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Abstract
Background Marine benthic prokaryotic communities play crucial roles in material recycling within coastal 
environments, including coral reefs. Coastal sedimentary microbiomes are particularly important as potential 
reservoirs of symbiotic, beneficial, and pathogenic bacteria in coral reef environments, and therefore presumably play 
a core role in local ecosystem functioning. However, there is a lack of studies comparing different environments with 
multiple sites on the island scale, particularly studies focusing on prokaryotic communities, as previous investigations 
have focused mainly on a single site or on specific environmental conditions. In our study, we collected coastal 
sediments from seven sites around Okinawa Island, Japan, including three different benthic types; sandy bottoms, 
seagrass meadows, and hard substratum with living scleractinian corals. We then used metabarcoding to identify 
prokaryotic compositions and estimate enzymes encoded by genes to infer their functions.

Results The results showed that the three substrata had significantly different prokaryotic compositions. Seagrass 
meadow sites exhibited significantly higher prokaryotic alpha-diversity compared to sandy bottom sites. ANCOM 
analysis revealed that multiple bacterial orders were differentially abundant within each substratum. At coral reef sites, 
putative disease- and thermal stress-related opportunistic bacteria such as Rhodobacterales, Verrucomicrobiales, and 
Cytophagales were comparatively abundant, while seagrass meadow sites abundantly harbored Desulfobacterales, 
Steroidobacterales and Chromatiales, which are common bacterial orders in seagrass meadows. According to our 
gene-coded enzyme analyses the numbers of differentially abundant enzymes were highest in coral reef sites. 
Notably, superoxide dismutase, an important enzyme for anti-oxidative stress in coral tissue, was abundant at coral 
sites. Our results provide a list of prokaryotes to look into in each substrate, and further emphasize the importance of 
considering the microbiome, especially when focusing on environmental conservation.

Diversity, composition and potential roles 
of sedimentary microbial communities 
in different coastal substrates around 
subtropical Okinawa Island, Japan
Kohei Hamamoto1,2*, Masaru Mizuyama1,3, Miyuki Nishijima1, Ayumi Maeda4, Kodai Gibu1, Angelo Poliseno2, 
Akira Iguchi1,5* and James Davis Reimer2,6

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40793-024-00594-1&domain=pdf&date_stamp=2024-7-29


Page 2 of 21Hamamoto et al. Environmental Microbiome           (2024) 19:54 

Background
Microbiomes play crucial roles in global biochemical 
cycles, influencing essential compounds like phosphate, 
sulfate, nitrate, carbon, and metals in marine habitats [1, 
2]. Recent advancements in technologies, such as high 
throughput sequencers, allow researchers to better inves-
tigate marine microbial communities in various habitats 
and understand their responses to environmental factors 
with high resolution [2–4]. Exploring microbial com-
positions in the environment is not only essential for 
the study of biodiversity and for understanding species’ 
interactions and aggregations at local scales [5, 6], but is 
also useful for assessing the general health of environ-
ments, as microbes are highly sensitive to marine envi-
ronmental pollution [7–10]. Environmental assessments 
using microbial communities as proxies have explored 
the biological impact of anthropogenic activities, for 
example of mariculture [11–13]. Sedimentary prokary-
otes have been shown to potentially mitigate anthropo-
genic contamination in the sediment, such as from heavy 
metals, polyaromatic hydrocarbons (PAHs), petroleum, 
and excess nutrients [14–17]. However, in the long term, 
intense environmental disturbances can lead to the lack 
of recovery of prokaryotic communities or their func-
tions [18, 19].

In coral reef ecosystems, the interactions between 
benthic organisms and their associated prokaryotes play 
critical and fundamental roles in maintaining the overall 
health of the entire ecosystem [20–25]. These interac-
tions have become increasingly important as coastal coral 
reefs face numerous threats such as nutrient loading [26, 
27], land reclamation [28], ocean acidification [29–31], 
coral disease outbreaks [32–34], outbreaks of various 
organisms [35–38], and rising sea surface temperatures 
[39–41]. These global scale disturbances have made coral 
reefs at risk to “phase-shifts” [42], or large scale substitu-
tion of benthic structures from a coral-dominated state 
to being dominated by other organisms (e.g. macroalgae 
[43–46], sponges [47, 48], soft corals [49, 50], zoanthar-
ians [51, 52], etc.) or even to primarily abiotic substrate 
(e.g. rocky substrate) as suggested by Bellwood et al. [42]. 
To prevent such drastic changes, and to facilitate coral 
recovery from damage, environmental microbiome-
based methodologies are likely to be critical [53]. How-
ever, while there have been many studies on scleractinian 

coral-associated prokaryotes [54–58], sponge-associated 
prokaryotes [5, 59–66], seawater prokaryotes [4, 67, 68], 
and potentially free-living Symbiodiniaceae [69–72], 
research on sedimentary prokaryotes in different coral 
reef habitats remains generally quite limited (e.g., Dong 
et al. [73]).

Scleractinian corals are known to exude substantial 
amount of mucus, which can introduce their body sur-
face microbes and/or trapped microbes into the water 
column and sediments, and this coral mucus may poten-
tially influence the surrounding sedimentary prokaryotic 
community [74]. Sedimentary prokaryotic communi-
ties are known to be more diverse and/or more similar 
to coral-associated communities than to those found in 
seawater [5, 75–78]. Carlos et al. [75] suggested that sedi-
ments might serve as potential coral pathogen reser-
voirs. Indeed, resuspended sedimentary prokaryotes can 
migrate onto the surface of coral, and the coral’s mucus 
layer can provide a means for prokaryotes to hitch a ride 
via mucus shed from the coral’s body surface [76]. Moni-
toring prokaryotic compositions in sediments, therefore, 
can be a key task in tracking coral health at the local level. 
Likewise, in seagrass meadows, which are vital for carbon 
sequestration (also known as “blue carbon” [79, 80]), the 
rhizosphere microbiome plays a crucial role in main-
taining meadow health, involving essential biochemical 
pathways such as nitrogen fixation, sulfate reduction, sul-
fide oxidation, and urea turnover [81–83]. Alterations in 
sedimentary chemical conditions, such as hypoxia and/
or enriched sulfide, often combined with other stressors 
such as high/low salinities or temperatures, can lead to 
large-scale die-offs of seagrass [84–86], which also affect 
prokaryote composition [83, 87, 88]. Prokaryotic com-
munities have been shown to have the ability to recover 
relatively quickly after such disturbances due to their 
composition plasticity [19, 89, 90]. However, the recovery 
of organisms that rely on important biochemical path-
ways provided by prokaryotes may take longer.

Taking all of these fact into consideration, monitoring 
sedimentary microbial communities in coral reef ecosys-
tems is of great importance, especially when comparing 
multiple environments with different communities (e.g., 
scleractinian corals, seagrass, sandy bottoms) within 
a small geographic range that could be connected via 
local currents and tidal fluctuations. In this context, 

Conclusion Our findings prove that prokaryotic metabarcoding is capable of capturing compositional differences 
and the diversity of microbial communities in three different environments. Furthermore, several taxa were suggested 
to be differentially more abundant in specific environments, and gene-coded enzymic compositions also showed 
possible differences in ecological functions. Further study, in combination with field observations and temporal 
sampling, is key to achieving a better understanding of the interactions between the local microbiome and the 
surrounding benthic community.
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despite its small size, subtropical Okinawa Island, Japan 
is an excellent natural laboratory for such studies as it 
has different marine environments with varying levels of 
anthropogenic impacts. In this study, we characterized 
the bacterial taxa of different marine habitats, namely 
coral-abundant sites, seagrass-abundant sites, and sandy 
bottom sites using sediment samples, and then consider 
which protist taxa could be appropriate bioindicators for 
future monitoring of coral reefs environmental health. 
We further assess the potential functional diversity (also 
known as “enzymic capabilities”) of each community.

Materials and methods
Sample collection
Sediment samples were collected from seven different 
sites around Okinawa Island; Sunabe, Kayou, Kin, Manza, 
Odo, Sesoko, and Uruma (see Fig.  1), from November 
10 to December 25, 2020. Detailed descriptions of each 
sampling site are as follows.

Sunabe; near a well-populated and reclaimed land area, 
also with heavy coastal armoring and frequent visitors. 
Relatively close to the reef edge, presence of small river 
mouth and military base.

Fig. 1 Maps showing sites investigated in the present research. (A): Okinawa Islands in the Japanese Archipelago. (B): Okinawa Island in detail. Each dot 
represents a study site, and color indicates substratum. Blue = coral reef, red = sandy bottom, green = seagrass meadow sites, respectively
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Kin; less populated natural beach with relatively more 
agriculture nearby. Large river mouth and mangrove for-
ests within a kilometer.

Kayou; pristine site at a sparsely populated area with a 
small river mouth nearby. Zosteraceae, Hydrocharitaceae 
and Cymodoceaceae sp. growing abundantly.

Uruma; right next to an artificially constructed, 
reclaimed land causeway (“Kaichu-Doro Causeway”). 
No clear reef edge but some rocky substrates exist. Zos-
teraceae, Hydrocharitaceae and Cymodoceaceae sp. form 
assemblages.

Sesoko; near the southern edge of Sesoko Island, with 
relatively pristine environment, with small reef edge. 
Scleractinian corals abundant; Acropora spp. being most 
abundant. This is the only site which has soft corals 
nearby among our sampling sites.

Manza; the most natural site amongst our examined 
coral reef sites, with sharp and steep reef edge right in 
front of the sampling site. Scleractinian corals abundant, 
with Montipora spp. most abundant.

Odo; southernmost site with a large tide pool and 
beach nearby. Groundwater upwelling in front of the 
sampling site, as well as large civil engineering excava-
tion ongoing roughly three hundred meters away on top 
of a hill nearby. Scleractinian corals abundant, Montipora 
spp. most abundant.

Sediment collection was done manually while snorkel-
ing by scooping the sediment surface (< 0.5 cm) using 15 
mL Falcon® tubes (ThermoFisher Scientific, Waltham, 
MA, USA). At each site, 20 sediment samples were col-
lected, except at Sunabe where only 15 samples were 
collected due to rough sea surface conditions. Among 
these sites, Manza, Sesoko, and Odo were character-
ized by hard reefs with living scleractinian corals, and we 
hereafter refer to them as “coral reef” sites. Uruma and 
Kayou were characterized by abundant seagrass, and are 
referred to as “seagrass meadow” sites, whereas Sunabe 
and Kin were characterized by fine sand, and are referred 
to as “sandy bottom” sites in this study. The number of 
sampling sites was determined based on the available 
resources and the need to ensure comprehensive analy-
ses. Under such conditions, considering the high biodi-
versity and our research priorities, we focused more on 
coral reef sites than on the other two ecosystems.

In coral reef sites, sediments were sampled at small dis-
tances (approximately < 1 m) from live scleractinian cor-
als, and in seagrass meadows, sediments were sampled 
adjacent to seagrass while taking care to not include sea-
grass. Depths and GPS coordinates were recorded for all 
samples, except for one sample from Kayou (Ky_20) due 
to GPS failure (see Supplementary Table S1). After col-
lection, sediment samples were immediately placed on 
dry ice, and kept frozen until further investigation.

DNA extraction, amplification and sequencing
Each sample was split into two (equal) subsamples and 
was subjected to the following steps. Whole microbial 
genomic DNA was extracted using DNeasy® PowerSoil® 
Pro Kit (Qiagen, Hilden, Germany) following the manu-
facturer’s protocols except for pre-heating at 65℃ for 
10  min right before vortexing, as well as reducing the 
final elution volume to 75  ml. Yields of the extracted 
DNA were measured using a Qubit 4 Fluorometer (Ther-
moFisher Scientific) following the manufacturer’s proto-
col and were subsequently diluted to 1 ng/µl. DNA was 
then used as template for targeting the V3-V4 regions 
of the prokaryotic 16  S rRNA gene using MightyAmp™ 
DNA Polymerase Ver.2 (Takara Bio Inc., Kusatsu, Japan) 
following the manufacturer’s protocol, with the univer-
sal primer set Pro341F/Pro805R [91]. After the first PCR 
and purification, indexing PCR was performed using 
TaKaRa Ex Taq® Hot Start Version (Takara Bio Inc.). All 
detailed amplification methods are available in supple-
mentary materials. Sequencing libraries of 135 samples 
were adjusted to be 4 nM each and were pooled into two 
amplicon pools for next generation sequencing. The pre-
pared amplicon pools were mixed with the Phix Control 
V3 (Illumina, San Diego, CA, USA) conditioned to be 
up to 30% of total volume, and then loaded into Miseq 
Reagent Kit V3 (600 cycles, Illumina). Finally, the samples 
were sequenced on Illumina Miseq (Illumina) using a 
301 bp paired-end chemistry by two individual runs. All 
raw sequences are available online (see data availability 
sections for details).

Bioinformatics
The demultiplexed paired-end sequence reads were ana-
lyzed in the QIIME2 v2021.11.0 [92] framework with sev-
eral plug-in programs (All codes executed for this step 
is available in Additional file 1). Primers and the middle 
adaptor sequences were trimmed with Cutadapt v3.5 [93] 
(via q2-cutadapt) respectively from the 5’-end and 3’-end 
after applying a maximum of ten iterations. In case the 
primer sequences were not found or the trimmed length 
of sequences was less than 100 bp, reads were disposed. 
Quality control including quality filtering, denoising, 
correcting reading errors, merging paired-end reads and 
removal of non-biological sequences (including chimera) 
were performed by DADA2 v1.18.0 [94] (via q2-dada2) 
with the below custom values. For denoising, the maxi-
mum expected error values, ‘maxEE’ [95], were set to 2 
for forward and 5 for reverse reads, respectively. The 
truncate length at 3’-end of both reads were indepen-
dently decided by the base position, represented as a 
phred score of less than 20 at the first quartile of the total 
reads. After quality control, a count table of representa-
tive sequences was generated with dereplication of the 
same amplicon sequence variant (ASV). To standardize 
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ASV richness of each sample biased by different numbers 
of reads, resampling, so called ‘coverage-based rarefac-
tion’ [96], was performed in all samples equalizing the 
slope of the saturation curve to the least saturated sam-
ple. After the rarefaction, copy number correction was 
employed to justify the number of reads considering the 
copy numbers using the open-source software PICRUSt2 
[97], as well as Integrated Microbial Genomes (IMG) as 
a reference database [98]. As well, Enzyme Commission 
numbers and abundance of each enzyme that is coded 
by bacteria detected in this research were obtained from 
IMG (all codes executed for copy number correction and 
obtaining Enzyme Commission numbers are available 
in Additional file 2). Taxonomic assignment to ASV was 
conducted with pre-trained Naive Bayes classifier [99] 
referring to the 16S ribosomal RNA sequence database 
SILVA v138.1 [100, 101], and then operational taxonomic 
units (OTUs) were determined against each ASV using 
scikit-learn [102], a machine-learning classifier plugin in 
Qiime2. ASVs assigned to mitochondria, chloroplasts, 
eukaryotes, or to none of the domains were removed 
from the dataset to focus on the target microbiome. The 
OTU count table obtained through these processes was 
used in subsequent community analyses. It should be 
noted that there are some bacterial taxa for which taxo-
nomic classification is still under discussion; in this study 
we based our discussion on information from SILVA 
v138.1.

Distance among samples was calculated under Bray-
Curtis configuration using “vegan” package [103], and 
then Unweighted Pair-group Method with Arithme-
tic Means (UPGMA) clustering was performed under 
“average” configuration using “pvclust” package [104] in 
R 4.1.2 [105]. We then conducted silhouette analysis to 
evaluate how many groups the samples could be divided 
into, and used these groups (i.e., “sandy bottom”, “seagrass 
meadow” and “coral reef”) to perform further analyses.

The Shannon diversity indices of the prokaryotic com-
munity in each sample were calculated with “vegan” 
package [103]. The Kruskal-Wallis test in “kruskal.test” 
function in “stats” package [105] was employed to con-
firm statistical significance of calculated Shannon indi-
ces among benthic components, in cooperation with 
“pairwise.wilcox.test” in the same package. Further, 
non-metric multidimensional scaling (nMDS) was per-
formed using “metaMDS” function in “vegan” pack-
age [103]. To test how group similarity was affected by 
factors, we conducted PERMANOVA using “adonis2” 
function in “vegan” package [103] with setting benthic 
substrate types (“coral reef”, ”sandy bottom”, and “sea-
grass meadow”) as the factor. Then we assessed which 
pairs were significantly different using “pairwise.adonis” 
function in “pairwiseAdonis” package [106] with 999 
times permutation and Bonferroni correction settings. 

Bacterial taxa that were differentially abundant in coral, 
sand or seagrass were examined using “ancombc2” com-
mand in “ANCOMBC” package [107]. For interpreta-
tion of results, bacterial orders for which names did not 
follow nomenclature or were not assigned in the SILVA 
database (e.g. “HOC36”,” NB1-j”, “KD4.96” etc.) were 
excluded. Linear and non-linear correlations between 
bacterial orders were tested using “secom_linear” and 
“secom_dist” commands in “ANCOMBC” package [107]. 
All R codes executed and metadata used are available in 
Additional files 3 and 4, respectively.

Enzymic composition analysis
Using estimated enzymic abundance based on the genes 
coded by the prokaryotic community obtained, the Shan-
non diversity index was calculated with “vegan” package 
[103] in R 4.1.2 [105]. The ANOVA test was employed 
to confirm statistical significance of calculated Shan-
non Indices among benthic components using “aov” and 
“TukeyHSD” functions in “stats” package [105]. Further, 
we analysed the enzymes differentially abundant in spe-
cific substrates using the “ancombc2” command in the 
“ANCOMBC” package [107].

Results
Number of OTUs and the most abundant bacterial phyla
After sequence processing, 4,675 OTUs from 83,138 
ASVs were obtained, and then applied in further analy-
ses (in total 3,417,550 contigs, average of 25,315 contigs/
sample; detailed information in Supplementary Table S2). 
The 4,675 OTUs were assigned into the following taxo-
nomic ranks in SILVA: 79 phyla (Supplementary Table 
S3); 214 classes (Supplementary Table S4); 522 orders 
(Supplementary Table S5); 880 families (Supplementary 
Table S6); 1871 genera (Supplementary Table S7). Also 
original count table used for analyses are all available 
in Additional files 5 to 11. The prokaryotic community 
had only a few domain Archaea (0.77% of total counts), 
while domain Bacteria was predominant (99.23% of total 
counts). The most predominant phylum was Proteobacte-
ria for all three benthic types (33.5% for corals, 33.2% for 
sandy bottoms and 37.0% for seagrass, respectively, Fig. 2, 
Table S8). The second- to fifth-most predominant phyla 
of coral reef sites were Bacteroidota, Cyanobacteria, 
Actinobacteriota and Verrucomicrobiota (15.7%; 14.0%; 
11.0%, 5.5%, respectively). Sandy bottom and seagrass 
meadow sites were similar in terms of bacterial compo-
sition, sharing the second- to fourth-most predominant 
taxa in the same order; Actinobacteria (15.3% and 13.9%, 
respectively), Bacteroidota (11.5% and 12.5%) and Acido-
bacteriota (8.2% and 6.4%, respectively) with a difference 
in the fifth-most abundant phylum, namely Chloroflexi 
for sandy bottoms (= 5.3%) and Desulfobacterota for sea-
grass meadows (= 5.9%).
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Structure of bacterial community
The hierarchical clustering (UPGMA) plot showed three 
major branches, composed of (i) Manza and Sesoko, (ii) 
Sunabe and Odo, and (iii) Uruma and Kayou clustered 
with more distant Kin (Supplementary Figure S1). The 
AU (Approximately Unbiased) p-values and BP (Boot-
strap Probability) were low to moderate (ranging from 67 
to 89%, and from 35 to 57% for AU and BP, respectively) 
for all branches except for the branch formed by Uruma 
and Kayou (AU = 99%, BP = 97%).

The result of the silhouette analysis based on OTU level 
data showed that the samples could be divided into three 
groups; sandy bottoms, seagrass meadows, and hard 
rocky substratum with living scleractinian corals (Sup-
plementary table S9), and we subsequently used these 
categories in this research. In our results, most of the 
samples were assigned to their supposed groups (“sandy 
bottom” group (Kin and Sunabe), = 29/35 (82%); “seagrass 

meadow” group (Kayou and Uruma), 40/40 (= 100%); 
and “coral reef” group (Manza, Sesoko, and Odo), 45/60 
(= 75%) (Supplementary tables S10).

The nMDS plot based on the Bray-Curtis dissimilarity 
indices result illustrates these three different groupings 
(Fig. 3).

Prokaryotic richness and diversity
The highest value of prokaryotic Shannon diversity indi-
ces was observed at coral reef sites, whereas the lowest 
was found at sandy bottom sites (Supplementary Table 
S11). There was no significant difference in Shannon 
index between coral reef sites and sandy bottom sites or 
between coral reef sites and seagrass meadow sites (Fig. 4, 
Supplementary Table S12). However, seagrass meadow 
sites had significantly higher prokaryotic diversity 
when compared to sandy bottom sites (p < 0.01). When 
prokaryotic Shannon indices were compared among 

Fig. 2 Bar plot showing the top 13 phyla in each benthic type. Different colors show different bacterial phyla. Columns show samples from coral reefs, 
seagrass meadows, and sandy bottom sites, from left to right. Color bar widths indicate relative abundance of each taxon
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Fig. 3 nMDS plot of Bray-Curtis dissimilarity index of samples. Each circle, triangle or square represents a different sample. Sites have been abbreviated 
as follows: Kn: Kin, Sn: Sunabe, Ky: Kayou, Ur: Uruma, Sk: Sesoko, Mn: Manza, Od: Odo. Different colored mesh indicates groupings based on silhouette 
analysis results, mostly corresponding to red = sandy bottoms, blue = coral reefs, green = seagrass meadows
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individual sites, Uruma showed significantly higher 
diversity compared to Kin (p < 0.01), Kayou (p < 0.01), and 
Sunabe (p < 0.05) (Supplementary Figure S2).

Similarity and dissimilarity among coral reef, seagrass 
meadow and sandy bottom sites
The result of PERMANOVA showed that all three 
groups had significantly different bacterial composi-
tions (p < 0.001, Table  1). Further, ANCOM analysis of 
the top 10% of the most abundant orders indicated that 
specific bacterial taxa were differentially abundant in 
each benthic substratum (Fig.  5). Orders Flavobacte-
riales, Rhodobacterales, Verrucomicrobiales, Cytophag-
ales, Enterobacterales, and Eurycoccales were exclusively 
abundant in coral reef sites. Kiloniellales and Entomo-
plasmatales were prominent only in sandy bottom sites, 
and Steroidobacterales, Desulfobacterales, Chromatiales, 
and Thiotrichales were distinctly abundant only in sea-
grass meadow sites. Actinomarinales and Thermoanaero-
baculales were distinctly less abundant in coral reef sites, 
Opitutales, Bacteroidales, and Sphingomonadales were 

less abundant in sandy bottom sites, and Dadabacteriales 
was distinctly less abundant in seagrass meadow sites.

Correlation between bacterial orders of each substratum
Most correlations of the top ten most abundant bacterial 
orders with a correlation coefficient exceeding 0.7 were 
detected by both Pearson and Distance methods (n = 16), 
whereas a few were detected by only Pearson’s method 
(n = 5, Fig. 6).

In coral reef sites, the abundance of Actinomarinales 
had a negative correlation with Cyanobacteriales, while 
showing positive correlations with the abundances of 
Desulfobacterales and Thermoanaerobaculales.

Secondly, in sandy bottom sites, Thermoanaerobacula-
les exhibited a positive correlation with Actinomarinales, 
as seen in coral reefs. However, Thermoanaerobaculales 
showed negative correlations with Verrucomicrobiales, 
Rhodobacterales and Flavobacteriales. Additionally, Rho-
dobacterales and Verrucomicrobiales had positive corre-
lations, while Flavobacteriales and Rhizobiales showed 
negative correlations. Furthermore, Actinomarinales was 

Table 1 Result of PERMANOVA analysis to test if bacterial composition between substrata are significantly different
Comparison Df Sums Of Squares F.Model R2 p.value p.adjusted
Sandy bottom 
vs.
Coral reef

1 0.6886399 33.26826 0.2634729 0.001 0.003

Seagrass meadow
vs.
Coral reef

1 0.8596397 47.87419 0.3281882 0.001 0.003

Sandy bottom 
vs.
Seagrass meadow

1 0.2832032 14.14899 0.162354 0.001 0.003

Fig. 4 Box plots of prokaryotic (left) and enzymic (right) Shannon diversity indices among different types of substrata. Asterisks show statistical signifi-
cance (*** p < 0.005)
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positively correlated with Rhizobiales, and negatively cor-
related with Rhodobacterales and Verrucomicrobiales.

Thirdly, in seagrass meadow sites, Desulfobactera-
les and Microtrichales had negative correlations while 
Actinomarinales and Thermoanaerobaculales showed 
a positive correlation. As well, positive correlations 
between Caldilineales and Thermoanaerobaculales as 
well as between Actinomarinales and Caldilineales were 
detected by only Pearson’s method.

Enzymic capability estimation and analysis
In this study, a total of 2431 enzymes were estimated to 
be coded in the prokaryotic metagenome based on the 
IMG database (Supplementary Table S13, also original 
count table is available in Additional files 12 to 15). The 
Shannon diversity of enzymes was significantly higher in 
coral reef sites compared to the other two benthic types 
(Supplementary Table S14). When comparing individual 
sites, Kin showed significantly lower diversity compared 
to all other sites except for Kayou. Similarly, the diver-
sity indices of Kayou and Uruma were significantly lower 

than those at Manza, Odo, Sesoko, and Sunabe (Supple-
mentary Figure S2).

Among the top 5% of the most abundant enzymes in 
all samples, the ANCOM test revealed that 20 enzymes 
were significantly and exclusively abundant in coral 
reef sites, namely site-specific DNA-methyltransferase 
(adenine-specific) (EC 2.1.1.72), Cysteine desulfurase 
(EC 2.8.1.7), Ribonucleoside-diphosphate reductase (EC 
1.17.4.1), Thioredoxin-disulfide (EC 1.8.1.9), C-termi-
nal processing peptidase (EC 3.4.21.102), 23  S rRNA 
pseudouridine1911/1915/1917 synthase reductase (EC 
5.4.99.23), Dihydroorotase (EC 3.5.2.3), N-acetylmu-
ramoyl-L-alanine amidase (EC 3.5.1.28), Endopepti-
dase Clp (EC 3.4.21.92), 8-oxo-dGTP diphosphatase 
(EC 3.6.1.55), Protein-serine/threonine phosphatase 
(EC 3.1.3.16), Superoxide dismutase (EC 1.15.1.1), Man-
nose-1-phosphate guanylyltransferase (EC 2.7.7.13), 
Arsenate reductase (glutathione/glutaredoxin) (EC 
1.20.4.1), 3-oxoacyl-[acyl-carrier-protein] reductase (EC 
1.1.1.100), Threonine ammonia-lyase (EC 4.3.1.19), XTP/
dITP diphosphatase (EC 3.6.1.66), Phosphoserine phos-
phatase (EC 3.1.3.3), Protein-glutamate methylesterase 

Fig. 5 Combined graph of the results obtained with ANCOM analysis (left to middle) and the total absolute abundance (right) of each bacterial order. 
For the ANCOM analysis, compared substratum types are shown at the top of each column. “W_statistics” stands for a log fold change value divided by 
standard error for effect size correction, and indicates to what type of substratum each bacterial order was differentially abundant. Asterisks show statisti-
cal significances (*p < 0.05, ** p < 0.01, ***p < 0.001)
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(EC 3.1.1.61), and GTP cyclohydrolase I (EC 3.5.4.16) 
in descending manner (Fig. 7). On the other hand, nine 
enzymes were more abundant in seagrass meadow sites, 
namely Histidine kinase (EC 2.7.13.3), Peptidylprolyl 
isomerase (EC 5.2.1.8), H+-transporting two-sector 
ATPase (EC 3.6.3.14), Dihydrolipoyl dehydrogenase (EC 
1.8.1.4), Glutamate synthase (NADPH) (EC 1.4.1.13), 
Glutamate synthase (NADH)(EC 1.4.1.14), Type I 
site-specific deoxyribonuclease (EC 3.1.21.3), Citrate 
(Si)-synthase (EC 2.3.3.1), and Asparagine synthase 

(glutamine-hydrolysing) (EC 6.3.5.4) in the same manner 
as above. No enzymes were exclusively abundant in sandy 
bottom sites.

Discussion
While prokaryotic compositions in seawater and on 
the surfaces of benthic organisms have been exten-
sively studied [e.g. 56, 58, 68], there is limited research 
available on sedimentary prokaryotes from different 
marine environments. In this study, we investigated the 

Fig. 6 Combined graph showing the results of correlation among bacterial orders. From the top to bottom, rows show coral reef sites, sandy bottom 
sites, and seagrass meadow sites, respectively. Left column is based on the distance method, while right column is based on Pearson’s coefficient of cor-
relation method, where warm colors mean positive correlation, and cold colors mean negative correlation
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prokaryotic compositions in marine sediments from Oki-
nawa Island and sought candidate prokaryotes as bio-
indicators to be used in future monitoring of coral reef 
ecosystem health. As a result, we revealed that different 
habitats have significantly different prokaryotic com-
munities, and revealed bacterial taxa that characterize 
each environment that can potentially be candidates for 

environmental monitoring using metabarcoding meth-
ods. These approaches may help in preventing serious 
damage to corals caused by heat stress or diseases.

Dominant taxa and diversity indices
Among three substrata, the top four most abundant 
phyla were shared except for Cyanobacteria, which only 

Fig. 7 Combined graph of the results obtained with the ANCOM analysis (left to middle) and the total absolute abundance (right) of each coded enzyme 
by prokaryotes. For the ANCOM analysis, compared substratum types are shown at the top of each column. “W_statistics” stands for a log fold change 
value divided by standard error for effect size correction and indicates to what type of substratum each bacterial order was differentially abundant. Aster-
isks show statistical significance (*p < 0.05, ** p < 0.01, ***p < 0.001)
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appeared in coral reef sites, and Acidobacteriota which 
appeared in seagrass meadows and sandy bottom sites. 
The fifth-most abundant phylum was different among 
substrata, namely Verrucomicrobiota at coral reefs, Chlo-
roflexi at sandy bottom sites, and Desulfobacterota in sea-
grass meadows. In all benthic types, Proteobacteria was 
the most dominant phylum, consistent with many pre-
vious studies focusing on various marine environmental 
samples such as shallow to deep sediments and water 
[108–113]. Cyanobacteria are suggested to be promi-
nent in coral mucus when exposed to heat stress [21], 
thus its abundance only in coral reef sites may indicate 
such stress, although further investigations of the coral 
mucus microbiome and bleaching conditions are needed 
to verify this hypothesis. Chloroflexi has been reported to 
be abundant in marine sediments compared to seawater 
not only in coral reefs but worldwide, especially at anoxic 
sediments [114]. Therefore, our results may indicate that 
sandy bottom sites where Chloroflexi was abundant may 
have been experiencing deoxygenation, possibly due 
to the lower abundance of grazers when compared to 
coral reefs and seagrass meadows, as similarly observed 
in Okinawan sea cucumbers [115], as such organisms 
can increase O2 penetration depth in the sediment layer 
by plowing sediments via their feeding activities [116]. 
Desulfobacterota is a strict anaerobe, with chemoor-
ganotrophic, chemolithoheterotrophic or chemolithoau-
totrophic bacteria, found across a wide range of aquatic 
environments [117]. This phylum is often predominant 
in coastal deep layer sediments where hypoxic condi-
tions can occur [112, 118, 119]. It is also known that 
seagrass meadows occasionally become hypoxic possi-
bly due to abnormally high temperatures [120], however 
water temperatures in November to December, when we 
conducted sampling for this study, were lower than sum-
mer maximum temperatures. Still, further investigations 
combined with continuous temperature measurements 
around Okinawa Island should assist to better under-
stand the relationship of Desulfobacterota’s abundance 
and hypoxic environments caused by global warming.

The significantly lower alpha diversity at sandy bot-
tom sites when compared to seagrass meadow sites may 
reflect the low surface complexity of sandy environments. 
Seagrass is known to have a unique bacterial community 
associated with its leaves, roots and rhizosphere [121–
123], and these bacteria may contribute to the ecological 
function in seagrass meadow sites. While corals are also 
known to harbor symbiotic bacteria on their surfaces or 
inner skeletons [58, 76, 124, 125], there was no signifi-
cant difference in diversity index between coral reef and 
sandy bottom. This could be attributed to the substan-
tial variation in bacterial community diversity known 
to occur in corals [126, 127]. In fact, the second lowest 
and highest Shannon diversity indices in this study were 

obtained from Manza, one of the coral-rich sites (Shan-
non index = 4.62 and 5.66, respectively).

Microbial composition and differentially abundant 
prokaryotic orders in each substratum
The PERMANOVA analysis revealed the prokaryotic 
composition is significantly different among the three 
benthic types. This is the first report rigidly uncovering 
such distinct differences among different benthic compo-
nents in coral reefs on a geographically small scale. Inter-
estingly, both coral reef and sandy bottom sites formed 
individual groups despite individual sites in each group 
are largely distanced. This result suggests benthic type-
specific prokaryotic compositions exist around Okinawa 
Island, which may have acclimated to their respective 
conditions over a long period of time. However, it is 
important to consider that human-caused impacts can 
also affect the local prokaryotic community in coral reefs 
[22], and thus what we observe here in each benthic type 
might be a result of anthropogenic disturbances. Pro-
karyotic communities are known to be highly plastic 
and capable of recovering relatively quickly after distur-
bances. Therefore, continuous monitoring of the pro-
karyotic components at each site is crucial to understand 
and track any changes that may occur over time, and 
such data should provide valuable insights into the resil-
ience and stability of coral reef ecosystems in response to 
environmental changes and disturbances.

At sandy bottom sites, there were only two bacterial 
orders, Kiloniellales and Entomoplasmatales, that were 
differentially abundant exclusively. Although these bacte-
rial orders have been reported from marine sediments in 
a few studies [128, 129], the ecological feature and envi-
ronmental preference of these bacteria remain largely 
unknown. One fact that is shared between these orders is 
that they are both known to be symbiotic to other organ-
isms. For example, Entomoplasmatales is a well-known 
symbiotic bacteria found the guts of crustaceans (e.g., 
[130, 131]), and has also been reported as a major bacte-
rial symbiont of marine lake jellyfish Mastiguas sp. [132]. 
Kiloniellales is a marine-restricted bacterial order [133], 
that is commonly found as a symbiotic bacteria among 
cnidarians (jellyfish; Tripedalia cf. cystophora [132], 
Gonionemus vertens; [134], hydrozoan Millepora platy-
phylla but not found in scleractinians Porites lobata or 
Pocillopora meandrina; [127]); also known from juvenile 
sea star Mithrodia clavigera [135]). Therefore, the biased 
abundance of these bacterial orders in sandy bottom sites 
might reflect the high population density of such host 
organisms. However, comprehensive population density 
and species aggregation information of these taxa around 
Okinawa Island is currently lacking, as known for some 
other taxa (e.g., zoantharians [136], giant clams [137], 
and holothurians [115]).
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There were four bacterial orders differentially abundant 
in seagrass meadow. In the order Steroidobacterales, the 
genus Woeseia predominantly occupied 99.8% of entire 
order in this research. Woeseia was originally described 
within Chromatiales by Du et al. [138] as a salt-depen-
dent and facultative anaerobic bacteria, and Chroma-
tiales is also one of the differentially abundant bacterial 
orders in seagrass meadows in this study. Woeseia is a 
globally distributed and ubiquitous marine bacteria with 
chemorganoheterotrophy and facultative chemolithoau-
totrophy based on inorganic sulfur and hydrogen com-
pounds, often found in marine sediments [139, 140]. This 
genus is also a major symbiotic rhizosphere bacteria of 
seagrasses, such as Caulerpa and Cymodocea [110], as 
well as Zostera [141], seepweed Suaeda and common 
reed Phragmites [142], and the mangrove tree Kandelia 
candel [143]. Desulfobacterales, a sulfate-reducing and 
strictly anaerobic bacteria, is known to be abundant in 
coastal deep layer sediments, and was also differentially 
abundant in seagrass meadows. Seagrass meadows and 
mangrove habitats often have low oxygen concentra-
tions [144–147]. Desulfobacterales is also thought to be a 
major player of nitrogen cycling, involved in an estimated 
average of 12% of the entire process in mangrove ecosys-
tems [148]. Nie et al. [148] also suggested that the high 
abundance of nitrate reducing bacteria such as Desulfo-
bacterales may contribute to the prevention of excessive 
nitrate-nitrogen accumulation, which could harm the 
local ecosystem in combination with some other bacte-
rial orders such as Chromatiales, which was abundant 
in the current research. Chromatiales is known to be a 
symbiont of the sponge Stylissa carteri [149], and is also 
abundant in saltmarsh sediments covered by cordgrass 
Spartina alterniflora along with Thiotrichales [150].

Of potential importance, there are reports that some 
of these bacteria are related to prevalent environmental 
pollution. For instance, Woeseia is known to increase 
with iron and arsenic increases in seagrass meadows 
[151], and Desulfobacterales is influenced by heavy metal 
pollution in mangrove forests [152]. Desulfobacterales 
has also been reported to be prominent at both natural 
(e.g., estuarine [153]) and artificially eutrophicated sites 
(prawn mariculture pond [154] and salmon maricul-
ture area [155]). Chromatiales has been suggested to be 
elevated by environmental stress (i.e., unseasonal heavy 
rainfall) in the seagrass Halophila ovalis when compared 
to healthy individuals [156]. Eutrophication in seagrass 
meadows is suggested to stimulate an unfavorable surge 
of heterotrophic bacteria, that occasionally can result in 
large-scale die-off events due to elevated sulfide concen-
trations in sediments [157]. Therefore, these bacteria can 
potentially be used as bioindicators of such disturbances, 
and further research combined with direct detection of 

biotic and abiotic, as well as natural and anthropogenic 
cues may assist to track local environmental stress better.

Our examined coral reef sites had six bacterial orders 
that were significantly and exclusively abundant. Order 
Rhodobacterales is a facultative anaerobic bacteria, 
known to be a primary surface colonizer in temper-
ate coastal waters [158]. In tropical coastal areas, Rho-
dobacterales are known to be abundant on some coral 
species’ outer surfaces (e.g. Porites [127]), especially in 
aged surface mucus [76]. This order has been proposed 
to be prevalent in stressed or diseased coral individuals 
(pathogenic Vibrio infection [159], stony coral tissue loss 
disease [160], heat stress due to El Niño [161]). Nota-
bly, it has been implied that many of the bacteria within 
Rhodobacterales are capable of detecting and degrad-
ing dimethylsulphoniopropionate (DMSP) [162–164], 
which is mainly produced by Symbiodiniaeceae dino-
flagellates symbiotic with coral [165]. Considering the 
fact that heat-stressed coral colonies express five-fold 
higher DMSP concentrations than healthy colonies [166], 
Rosales et al. [167] proposed that DMSP could chemoat-
tract some kinds of bacteria and therefore is the cause 
of the prominence of Rhodobacterales in stressed coral 
colonies. Flavobacteriales was also abundant in coral reef 
sites, and this bacteria is known to encode diverse poly-
mer-degrading enzymes, indicating their capacity to uti-
lize a wide range of carbon sources [168]. This order has 
been suggested to be plentiful in coral mucus and tissue 
[167], being especially pronounced before and while host 
corals are exposed to environmental stress [169], such as 
disease infections [167]. Furthermore, it has been sug-
gested that Flavobacteriales encodes similar functional 
genes as Rhodobacterales, although their expressions are 
substantially different [170]. Verrucomicrobiales, an order 
belongs to the phylum Verrucomicrobiota that has been 
reported as almost ubiquitous in marine habitats includ-
ing coastal sediments (reported as Verrucomicrobia 
[171]), is also known to be abundant in coral mucus, and 
potentially pathogenic to corals [76]. Verrucomicrobiales 
increases in corals infected with black band disease [172] 
and also with growth anomalies [173]. Enterobacterales 
is a Gram-negative, rod shaped and facultative anaerobic 
bacteria [174], which occasionally has been reported to 
associate with aquatic organisms such as freshwater fish 
[175] and marine sponges [176]. This order has been sug-
gested to be pronounced in bleached Acropora digitifera 
[177], although the genus Vibrio, a representative patho-
genic taxon within this order, was not abundant in this 
research. Cytophagales is an order that prefers habitat 
where organic materials are abundant, and is capable of 
producing flexirubin-type pigments [178]. Cytophagales 
are often found in freshwater, and are also relatively com-
mon in coastal waters [178], and have been suggested 
to be a major decomposer of plant litter in marine wet 
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land in China [179]. In tropical coral reefs, Cytophagales 
has been known to be an opportunistic bacteria that was 
observed to become more abundant on the body surface 
of the coral Montastraea cavernosa after infection of 
pathogenic Vibrio bacteria, presumably due to a decrease 
in predatory bacteria Halobacteriovorax [159]. Although 
Halobacteriovorax has been reported from marine sedi-
ments [180, 181], it was barely detected in this research. 
Cytophagales is also known to become more abundant 
once a coral host is subjected to continuous heat stress, 
e.g. by El Niño [161]. Eurycoccales is a photosynthetic 
cyanobacterial order, which has been previously reported 
from coastal sediments [155]. However, information 
about this order, such as its preferred habitat(s) or nutri-
ent requirement(s), is still limited and more studies are 
needed to better interpret the meaning of their abun-
dance in coral reef sites. Meanwhile, coral symbiotic 
bacteria, represented by family Endozoicomonaceae [24, 
76, 77, 182–184] and a few other taxa (i.e. Oxalobactera-
ceae [76], Alteromonadales and Simkaniaceae [184, 185], 
Oceanospirillales [58]), were comparatively rare in the 
current research.

Overall, the current results may reflect high levels of 
environmental stressors such as heat stress, coral dis-
ease, and pathogenic bacteria in coral reef sites around 
Okinawa Island. Bacterial interactions between coral-
ambient sediment and coral-ambient seawater have 
been reported in healthy [58, 76, 186] and diseased cor-
als [187], and it has been suggested that coastal surface 
sediments serve as a possible pathogen reservoirs or 
“seed-banks” as proposed by Carlos et al. [75]. Although 
we did not conduct direct sampling of coral tissue or 
mucus, considering several putative stress-related bac-
terial orders (e.g., Flavobacteriales and Verrucomicro-
biales) were relatively more abundant in this research 
compared to coral reef sediments in previous research 
(Supplementary Table S15), there is an urgent need to 
monitor coastal sedimentary microbial communities to 
track stress-related prokaryote demography around Oki-
nawa. Simultaneously, there is yet only a few examples 
of research on coastal sedimentary microbiomes, espe-
cially from the western Pacific, making it harder to com-
pare our results to previous research. Therefore, to take 
advantage of metabarcoding methods as environmental 
monitoring measures, it would be very helpful to create a 
local catalogue of conspicuous prokaryotic taxa depend-
ing on substratum type.

Correlation between bacterial orders at each environment
There were several correlations observed among bacterial 
orders in this research. However, due to the lack of essen-
tial information to interpret these relationships, such as 
habitat preferences, secondary metabolites and/or bio-
chemical capabilities, many of these relationships remain 

unknown at this stage. Thanks to the recent technologi-
cal advancements, further comparative details between 
some microbial groups could be provided; for example, 
the negative correlation observed between Actinomari-
nales and Cyanobacteriales at coral sites. Recently, 
López-Pérez et al. [188] explored the genome of Acti-
nomarinales, a photoheterotrophic bacterial order, and 
revealed that it encodes cyanophycinase, enabling Acti-
nomarinales to use cyanophycin as a source of arginine, 
which is one of the amino acids that they are auxotrophic 
for. Cyanophycin is an amino acid polymer produced by 
most Cyanobacteria that has arginine as a branched side 
chain and aspartic acid as its backbone [189]. Cyanophy-
cin is predicted to work as a temporary storage of nitro-
gen, specifically accumulating fixed nitrogen at night and 
utilizing it during the day to uncouple nitrogen assimi-
lation and photosynthesis, and hence cyanophycin is 
important in these species’ survival strategies [190].

Based on these facts, the negative correlations observed 
here might indicate the following scenario: increases 
of Actinomarinales raise its dependency on cyanophy-
cin, and subsequently Cyanobacteria are consumed by 
Actinomarinales as a source of arginine. Actinomarina-
les is also known to work as a module-hub among small 
sized free-living planktonic bacteria in eutrophic estu-
aries [191]. Desulfobacterales, which showed a positive 
correlation with Actinomarinales, is one of the bacte-
rial orders abundant in eutrophic environments such as 
estuaries [153]. Xie et al. [192] revealed that these two 
orders are abundant in plastic-polluted mangrove soil 
specifically in spring, while Actinomarinales become 
infrequent as water temperature rises. Therefore, abun-
dant nutrient resources at coral sites or other condition 
(e.g. water temperatures, light intensity etc.) may lead 
to a positive correlation of these orders. Actinomari-
nales and Thermoanaerobaculales exhibited positive 
correlation in both coral sites and sandy bottom sites. 
According to our obtained data, family Thermoanaero-
baculaceae occupied more than 90% of the entire Ther-
moanaerobaculales. Thermoanaerobaculaceae have 
been described as thermophilic, neutrophilic and che-
moheterotrophic anaerobes that prefer some sugars, 
organic acids and proteinaceous compounds as growth 
substrates [193], and they have been suggested to be 
sulfate reducers [194, 195]. Thermoanaerobaculaceae is 
known to increase upon nitrate nitrogen contamination 
into the environment [196]. Actinomarinales is known 
to perform anammox (anaerobic ammonium oxidation) 
by reducing natural organic matter (NOM), and thus 
increase NOM availability [197]. Therefore, these orders 
might represent an increase in total nitrogen input into 
the environment. Flavobacteriales, which had a negative 
correlation with Rhizobiales and Thermoanaerobaculales 
at sandy bottom sites, was mostly occupied by a member 
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of family Flavobacteriaceae in the current data (> 90%). 
Recent genome mining research of Flavobacteriaceae 
has revealed that they encode antimicrobial, antioxidant 
and cytotoxic compounds [168], and this might work 
to suppress Rhizobiales and Thermoanaerobaculales. 
To achieve a better understanding of such correlations 
among orders, however, more rigid information about 
their ecological and biochemical capabilities, as well as 
direct detection of abiotic variables such as salinity, dis-
solved oxygen, nitrate and phosphate concentrations, and 
pH are essentially needed.

Enzymic capability estimation
Although the actual amounts of enzymes were not inves-
tigated directly, the significantly higher enzymic diversity 
and the greater number (n = 20) of enzymes that were dif-
ferentially abundant in coral reef sites may be explained 
by coral symbiotic prokaryotes’ complex enzymic reac-
tions to various environmental stressors [198–200]. Like-
wise, although enzymic diversity was significantly lower 
than at coral rich sites, seagrass meadow sites had sev-
eral enzymes exclusively abundant (n = 8), and this could 
also mirror diverse biochemical pathways of microbial 
symbionts in this habitat [87, 201, 202]. Comparing those 
two substrata, sandy bottom sites had poor three-dimen-
sional rugosity, and this may potentially have resulted in 
the absence of exclusively abundant enzymes.

Amongst the enzymes that were exclusively abundant 
in coral reef sites, cysteine desulfurase (EC 2.8.1.7) is 
known to be one of the most abundant and ubiquitous 
genes encoded in any organism’s genome [203], includ-
ing bacteria [204]. This enzyme is involved in the conver-
sion of L-cysteine into L-alanine and sulfane sulfur, and 
this process also involves iron-sulfur cluster synthesis 
[205]. So far, three types of cysteine desulfurase, namely 
NifS, IscS, and SufS, have been identified, with all of 
them considered important in oxidative stress meditation 
[206–208].

Another enzyme enriched in coral sites was superoxide 
dismutase (EC 1.15.1.1). Generally, superoxide dismutase 
is known to mediate superoxide compounds such as 
hydrogen peroxide [209], and have also been confirmed 
to be produced by various bacteria [210, 211]. One major 
and well-studied oxidative stressor within scleractinian 
corals are individual endosymbiotic dinoflgallete Symbio-
diniaceae under heat-stressed conditions [212], and thus 
superoxide dismutase production capability is important 
for biochemical defense in coral tissue, especially under 
harsh condition such as high seawater temperatures 
during coral bleaching [213]. We must note, however, 
that we neither detected enzymes directly nor collected 
coral tissue sample directly. Still, considering the nature 
of microbial interactions between a coral’s surface and 
its surrounding environment (known as “the coral 

ecosphere” in [68]), our finding that coral sites have sig-
nificantly higher production potential of superoxide dis-
mutase than other substrate types needs to be followed 
up with more concrete future studies including metage-
nomic analyses or classical culturing to assess what bac-
teria are actually contributing to these differences.

The histidine kinase (EC 2.7.13.3) was abundant in sea-
grass meadow sites. In bacterial cells, histidine kinase is 
known as a part of membrane-anchored proteins form-
ing the two-component regulatory system [214], and 
is essential for bacteria to detect and react to external 
stimuli by phosphorylating histidine as a signaling cue 
[215]. As well, this enzyme is suggested to be crucial for 
biofilm formation [216]. Therefore, the abundance of this 
enzyme may show dynamic environmental fluctuation 
in these sites. Coral reef sites are also presumed to have 
substantial environmental fluctuations, however the his-
tidine kinase coding gene was not abundant in coral reef 
sites. This may indicate the ecological strategy of bacte-
rial community in each substratum is different, and fur-
ther investigation ideally employing other methods such 
as transcriptome analyses and enzyme assays are needed 
for a better understanding.

Conclusions
Our data showed that the different habitats in coral reefs 
have different prokaryotic communities, with character-
istic taxa that are exclusively more abundant in specific 
environments. Although the main driver that determined 
community structure was not fully revealed in this study, 
some bacterial taxa that characterized our observed coral 
reef microbiome have previously been linked to environ-
mental stressors such as heat stress, bleaching, and coral 
diseases. Considering the potential of benthic sediments 
to interact with coral surface prokaryotic communities 
as suggested previously, sedimentary prokaryote moni-
toring is extremely important to assess the potential risk 
of environmental degradation in coral reefs, and harm-
ful pathogen prevalence in coral reefs. Therefore, further 
studies on the interactions between the microbial com-
munity and biotic (e.g., coral disease prevalences, coral-
livore abundances, organic content concentrations) and/
or abiotic (e.g. water temperatures, hydrodynamics, solar 
radiation) parameters needs to be performed. In addition, 
our samples were from a single time period, and there-
fore continued sampling and longer-term monitoring are 
needed to track spatio-temporal variability. For now, our 
data from the current study provide a preliminary refer-
ence list of prokaryotic taxa we should pay attention to 
in order to better forecast coral reef health with higher 
resolution.
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