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Interpretable machine learning decodes soil 
microbiome’s response to drought stress
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Abstract 

Background  Extreme weather events induced by climate change, particularly droughts, have detrimental conse-
quences for crop yields and food security. Concurrently, these conditions provoke substantial changes in the soil 
bacterial microbiota and affect plant health. Early recognition of soil affected by drought enables farmers to imple-
ment appropriate agricultural management practices. In this context, interpretable machine learning holds immense 
potential for drought stress classification of soil based on marker taxa.

Results  This study demonstrates that the 16S rRNA-based metagenomic approach of Differential Abundance 
Analysis methods and machine learning-based Shapley Additive Explanation values provide similar information. They 
exhibit their potential as complementary approaches for identifying marker taxa and investigating their enrichment 
or depletion under drought stress in grass lineages. Additionally, the Random Forest Classifier trained on a diverse 
range of relative abundance data from the soil bacterial micobiome of various plant species achieves a high accuracy 
of 92.3 % at the genus rank for drought stress prediction. It demonstrates its generalization capacity for the lineages 
tested.

Conclusions  In the detection of drought stress in soil bacterial microbiota, this study emphasizes the potential 
of an optimized and generalized location-based ML classifier. By identifying marker taxa, this approach holds promis-
ing implications for microbe-assisted plant breeding programs and contributes to the development of sustainable 
agriculture practices. These findings are crucial for preserving global food security in the face of climate change.

Keywords  Metagenomics, Machine learning, SHAP values, Differential abundance analysis, Soil microbiome, Drought 
stress

Background
Global food security is significantly threatened by climate 
change, especially in regions with limited access to food 
resources [1–3]. Anticipated occurrences of extreme 
weather events, such as droughts, are likely to increase in 
frequency and intensity, causing significant crop damage 

and threatening food availability [4, 5]. These repercus-
sions are attributed to shortened growing seasons and 
substantial reductions in crop yields due to various biotic 
and abiotic stresses, prominently drought stress [6–8].

External perturbations, like drought stress, significantly 
impact the dynamics of the soil microbial community, 
leading to compositional shifts that are facilitated by the 
recruitment of beneficial microbes from the surrounding 
soil to the roots [9, 10]. This interaction between plants 
and soil microorganisms is a vital aspect of ecosystem 
health and stability [11–14]. Hence, this results in the 
opportunity to identify and interpret specific metagen-
omic patterns, as they have the potential to provide valu-
able insights into the state of both soil and plant health.
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The use of machine learning (ML) algorithms enables 
the analysis of complex microbiome data by fully captur-
ing the depth of data and identifying patterns that can 
discriminate between different states or conditions [15]. 
This can help to identify specific marker taxa that are 
key to understanding the intricate relationships between 
environmental stressors, soil health, and plant viability. 
Thereby, they aid in the development of more effective 
soil management strategies, including irrigation prac-
tices and the selection of drought-tolerant crops. Marker 
taxa hold significant potential for application in Syn-
thetic Communities (SynComs), providing an innovative 
approach for early intervention under challenging envi-
ronmental conditions, like droughts, to enhance plant 
resilience and growth [10, 16].

Still, the path from ML predictions to actionable 
insights can be challenging. ML models often resem-
ble black boxes, with their internal decision-making 
obscured from users. The interpretation of the reasons 
for certain predictions is essential, especially for complex 
biological data [17–19]. This is where interpretable ML 
methods such as SHapley Additive ExPlanation (SHAP) 
values are applied [20].

The concept behind SHAP values is to distribute the 
credit for the model’s prediction among the feature 
inputs based on their individual contribution, using game 
theory. Notably, SHAP values are model-specific yet 
globally constant, comprehensively taking into account 
interactions between features [21].

While SHAP values have been applied in clinical stud-
ies [22, 23], their use in metagenomic data is limited. For 
the identification of significant taxa between comparison 
groups, Differential Abundance Analysis (DAA) is the 
commonly used method in metagenomic analyses [24]. 
Typically used DAA tools are DESeq2 [25], ALDEx2 [26], 
edgeR [27], ANCOM-BC2 [28], and the non-parametric 
Wilcoxon rank-sum test.

DAA tools and SHAP values offer distinct approaches 
for detecting marker taxa. DAA tools rely on statistical 
tests and assume specific data distributions [29], while 
SHAP values are model-agnostic and applicable to any 
ML model [21]. Both methods aim to identify crucial 
features or taxa, providing insights into underlying bio-
logical mechanisms, but serve different purposes. DAA 
methods focus on identifying differentially abundant 
taxa, whereas interpretable ML using SHAP values offers 
importance measures based on model performance. The 
main objective of SHAP values is to interpret complex 
ML models by quantifying the contribution of each fea-
ture and explaining predictions. Their application in this 
study demonstrates the potential to identify key taxa in 
soil microbiomes as well as their role in the microbial 
response to drought stress.

The selection of an appropriate soil dataset was essen-
tial for this study. ML analyses thrive on datasets with 
many samples and informative metadata [30]. Finding 
the minimum number of samples needed for reliable pre-
dictions is a challenge with high-dimensional data, such 
as 16S rRNA-based metagenomic datasets with more 
features than samples [31, 32]. A dataset from the work 
of Naylor et al. [33] was selected as the largest available 
drought stress dataset. This dataset includes 623 sam-
ples from three soil isolation sources and investigates 
the effect of drought stress on 19 different crop species, 
including C3 and C4 plants. The number of features 
ranged from 26 to 330 depending on the taxonomic rank.

Despite the remarkable achievements in applying 
ML to human microbiome research [34–38], its appli-
cation in the context of soil metagenomics is not yet as 
advanced. However, the agricultural industry is increas-
ingly recognizing the potential of ML to improve soil 
health and promote sustainable farming practices [39, 
40]. This includes predicting plant phenotypes based on 
the plant and surrounding soil microbiome to detect taxa 
associated with plant diseases and environmental stresses 
[41].

Prior research has highlighted the potential of ML 
in agriculture, with studies identifying marker taxa for 
crop productivity [42] and beneficial root microbes [43]. 
Interestingly, the potential of ML for drought stress iden-
tification in soil microbiomes remains largely unstudied, 
representing a promising area for investigation.

This research aims to determine the efficacy of ML 
in predicting drought stress within microbial data of 
drought-stressed soils. The study comprises three key 
objectives: a) investigating the predictive capability of 
ML for drought stress, b) comparing the performance 
of interpretable ML with conventional 16S rRNA-based 
metagenomic analyses, and c) assessing the generaliza-
tion capabilities of the trained classifier. By identifying 
marker taxa and deciphering microbial patterns associ-
ated with drought stress, this research addresses sus-
tainable agriculture, improved crop productivity, and 
increased food security.

Methods
Datasets
A dataset originally curated by Naylor et  al. [33] for 
their study on the impact of drought stress on the grass 
root microbiome was analyzed. This dataset, referred to 
as the ’Grass-Drought’ dataset, comprises 623 samples 
from three isolation sources, including ’Soil,’ ’Root,’ and 
’Rhizosphere’, as well as two watering regimes, including 
’Drought’ and ’Control’. Samples from 18 distinct grass 
species within the Poaceae clade are included in the data-
set. Tomato was used as an outgroup. The experimental 
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site was located in Albany, California, characterized by 
silty loam soil with a pH of 5.2. Both watering regimes, 
’Drought’ and ’Control’, were balanced, with 320 samples 
in the ’Control’ group, receiving regular watering, and 
303 samples in the ’Drought’ group, experiencing condi-
tions without water supply. All samples were sequenced 
using 16S rRNA amplicon sequencing of the V3-V4 
region and are available under the BioProjectID PRJNA​
369551.

To evaluate the ML model’s generalizability, its per-
formance was assessed on a separate test dataset from 
Xu et  al. [44] studying pre- and post-flowering drought 
stress effects on the Sorghum bicolor root microbiome 
(BioProjectID PRJNA​435634), therefore referred to as 
the ’Sorghum-Drought’ dataset. The sampling site was 
located in Kearney, California. To ensure the comparabil-
ity of drought conditions between the Sorghum-Drought 
dataset and the original Grass-Drought dataset, two 
subsets were created: The ’Progressive Drought’ subset 
comprised samples from the ’Control’ group, along with 
specific time points (weeks 2 to 7 and weeks 10 to 17) 
from the ’Pre-Flowering Drought’ and ’Post-Flowering 
Drought’ groups, respectively. This subset comprised 278 
’Control’ and 210 ’Drought’ samples. The ’Late Drought’ 
subset included samples from weeks 6, 7, 16, and 17 of 
the ’Control’ group, weeks 6 and 7 of the ’Pre-Flower-
ing Drought’ group, and weeks 16 and 17 of the ’Post-
Flowering Drought’ group, totaling 72 ’Control’ and 69 
’Drought’ samples. A detailed representation of the sub-
setting scheme can be found in the Additional file  1 in 
Fig. S1.

Data processing
The DADA2 workflow [45] for Illumina sequenced 
paired-end fastq files was employed for sequence data 
processing, implemented in R version 4.3.3. Taxonomy 
was assigned using the SILVA database [46] and the Ribo-
somal Database Project (RDP) classifier [47] from phy-
lum to genus rank. To enhance data quality, prevalence 
filtering was conducted, retaining Amplicon Sequence 
Variants (ASVs) present in at least 95 % of all samples, 
reducing the total number of ASVs from 25,415 to 3,276. 
Samples with low read counts were excluded, yielding a 
dataset of 560 samples. Rarefaction was performed, nor-
malizing sequencing depth to the dataset’s 10 % decile of 
17,291 reads. Feature tables for ML for each taxonomic 
rank were constructed with relative abundance values per 
taxon across all samples and a ’Control’ or ’Drought’ tar-
get variable.

16S rRNA‑based metagenomic analysis
A diversity analysis was conducted between the two 
watering regimes ’Control’ and ’Drought’. Alpha diversity 

was assessed using the Shannon index with the esti-
mate_richness function from the phyloseq package 
(version 1.44.0) [48]. Beta diversity was explored via Prin-
cipal Coordinate Analysis (PCoA) based on Bray-Curtis 
dissimilarities with the ordinate and plot_ordina-
tion functions from phyloseq.

To identify taxonomic differences between the ’Control’ 
and ’Drought’ groups, a DAA was employed with several 
tools using the microbiomeMarker R package (version 
1.4.0) [49], including DESeq2, ALDEx2, and edgeR, as 
well as ANCOM-BC2 in the R package ANCOMBC (ver-
sion 2.0.2) [50], and the non-parametric Wilcoxon rank-
sum test on the ASV level. The UpSetR package (version 
1.4.0) [51] was used to compare tool outcomes, and the 
three most suitable methods were applied to all taxo-
nomic ranks to compare enrichment groups and Benja-
mini–Hochberg (BH) adjusted p-values [52].

Machine learning
A Random Forest Classifier (RFC) and a Logistic Regres-
sion Classifier (LRC) were both applied using the 
ScikitLearn Python package (version 1.1.3) [53] to all 
ranks to predict the samples’ watering treatment using 
relative taxon abundances. Hyperparameter optimization 
was carried out through five-fold nested Cross-Validation 
(CV), splitting the dataset into five equally sized parts. 
During each fold, four parts of the dataset were used for 
training, while the remaining part acted as a dataset for 
testing the best model of each fold. The mean model per-
formance was evaluated in terms of accuracy, F1 score, 
precision, recall, and Area Under the Curve (AUC) 
between all folds. Due to the lower performance of the 
LRC, all further analyses were performed using the RFC.

In order to interpret the RFC predictions, SHAP values 
were utilized using the SHAP Python package (version 
0.41.0) [54] with the shap.TreeExplainer function 
[20]. During each fold of the nested CV, feature contri-
butions related to detecting drought stress from SHAP 
values were extracted. A consensus was sought across 
four or five of the folds, requiring alignment in the major-
ity, to consider the enrichment information suitable for 
subsequent analysis. The feature contributions towards 
drought stress from the SHAP values were compared 
with taxon enrichment patterns from differential abun-
dance testing. This was followed by a comparison of sig-
nificant taxa identified by DAA methods and important 
taxa identified by ML.

The model performance and generalizability were 
tested on two independent subsets of the Sorghum-
Drought dataset of Xu et al. [44] that has been described 
in detail in the ’Datasets’ section. This test dataset was 
processed similarly to the Grass-Drought dataset. To cre-
ate feature tables, the tables were pruned to only include 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA369551
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA369551
https://www.ncbi.nlm.nih.gov/sra/PRJNA435634


Page 4 of 12Hagen et al. Environmental Microbiome           (2024) 19:35 

taxa present in the Grass-Drought dataset. Taxa that 
were not present in the Sorghum-Drought dataset but in 
the Grass-Drought dataset were added with zero counts 
as demonstrated in the Additional file  1 in Table  S1. 
Model performance was evaluated, including mean accu-
racy, F1 score, precision, recall, and AUC, which were 
computed across all taxonomic ranks for both subsets.

Additionally, the robustness of the ML model was 
tested on five randomly subsampled independent hold-
out datasets of the Grass-Drought dataset and the aver-
age of the mean model’s performance was evaluated.

Results
Alpha and beta diversity
Alpha diversity analysis, utilizing the Shannon index as 
displayed in Fig.  1 A, found no significant differences 
between the ’Control’ and ’Drought’ groups. This dem-
onstrates that microbial diversity within individual 
samples was not significantly impacted by watering 
regimes. On all taxonomic ranks, no highly abundant 
taxon was found to be uniquely abundant to drought 
stress, as only differences between relative abundances 
between ’Control’ and ’Drought’ groups could be 
observed as shown in Additional file 1 in Fig. S2. Beta 
diversity, assessed via PCoA based on Bray-Curtis dis-
similarities as shown in Fig.  1 B, yielded insights into 
the variation between the samples. The watering regime 
accounted for 6.8 % of the variance and could be clus-
tered into the corresponding irrigation groups. In order 

to train the ML model to detect drought stress from a 
variety of soil samples deriving from different isolation 
sources and crops, the whole dataset was used without 
subsetting it to specific sample types. For further 16S 
rRNA-based metagenomic analyses with this data-
set and its metadata, Naylor et  al.’s paper itself [33] is 
referred to, offering interesting insights into the influ-
ence of the soil isolation source and the impact of the 
different crops on the root microbiome.

Comparative analysis of DAA tools
This study’s comprehensive approach to DAA encom-
passed five distinct methods: DESeq2, ANCOM-BC2, 
ALDEx2, edgeR, and the non-parametric Wilcoxon 
rank-sum test (Fig. 2). All methods used False Discov-
ery Rate (FDR)-corrected p-values with BH correction 
and an alpha threshold <0.05. A total of 2,356 ASVs 
were identified as significantly differentially abundant. 
Strikingly, 441 ASVs were identified by all five methods, 
highlighting a core set of differentially abundant taxa. 
EdgeR and the non-parametric Wilcoxon rank-sum test 
identified 485 and 318 unique ASVs, respectively. On 
the other hand, ANCOM-BC2, ALDEx2, and DESeq2 
showed consistent results with no or only a small num-
ber of uniquely identified ASVs and were therefore used 
for DAA on all taxonomic ranks. An increased level of 
consistency between the three tools was visible as dis-
played in Additional file 1 in Fig. S3.
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Fig. 1  Diversity Plots for the Grass-Drought Dataset. Alpha and beta diversity plots comparing the ’Control’ (blue) and ’Drought’ (red) watering 
regimes. A Boxplots of Shannon’s Diversity Index for all samples comparing watering regimes. Significance was determined using a non-parametric 
Wilcoxon rank sum test (* p <0.05, ** p <0.01, *** p <0.001, **** p <0.0001). B Principal Coordinate plot using Bray-Curtis dissimilarities colored 
by the watering regimes
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The RFC shows remarkable classifying performance 
across all ranks
Machine learning using the trained RFC demonstrated 
remarkable performance scores in predicting drought 
stress in the soil metagenome. Table 1 shows, that across 
all taxonomic ranks, the RFC consistently delivered 
exceptional results, with a mean accuracy surpassing 90 
%.

The genus level proved to be the most effective input, 
achieving an accuracy of 0.923 ± 0.029, an F1 score of 
0.921 ± 0.030, and a recall of 0.954 ± 0.029. Family-level 
analysis excelled in precision, with a score of 0.902 ± 

0.038. Furthermore, the AUC underscored the robust 
performance of the RFC, with a mean AUC of 0.980 ± 
0.010 at the genus level. The corresponding Reciever 
Operating Characteristic (ROC) curves can be found 
in Additional file  1 in Fig. S4. The results of the LRC 
exceeded slightly lower performance on all taxonomic 
ranks, as displayed in the Additional file 1 in Table S2.

Interpretable ML and DAA as complementary approaches 
in marker taxa identification
DAA tools (ANCOM-BC2, ALDEx2, DESeq2), and 
SHAP values emerged as powerful methodologies for 
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Fig. 2  ASV Intersections between different DAA Tools on ASV level of the Grass-Drought Dataset. Upset plots displaying the overlap 
and uniqueness of significant taxa on ASV level identified by DAA methods (ALDEx2, DESeq2, ANCOM-BC2, non-parametric Wilcoxon rank-sum 
test, and edgeR). The horizontal bars show the total number of taxa for each tool, while the vertical bars show the number of shared taxa 
between corresponding sets, sorted by the total number of shared taxa. All tools use an alpha threshold of 0.05 for significance

Table 1  Random forest classifier performance of the Grass-Drought dataset

Table displaying the mean accuracy, F1 score, precision, recall, and AUC of the classifier on different taxonomic ranks of the Grass-Drought dataset, with the best-
performing rank for each metric marked in bold

Metric Phylum Class Order Family Genus

Accuracy 0.900 ± 0.025 0.911 ± 0.020 0.914 ± 0.023 0.921 ± 0.017 0.923 ± 0.029
F1 score 0.895 ± 0.029 0.906 ± 0.023 0.912 ± 0.024 0.919 ± 0.017 0.921 ± 0.030
Precision 0.891 ± 0.041 0.902 ± 0.032 0.890 ± 0.038 0.902 ± 0.038 0.892 ± 0.041

Recall 0.899 ± 0.024 0.911 ± 0.022 0.936 ± 0.022 0.939 ± 0.031 0.954 ± 0.029
AUC​ 0.960 ± 0.020 0.960 ± 0.010 0.970 ± 0.010 0.970 ± 0.010 0.980 ± 0.010
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investigating taxon enrichment and feature importance, 
respectively. Both approaches, as displayed in Fig. 3, con-
sistently identified taxa responsible for driving differ-
ences between the ’Control’ and ’Drought’ groups, which 
can be considered marker taxa for drought stress. Over-
all, the proportion of matches in the enrichment assign-
ments of DAA tools and SHAP values for all identified 
taxa ranged from 79.59 % on the order level to 82.65 % on 
the genus level.

The significance and importance of microbial taxa 
in the dataset were explored using both DAA sig-
nificances and SHAP value feature importances of 
the RFC. Comparing the sorted top 25 genera with 
adjusted significance levels from ANCOM-BC2 and 

their corresponding mean absolute SHAP values, it 
was found that the most significant and also important 
taxon with more than a two-fold difference to the next 
taxon was the genus Kribbella (Fig. 3).

In a direct comparison with the feature importances, 
it was shown that the order of the taxa identified as 
important differed greatly from that of ANCOM-BC2 
in some genera. This effect was also visible at higher 
taxonomic ranks (Additional file  1: Figs. S5 and S6). 
Especially the genera Streptomyces and Occallatibac-
ter did not stand out from the results of ANCOM-BC2 
but were prioritized considerably higher by their SHAP 
values.
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The trained RFC generalizes to unseen samples 
from a different dataset
To assess the generalizability of the trained RFC model, it 
was applied to a test dataset from Xu et al. (2018), focus-
ing on Sorghum bicolor root microbiomes subjected to 
drought stress. First, the trained RFC underwent testing 
using samples exhibiting advanced drought stress condi-
tions, referred to as the ’Late Drought’ subset. These sam-
ples were expected to demonstrate the most noticeable 
changes in the relative abundances of the taxa. Stable 
accuracies across all taxonomic ranks could be detected, 
as displayed in Table  2, with a notable improvement 
towards the family level. The family level achieved the 
highest accuracy (0.854 ± 0.017), while also excelling in 
F1 score (0.855 ± 0.021), precision (0.830 ± 0.029), and 
AUC (0.912 ± 0.012). The order level exhibited the best 
recall (0.925 ± 0.031).

Due to the classifier’s outstanding performance with 
the ’Late Drought’ subset, testing extended to another 
subset containing various drought stress levels, referred 
to as the ’Progressive Drought’ subset. This subset con-
tained samples of the complete course of the drought 
period with associated controls. Here, the order level 
displayed the best F1 score (0.754 ± 0.024) and recall 
(0.887 ± 0.018), while the family level yielded the high-
est accuracy (0.768 ± 0.018), precision (0.692 ± 0.014), 
and AUC (0.814 ± 0.011) as shown in Table 3. For both 
subsets, it was noticeable that the best performance was 
not observed at the genus level, but at the family or order 
level.

The performance of the ML models on five independ-
ent hold-out datasets of the Grass-Drought dataset is 
listed in Additional file  1  in  Tables S3 and S4, illustrat-
ing the robustness of the classifier. The RFC, trained on 
the Grass-Drought dataset using nested CV with hyper-
parameter tuning, from which 20 % of the samples were 
randomly set aside before all preprocessing steps, exhib-
its very similar performance metrics to the model trained 
on all samples (Table S3). The performance of the inde-
pendent hold-out datasets imply a high degree of similar-
ity and demonstrate a high prediction accuracy across all 
ranks (Table S4).

Discussion
This study employed ML to predict the irrigation state of 
soil samples based on their microbial community com-
position and aimed to discover specific marker taxa for 
drought stress. In terms of alpha and beta diversity analy-
sis, it is crucial to note that drought stress primarily influ-
enced the relative abundance of taxa rather than causing 
a complete abolishment or appearance of certain taxa 
[55], which aligns with the study’s focus on the ’Control’ 
and ’Drought’ labels. This suggests that the classifier was 
trained by emphasizing variations in taxon abundance 
rather than focusing on the presence or absence of spe-
cific taxa. Although the watering regime explains only 6.8 
% of the total variance, the PCoA indicated distinct pat-
terns in the microbial community composition, suggest-
ing the data’s suitability for subsequent ML analysis.

Table 2  Late drought classifier performance of the Sorghum-Drought dataset

Table displaying the mean accuracy, F1 score, precision, recall, and AUC of the classifier on different taxonomic ranks on the Late Drought subset. The best-performing 
rank for each metric is marked in bold

Metric Phylum Class Order Family Genus

Accuracy 0.797 ± 0.029 0.672 ± 0.009 0.828 ± 0.027 0.854 ± 0.017 0.811 ± 0.031

F1 score 0.788 ±0.033 0.541 ± 0.016 0.841 ± 0.025 0.855 ± 0.021 0.810 ± 0.033

Precision 0.807 ± 0.029 0.862 ± 0.027 0.771 ± 0.022 0.830 ± 0.029 0.806 ± 0.049

Recall 0.771 ± 0.048 0.394 ± 0.017 0.925 ± 0.031 0.998 ± 0.064 0.826 ± 0.096

AUC​ 0.900 ± 0.017 0.855 ± 0.015 0.906 ± 0.013 0.912 ± 0.012 0.899 ± 0.019

Table 3  Progressive drought classifier performance of the Sorghum-Drought dataset

Table displaying the mean accuracy, F1 score, precision, recall, and AUC of the classifier on different taxonomic ranks on the Progressive Drought subset. The best-
performing rank for each metric is marked in bold

Metric Phylum Class Order Family Genus

Accuracy 0.678 ± 0.029 0.613 ± 0.004 0.750 ± 0.029 0.768 ± 0.018 0.711 ± 0.044

F1 score 0.625 ± 0.031 0.374 ± 0.016 0.754 ± 0.024 0.753 ± 0.030 0.697 ± 0.029

Precision 0.628 ± 0.037 0.614 ± 0.007 0.656 ± 0.028 0.692 ± 0.014 0.647 ± 0.055

Recall 0.623 ± 0.038 0.270 ± 0.015 0.887 ± 0.018 0.831 ± 0.076 0.773 ± 0.106

AUC​ 0.758 ± 0.021 0.741 ± 0.015 0.798 ± 0.017 0.814 ± 0.011 0.789 ± 0.016
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Regarding the comparison of interpretable ML with 
conventional DAA tools for marker taxa identification, 
the focus was on finding the most suitable DAA tools 
for the Grass-Drought dataset from a variety of popu-
lar methods, namely ALDEx2, ANCOM-BC2, DESeq2, 
edgeR, and the non-parametric Wilcoxon rank-sum test. 
This approach is generally recommended for DAA, as it is 
not possible to find the true number of significant taxa in 
real-world data sets like it is the case with mock data [56, 
57]. The used DAA methods made different assumptions 
about the data distribution [56]. For instance, DESeq2 
and edgeR assume a negative binomial distribution, while 
ALDEx2 and ANCOM-BC2 assume a Gaussian distribu-
tion. The non-parametric Wilcoxon rank-sum test, on the 
other hand, does not make any distribution assumptions.

On the ASV level, out of 3,276 total assigned ASVs, 
71.9 % were identified as significant by at least one of the 
five DAA methods. However, only 13.46 % of these signif-
icant ASVs were detected by all five methods, suggesting 
a substantial proportion of ASVs being uniquely identi-
fied by specific tools, possibly indicating false discoveries 
[56]. Specifically, edgeR and the Wilcoxon rank-sum test 
uniquely identified a high number of ASVs not detected 
by other tools, which can be an indicator for many false 
discoveries and unreliable results [58].

In contrast, ANCOM-BC2, DESeq2, and ALDEx2 
exhibited more reliable results, with fewer uniquely 
identified ASVs. These findings are in line with previous 
studies that have highlighted the reliability of these three 
methods in controlling the FDR [56, 57, 59, 60]. Out of 
these three tools, ANCOM-BC2 was selected as the 
DAA method to compare its results directly with those 
of interpretable ML, as it showed the most overlap in 
detected ASVs with the other two selected DAA tools.

For interpretable ML, a RFC was chosen as it is recog-
nized as a top-performing classifier for handling high-
dimensional and sparse data, such as metagenomic 
datasets with hundreds to thousands of features and non-
linear relationships between features and the target vari-
able [61–65]. In comparison with Logistic Regression, 
the RFC yielded a slightly better performance with the 
binary classification problem of drought stress prediction 
(Table S2).

The RFC, trained on a dataset containing soil sam-
ples from a variety of soil isolation sources, crops, and 
drought stress levels, exhibited exceptional performance 
across all taxonomic ranks, directly addressing objective 
a) of this study. As the taxonomic rank descended from 
higher (e.g., phylum) to lower levels (e.g., genus), the 
granularity and resolution of the features increased. At 
the genus level, which represented the lowest taxonomic 
rank, the classifier exhibited the highest mean accuracy 
of 92.3 %, as well as the highest F1 score, recall, and 

AUC, demonstrating its effectiveness in capturing true 
positive instances. While there was a slight increase in 
overall accuracy from the phylum to the genus level, the 
genus level provided more specific insights into microbial 
diversity and potential marker taxa for drought stress.

In the exploration of marker taxa for drought stress in 
the soil metagenome, interpretable ML was employed 
using SHAP values in the nested CV of each taxonomic 
rank. Enrichment and feature importance results were 
compared with the output of the three most suitable 
DAA tools for this dataset. At higher taxonomic ranks, 
the agreement between DAA enrichment and SHAP 
value contribution was less definitive. Among the DAA 
tools, taxa were often not classified as significant by all 
three tools, as seen with Bacteroidota at the phylum 
level. Similarly, SHAP values did not always provide 
clear results between the loops of the nested CV, mak-
ing it challenging to assign enrichment to either ’Control’ 
or ’Drought’, as observed with Firmicutes at the phylum 
level. In some cases, the results from DAA and interpret-
able ML differed, such as with Verrucomicrobiae and 
Armanimonadota at the phylum level, which were clas-
sified as enriched in ’Control’ by DAA tools and enriched 
under ’Drought’ by SHAP. According to the literature, 
both phyla were found to be more enriched under irri-
gation, but the same study concluded that both taxa 
have the potential to assist plants under drought condi-
tions [66]. However, at lower, more specific ranks such 
as family and genus levels, all enrichment information 
among the top 25 taxa was  consistent. This consistency 
highlights that SHAP values can be equally useful for the 
discovery of specific marker taxa under stress conditions, 
effectively fulfilling objective b).

Furthermore, the rankings of taxa between DAA and 
ML approaches were compared. While the order of sig-
nificant taxa differed, the genus Kribbella consistently 
emerged as most significant and important, display-
ing a two-fold increase compared to the next relevant 
genus. Although being a poorly studied genus, Kribbella 
has shown potential in promoting plant growth [67, 68], 
making it a promising marker taxon for drought stress.

Additionally, in the direct comparison of significances 
and feature importances, certain taxa were detected 
with greater prominence, as evidenced by a peak in their 
mean absolute SHAP value compared to the significance 
assigned by the DAA analysis, like the genera Streptomy-
ces and Occallatibacter. Streptomyces, a dominant genus 
in soil microbiomes, has been associated with drought 
stress and plant health in dry environments [69–71]. The 
genus Occallatibacter showed depletion under drought 
conditions and was considered an important feature 
for the prediction of drought stress, although further 
research is needed to understand its specific impact on 
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soil metagenomes under drought, as it has only been 
observed under heat stress and no-stress conditions [72, 
73].

SHAP values and DAA tools use different underlying 
approaches for the identification of important or signifi-
cant taxa. In the context of this study, it is not possible to 
determine which approach is more suitable, but the over-
all results suggest that both methods provide important 
information for the identification of marker taxa. There-
fore, these approaches should be seen as complementary 
rather than interchangeable, with each providing valuable 
insights into metagenomic data analysis.

To evaluate the generalization capabilities of this study’s 
classifier, its performance was tested on another drought 
stress dataset. The classifier’s performance was assessed 
with samples undergoing several weeks of drought stress 
as the most impactful differences were expected between 
the two watering regimes. The Late Drought subset 
exhibited an accuracy score of 0.854 ± 0.017 at the family 
level. Therefore, the classifier’s effectiveness and robust-
ness across the entire spectrum of drought stress levels 
of the Sorghum-Drought dataset was explored by pre-
dicting drought stress in the Progressive Drought subset. 
Remarkably, the results consistently demonstrated the 
classifier’s outstanding performance in both scenarios. 
The Progressive Drought subset achieved an accuracy 
score of 0.768 ± 0.018 at the family level, indicating the 
model’s reliability in classifying drought stress regard-
less of the drought stress level involved. In contrast to the 
Grass-Drought dataset, where the best performance was 
achieved at the genus level as the lowest taxonomic rank 
with the highest granularity, the subsets of the Sorghum-
Drought test dataset did not yield the best classification 
results on this rank. The best performance was observed 
on the order and family levels. This can be attributed to 
the inherent sparsity on the genus level due to the addi-
tion of taxa with zero counts to create feature tables for 
the prediction with equal feature inputs, as displayed in 
the Additional file 1 in Table S1.

These results emphasize the classifier’s adaptability 
across diverse drought stress conditions, reinforcing 
its utility as a valuable tool for drought stress classifica-
tion, in line with the objectives outlined in objective c) of 
this study. Even though the classifier was trained with a 
dataset containing 16S rRNA metagenomic data of dif-
ferent drought stress levels, soil isolation sources, and 
a variety of plants, the approach might vary based on 
input data from other sequencing regions or plants that 
the classifier was not trained on. Such differences may 
emerge due to differences in the estimation of microbial 
diversity [74, 75]. The effect of the soil isolation source 
on the prediction also offers scope for further investiga-
tions to improve the classifier’s predictive capabilities 

and potentially develop a classifier tailored to specific 
soil isolation sources [76]. Expanding the sample size 
could further enhance the classifier’s generalizability, as 
a more extensive representation of taxa would increase 
the likelihood of encountering taxa abundances present 
in unknown samples during new predictions. However, 
when dealing with large datasets, selecting a compre-
hensive range of core taxa is recommended. By select-
ing the most important taxa as features [77] and training 
the classifier accordingly, the introduction of sparsity in 
the feature tables when predicting new data can be pre-
vented. Furthermore, including samples from different 
locations introduces another dimension, as variations in 
microbial composition across diverse geographic loca-
tions and climates [78] can impact the classifier’s per-
formance. With the upcoming possibilities of 16S rRNA 
long-read sequencing, it is recommended to create a 
location- and long-read sequencing-based classifier to 
generate an individual classifier with a reduced bias. By 
using an ensemble learning approach through the inte-
gration of multiple ML models the overall ML perfor-
mance might enhance even more. This strategy not only 
boosts accuracy but also mitigates overfitting, ensur-
ing models to generalize better on unseen data [79, 80]. 
Given the complex nature of RFCs, employing an ensem-
ble learning approach comprising multiple, less complex 
learners could present an intriguing approach for explo-
ration. Further evaluation with more data and subse-
quent feature selection seem interesting applications for 
future research.

Conclusions
In conclusion, with the ongoing threat of extreme 
weather events, notably droughts [81, 82], it is indispen-
sable to explore innovative methods for understanding 
the impact of the soil microbiome on agriculture and 
ecosystems. The primary accomplishment of this study 
is the creation of a location-based classifier for drought 
stress in the soil metagenome. Demonstrating remark-
able generalization capabilities, the classifier assesses 
drought stress across various drought stress levels and is 
applicable to different grasses.

The application of this study’s generalized ML model 
extends beyond the classification of drought stress, 
facilitating precision agriculture, including the opti-
mization of irrigation strategies. Further, in microbe-
assisted plant breeding programs, the discovery of 
marker taxa for drought stress using interpretable ML 
with SHAP values provides farmers and breeders with 
valuable insights for the definition of microbial strains 
for targeted bioinoculation approaches. Here, a deeper 
understanding of the plant growth-promoting func-
tions associated with drought stress-related taxa holds 
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promise for future advancements. This knowledge 
could play a pivotal role in enhancing plant adaptation 
to drought stress, strengthening the plant immune sys-
tem against yield losses, and reducing susceptibility to 
pathogens [83].
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