping features, for example by clustering together 
KOs in their respective pathways, could increase NN’s 
classification ability while also balancing the need to 
properly discern more general classes that are not linked 
to specific pathways, such as “oil bioremediation”.

The high number of phenotypes for which efficient 
models were trained represents a unique and significant 
advantage. Exploiting the structure of the FAPROTAX 
database, MICROPHERRET proved to be able to classify 
microorganisms according to a diverse range of features, 
spanning from many specific metabolic capabilities to the 
ecological niche they belong to. This diversity constitutes 
a unique aspect of this tool, which presents itself as a 
classifier of a wide range of phenotypes and is opposed to 
several more specific projects. For instance, the Diaspora 
project [62] uses the information stored in the BacDive 
[17] database to train SVM models for critical pheno-
types for cultivating conditions, obtaining a small num-
ber of efficient models.

Importantly, several predicted functions such as the 
“gut” and “pathogens related” ones are not directly asso-
ciated with specific KEGG pathways or modules. This 
stands as a significant advantage since it allows the pre-
diction of phenotypes and associated genes for which no 
module or pathway structure is available in KEGG. This 
flexibility expands the tool’s potential applications, as it 
is not constrained by the limitations of KEGG’s structure 
and availability, relying instead on KEGG ortholog codes 
only as a source of features for prediction. The same con-
sideration can also be made in the case of METABOLIC 
[16] and KEMET [15], where the predictions of the func-
tional roles of microbial genomes are based on a series of 
different databases but are ultimately mapped to KEGG 
pathways.

While using the FAPROTAX database as a base for 
MICROPHERRET design led to the mentioned impor-
tant advantages, modifying or broadening some func-
tional classes could potentially address the previously 
described generalizability issue and increase the pre-
diction efficiency. For example, the class “anoxygenic 
photoautotrophy Fe oxidizing”, was characterized by 
a limited set of genomes, several of which shared with 
the classes “anoxygenic photoautotrophy S oxidizing” 
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and “anoxygenic photoautotrophy H2 oxidizing”. This 
structure might have prevented the detection of rele-
vant genetic content to distinguish it from these similar 
classes, decreasing the model’s accuracy. On the other 
hand, the more general class “anoxygenic photoautotro-
phy”, which includes all the ones previously mentioned, 
displayed a better classification performance. This sug-
gests that integrating specific classes in a broader one 
might have the potential of augmenting the classification 
power.

To address the need for modifying the composition of 
functional classes in FAPROTAX and, as an example for 
the creation of new classes, the acetoclastic methano-
genesis was refined. This new classifier not only showed 
significant improvements over the one previously gen-
erated in this study but also outperformed GenePhene. 
The results underscored the significant progress achiev-
able through the optimization of the initial function, 
highlighting the critical role of class composition in 
performance efficiency and proving the validity of the 
functional prediction approach proposed in this work. 
Importantly, the outlined pipeline provides a framework 
that can be extended to entirely new classes by incor-
porating genomes of organisms performing functions 
absent in FAPROTAX. This flexible approach empowers 
users to generate new classes of organisms for predicting 
functions of interest within the conceptual framework 
described, showcasing the vast versatility of this meth-
odology. Moreover, this method allows the expansion of 
MICROPHERRET genome and function database upon 
the inclusion of novel information in future updates of 
FAPROTAX.

The identification of the most crucial genes involved in 
the classification of all the models allowed to investigate 
significative genotype-phenotype associations. While not 
all the detected signals are believed to be relevant, genes 
with the highest rankings identified by accurate models 
should be considered potentially informative for assess-
ing an organism’s ability to execute a specific function. 
For example, several of the 100 most important genes 
for fermentation belonged to KEGG modules involved 
in the degradation of carbohydrates, lipids, and protein 
compounds. Moreover, two genes involved in ribonucle-
otide reduction (nrdD and nrdG), acting exclusively in 
anaerobic conditions [63], underscored and emphasized 
on the accuracy of the models. These genes play a vital 
role in synthesizing deoxyribonucleotides required for 
DNA synthesis and have been demonstrated as essential 
for the growth of various fermentative organisms under 
anaerobic conditions [64, 65]. Conversely, classifiers 
with lower performance efficiency associated with high 
numbers of KOs likely failed to capture significant con-
nections beyond taxonomic ones, such as those specific 

for arsenate and manganese respiration with more than 
11,000 relevant genes and MCC of 0.47 and 0.55.

No significant correlation was observed between the 
number of detected genes and the number of genomes 
in the functional classes. Analogously, there was no cor-
relation between the number of genomes and the per-
formance of the classifier. These aspects, together with 
the efficiency obtained by models for more in-depth 
classes, highlight the importance of having annotated 
genes coherently associated with the function, stressing 
the relevance of the functional class composition, rather 
than the number of genomes in the class. Consequently, 
the low performance accuracy of the “oil bioremediation” 
model might be attributed to the class structure, marked 
by organisms that differ significantly from each other or 
lack a particular set of common genes. This might have 
hindered the identification of common relevant genetic 
content, affecting the classification. On the other hand, 
the training set for the “acetoclastic methanogenesis” 
class only had 15 associated genomes, four less than “oil 
bioremediation”, underscoring that the presence of spe-
cific genes is a more pivotal factor than the number of 
genomes used for classification.

While the complex genotype-phenotype relationships 
and the vast differences between the analyzed pheno-
types make it difficult to define the structure of the ideal 
MICROPHERRET functional class, the discussed results 
have allowed us to outline conditions that enhance the 
efficiency of MICROPHERRET’s models, providing use-
ful guidelines for its usage. The functions predicted with 
the highest accuracy are those with a well-defined set of 
genes, such as methanogenesis, as expected: the stronger 
the relationships between the presence of specific genes 
and the function, the easier it should be for the algo-
rithms to model them.

The genomes from which the models extract informa-
tion for prediction (i.e., those that form the functional 
class) are crucial. As demonstrated by acetoclastic meth-
anogenesis, a high number of genomes is not necessary 
for excellent performance. However, more complex func-
tions spread throughout the phylogenetic tree, such as 
fermentation, require a higher number of genomes to 
facilitate the learning process. Therefore, we advise to 
provide as many genomes as possible for the functional 
class. A useful approach might be to begin with broader 
functions of interest and then refine the focus. Indeed, as 
previously stated, integrating specific classes into a more 
general one might enhance the classification. For exam-
ple, volatile fatty acid production could be implemented 
as a new class that incorporates all the possible pathways 
for the production, similarly to the “methanogenesis” 
class which is comprehensive of all the subclasses. Alter-
natively, if a more precise classification for one or more 
volatile fatty acids is needed, it is also possible to create 
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separate classes for each specific function, provided that a 
sufficient number of genomes associated to the functions 
is available. These genomes must satisfy specific charac-
teristics. First, if the target class is known to be associated 
with specific genes, these genes should be present within 
the provided genomes. Moreover, the genomes should 
come from taxonomically diverse sources, minimizing 
redundancy from closely related species, and should be 
of high quality (in our training set, we used complete-
ness > 90% and contamination < 5%) to ensure correct 
genotype-phenotype associations.

Conversely, if users wish to use the already available 
models in MICROPHERRET without customizing the 
approach, the only requirement is to provide MAGs 
of the highest possible quality, aiming for complete-
ness > 70%, the proven threshold for MICROPHERRET’s 
general efficiency. However, some function-specific mod-
els in the tool may not fully align with the recommended 
guidelines and might not achieve optimal performance. 
For example, analysis of the tool performance across 
broader functional groups, i.e. superclasses, showed that 
while MICROPHERRET can predict most of the analysed 
metabolisms, function-specific models associated with 
sulfur metabolism and phototrophy have a lower perfor-
mance. Additionally, as shown for the hydrogenotrophic 
methanogenesis model in the validation, if the dataset 
that the user wishes to analyze is highly imbalanced and 
a function is scarcely present, the model’s performance 
might decrease.

The provided guidelines not only offer a more compre-
hensive understanding of the explained results and reit-
erate which trained models are highly efficient, but also 
give clear instructions on the characteristics that a new 
or refined class should possess to have a higher prob-
ability of being efficient. This aids users in their specific 
analyses and helps expand the tool’s application.

Further comparisons with the GenePhene models 
revealed differences in the number of retrieved genes and 
their categorization, particularly in the KEGG metha-
nogenesis pathway. However, these differences did not 
detrimentally impact classifier performance, and the 
achievement of perfect evaluation scores in both analyses 
suggested the successful applicability of both models for 
methanogenesis prediction from gene content.

These notable disparities between the obtained lists 
of genes and the corresponding KEGG modules implied 
that genes not organized in modules or pathways could 
still be valuable in predicting the ability of a microbial 
species to perform a specific function. The confirma-
tion of model success in predicting methanogenesis from 
gene content, despite differences in identified genes from 
established databases, highlights the potential of these 
models to uncover novel genetic associations not explic-
itly captured by existing knowledge frameworks.

Overall, the machine learning-based functional associ-
ation exhibited the capability to transcend the structured 
modules and pathways of existing databases, represent-
ing a notable advantage over traditional methods.

The validation of the models in this study, conducted 
on independent datasets and simulated fragmented 
genomes, underscored their effectiveness in establishing 
functional associations across both complete and incom-
plete genomes. Depending on the level of complete-
ness, MAGs may not possess all the necessary genes for 
performing the entire process described in a pathway, 
highlighting the challenge of predicting functions with a 
limited number of relevant genes with traditional meth-
ods, such as KEGG annotations alone. Furthermore, 
fragmented genomes are characterized by a generalized 
low copy number of the other pertinent genes. MICRO-
PHERRET successfully achieved a reasonably robust clas-
sification for SFGs with completeness over 70%, whereas 
for values lower than this threshold, acquiring sufficient 
information for the machine learning algorithms to 
operate effectively becomes challenging. This remark-
able achievement in functionally classifying lower-qual-
ity genomes validates the tool’s proficiency in handling 
MAGs and could be partly attributed to the high number 
of genes deemed as relevant by the majority of classifi-
ers. Indeed, the potential absence of a relevant gene due 
to poor genome quality is less likely to impact the clas-
sification since numerous other genes have been used by 
the models. This aspect represents a significant advan-
tage compared to other functional annotation strategies, 
like metabolic flux balance, where gap-filling algorithms 
may struggle to solve the incomplete structure of certain 
reaction networks, precluding the modeling [66]. Addi-
tionally, MICROPHERRET stands out from annotation 
methods relying on KEGG pathway completeness, where 
the absence of a few genes can hinder accurate classifica-
tion. For instance, in a previous study [52], 2 out of the 
7 MAGs belonging to the Methanomicrobiales order 
- organisms recognized for their capability to perform 
hydrogenotrophic methanogenesis [56] - were not con-
sidered as able to produce methane from CO2 because 
characterized by an incomplete hydrogenotrophic meth-
anogenesis KEGG module (M00567). The same situation 
arose with one of the 5 Methanothermobacter genomes, 
acknowledged as hydrogenotrophic methanogens com-
monly found in high-temperature anaerobic environ-
ments [67].

Notably, in the case of the SFGs, there were classifiers 
capable of outperforming the ones tested on complete 
genomes for the 90% SFGs. This improved performance 
could be due to the copy number reduction or the com-
plete absence of some KOs, potentially aiding in mitigat-
ing confounding factors during classification. Another 
possible explanation could be found in the size of the 
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functional classes. Indeed, as stated above, classes with 
few genomes have a high variability in their classifica-
tion scores which can be dramatically affected by a single 
misclassification. The presence of contamination within 
MAGs could also potentially hinder the classifier’s ability 
to predict functions correctly. While a careful assessment 
of contamination should be carried out before annota-
tion, genes incorrectly assigned to the MAG could ham-
per the classification process and introduce errors in the 
correct assignment of functions.

MICROPHERRET successfully predicted functions for 
MAGs within an anaerobic digestion environment, yield-
ing results consistent with existing literature. The “che-
moheterotrophy” class, given its high species count, was 
linked to the majority of MAGs. This might be expected 
since chemoheterotrophy is a generic metabolic strat-
egy exhibited by many microorganisms [68]. Addition-
ally, fermentation was abundantly predicted, aligning 
with its prevalence in anaerobic digestion environments 
[69]. All forms of methanogenesis were identified by the 
tool, albeit some, such as methylotrophic and acetoclastic 
methanogenesis, in relatively lower quantities. This over-
all limited presence of organisms associated with metha-
nogenesis confirmed previous findings, as an anaerobic 
digestion microbiome has a funnel-shaped organization 
where the methanogenesis at the last step is performed 
by a limited number of specialized archaea [70]. The 
obtained results further showed the applicability of 
MICROPHERRET in a real-case scenario.

Conclusions
The categorization of prokaryotic genomes based on 
functionality remains a significant challenge in genomic 
analysis, primarily reliant on manual associations and 
limited to isolated microbes. This study explores the 
potential of machine learning as a systematic approach 
to infer the functions of unknown genomes by leveraging 
information derived from annotated genes. This novel 
process not only enables the elucidation of concealed or 
potential new mechanisms in species phylogenetically 
close to those with well-established roles but in principle 
also for completely uncharacterized ones. This investiga-
tion lays a foundation for a robust conceptual framework 
that proficiently combines supervised learning methods 
for the functional classification of microorganisms. Com-
bining different annotation strategies with KEGG, such 
as EC or Pfam [71] might further increase the informa-
tion available for the training.

The resultant tool stands as a valuable resource for 
predicting the 86 trained functions from FAPROTAX. 
Furthermore, MICROPHERRET user-friendly design 
facilitates straightforward curation by users, allowing 
for the classification of organisms according to specific 
functions of interest. The overarching aim is to enhance 

the efficiency and accessibility of functional classifica-
tion, fostering advancements in understanding microbial 
genomics.
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