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Grapevine bacterial communities display 
compartment-specific dynamics over space 
and time within the Central Valley of California
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Abstract 

Background Plant organs (compartments) host distinct microbiota which shift in response to variation 
in both development and climate. Grapevines are woody perennial crops that are clonally propagated and cultivated 
across vast geographic areas, and as such, their microbial communities may also reflect site-specific influences. These 
site-specific influences along with microbial differences across sites compose ‘terroir’, the environmental influence 
on wine produced in a given region. Commercial grapevines are typically composed of a genetically distinct root 
(rootstock) grafted to a shoot system (scion) which adds an additional layer of complexity via genome-to-genome 
interactions.

Results To understand spatial and temporal patterns of bacterial diversity in grafted grapevines, we used 16S rRNA 
amplicon sequencing to quantify soil and compartment microbiota (berries, leaves, and roots) for grafted grapevines 
in commercial vineyards across three counties in the Central Valley of California over two successive growing seasons. 
Community composition revealed compartment-specific dynamics. Roots assembled site-specific bacterial communi-
ties that reflected rootstock genotype and environment influences, whereas bacterial communities of leaves and ber-
ries displayed associations with time.

Conclusions These results provide further evidence of a microbial terroir within the grapevine root systems 
but also reveal that the microbiota of above-ground compartments are only weakly associated with the local soil 
microbiome in the Central Valley of California.
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Background
Plants form associations with microorganisms in differ-
ent compartments across the plant body, including roots, 
leaves, and fruits. Microbiota vary strongly across com-
partments due to differences in physical and chemical 
properties, resource availability, and environmental fac-
tors [1–5]. Host genetics also play a role in dictating com-
partment microbiota. For example, root exudate profiles 
and plant immune responses are often genotype-specific 
and contribute to shaping the plant microbiome [6–10]. 
Some associations formed between plants and microor-
ganisms are beneficial to plant survival as microorgan-
isms are able to promote growth and confer resistance to 
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many biotic and abiotic stressors [11–13]. Thus, research 
has focused on understanding factors that shape a plant’s 
microbiota, including what stage of development micro-
bial associations form and how stable they are over space 
and time.

Many biogeographical studies have shown strong pat-
terning of plant compartment microbiota by geographic 
location or site [22–25], owing to both biotic and abiotic 
factors. Soil serves as the primary reservoir of microor-
ganisms that interact with the below-ground portion of 
plants [14–19], occurring through direct recruitment 
from the soil to the root surface and internal tissues. 
Above-ground plant compartments (e.g., leaves and 
fruits) interact with soil microbes via internal transport 
between tissues, but also receive many microbial colo-
nizers by deposition via rainfall and wind dispersal [20, 
21]. Vegetation patterns and cover shape soil microbiota 
along with abiotic soil properties, including texture, pH, 
and chemical composition [22–27]. Agricultural plant 
species are grown across wide geographic areas, and are 
subject to varying management regimes [28]. This makes 
them ideal for investigating site-specific influences on the 
microbiota of different compartments of the plant.

Plant microbiomes are dynamic [19, 29–32] and change 
over development [33, 34]. In annual plants, a two-stage 
model of microbiome assembly has been proposed [31]. 
Following seed germination, seed endophytes [35] and 
microorganisms in close proximity colonize root tissues 
to form a juvenile microbiome; many of these early col-
onizers are displaced, via competition or host selection, 
over time to form a more stable adult microbiome. This 
shift to an adult microbiome is hypothesized to be the 
result of variation in root exudate composition during a 
plant’s life cycle [36, 37], which can change rapidly [38]. 
Perennial plants have an extended life cycle and, for many 
temperate species, periods of dormancy, increasing their 
complexity. In the herbaceous perennial Arabis alpina, 
the bacterial community composition of the root endo-
sphere shifted with residence time in the soil, enriching 
for Proteobacteria and while Bacteroidetes was depleted 
[39]. For the perennial mustard, Boechera stricta, a study 
utilizing multiple field sites found that the root micro-
biota shifted over time, with bacterial diversity of the 
root decreasing over the four years of the experiment, 
whereas leaf microbiota were less responsive to the age of 
the plant and more responsive to the plant genotype [40]. 
These data demonstrate compartment-specific patterning 
between leaves and roots. It remains to be seen whether 
these patterns in short lived herbaceous perennial plants 
is generalizable to perennial crop species, which allocate 
considerably more resources to harvestable organs than 
wild species [41] or to woody perennials, which have sub-
stantially longer lifespans [42, 43].

Woody perennial crops offer an excellent system to 
investigate how microbiota of plant compartments dif-
fer among genotypes, across sites, over the course of a 
growing season, and from one year to the next. Grape-
vines (Vitis spp. L.) are long-lived woody perennials (> 20 
production years), in which cultivated varieties (culti-
vars) are clonally propagated and grown across different 
regions. Studies have found biogeographical patterning 
to the microbiome of vineyard soils [44, 45] and differ-
ences in grapevine microbiota across sites, often termed 
microbial terroir [16, 46–48]. Previous microbiome stud-
ies profiling grapevine berries and musts across both 
regional and local scales have found signatures of geo-
graphic location on berry bacterial and fungal commu-
nities, with some evidence these microbial communities 
contribute to fermentation and wine characteristics [49]. 
A study by Zarraonaindia et  al. [16], profling of com-
partments of both the root and shoot system (i.e., flow-
ers, berries, leaves) found that vineyard soil served as the 
primary reservoir of plant-associated bacteria and that 
intra-vineyard heterogeneity in soil edaphic factors out-
weighed larger biogeographic trends. Given the dynamic 
nature of plant microbiomes over time, we sought to fur-
ther investigate biogeographical patterns in grapevine 
microbiota across compartments by designing our sam-
pling to capture both intra-seasonal (multiple timepoints 
within a season) and annual temporal components. In a 
similar study on grapevine fungal microbiota, compart-
ments displayed contrasting responses based on vineyard 
location and growing season [32]. Fungal diversity of the 
root varied strongly by vineyard, while all other compart-
ments (root, leaf, flower, berry) varied across the growing 
season according to developmental stage (flowering, fruit 
set, veraison, harvest). These data suggest that the grape-
vine microbiome is dynamic over time, and that patterns 
of fungal diversity vary across the vine.

An additional factor affecting the grapevine microbi-
ome is grafting, a common horticultural technique used 
in viticulture which joins different genotypes together. 
Grafting joins the rootstock (root system and lower stem) 
and the scion (including the upper stem, leaves, flow-
ers, fruits) together [50, 51]. Whereas scion genotype is 
selected primarily based on the grape cultivar desired 
for fruit quality, rootstock genotypes in grapevines are 
selected based on their ability to confer resistance to pest 
and pathogens [50], but have also been utilized to con-
trol scion vigor and yield [52]. Recent work has expanded 
current understanding of interactions between grafted 
rootstock and scion [53–58], and has demonstrated that 
root microbiome diversity and composition is dependent 
on not only the rootstock genotype [59–62], but also the 
interaction with the scion genotype [63, 64]. For example, 
across various species, scion genotypes have been shown 
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to alter root system architecture [65], biomass allocation 
patterns [66], root transcriptomic responses to nutrient 
limitation [67], and root organic acid concentration [68]. 
In addition, elemental composition of scion tissues has 
been shown to be dependent on rootstock genotype [54–
57]. Less is known about how rootstock genotype influ-
ences the microbiota of the leaves and berries in grafted 
grapevines. Thus, we sought to use grafting to explore 
interactions between the soil microbiome, environment, 
and the genomes of the host, both rootstock and scion, 
and their influence on the microbiota of different com-
partments of the vine.

Our work investigated the bacterial communities of 
grapevine compartments of multiple rootstock/scion 
combinations across growing seasons, in geographically 
distinct vineyards, and over multiple years. We hypoth-
esize that the microbiota of each plant compartment 
reflects, at least in part, the geographic location in which 
the host plant is grown. Clonally propagated perennial 
plants offer a unique opportunity to test this hypothesis 
as the host genotype can be planted and maintained over 
time across a wide range of sites to investigate site-spe-
cific influences on the microbiota of different compart-
ments of the plant. To do this, we characterized bacterial 
communities in compartments of rootstock/scion com-
binations replicated across three commercial vineyards 

in the Central Valley of California, over the course of 
two growing seasons. Our objectives were to (1) assess 
soil structure, elemental composition, and microbiome 
across sites, (2) characterize seasonal and yearly patterns 
of bacterial communities across vine compartments, and 
(3) determine relative contributions of compartment, 
site, rootstock genotype, and scion genotype to patterns 
of microorganism community composition across vine 
compartments.

Methods
Experimental design and sampling
We sampled vines in three commercial vineyards located 
along a 177  km north–south transect running through 
Madera, Merced, and San Joaquin counties in central 
California (Fig.  1A). Each vineyard contained mature 
grafted vines (> 6  years old; Additional file  2: Table  S1) 
composed of one of two scions (‘Cabernet Sauvignon’ 
or ‘Chardonnay’) and one of three rootstocks (‘Freedom’, 
‘1103P’, or ‘Teleki 5C’; Fig.  1A; Table  1). Each vineyard 
has a unique vineyard design (Additional file 2: Table S1) 
and unique soil properties (Additional file  2: Table  S2). 
The vineyards follow an environmental gradient with the 
most southern vineyard, Madera, being typically hotter 
(+ 2.6  °C) and dryer (− 7.4% relative humidity) than the 
most northern vineyard, San Joaquin (Additional file  1: 

Fig. 1 Multiple scion/rootstock combinations were sampled across vineyards and the 2018 and 2019 growing seasons in the central valley 
of California. A Each of the colored counties represents a vineyard that was sampled. Within each county box (San Joaquin, Merced, and Madera) 
the scion/rootstock combinations are depicted, corresponding to the legend in the bottom left. Sugar content (measured in degrees Brix) 
was collected for vines across the B 2018 and C 2019 growing seasons; measurements and trend lines are colored by scion (upper panel) and site 
(lower panel). Grey shading represents collection windows for microbiome sampling



Page 4 of 18Swift et al. Environmental Microbiome           (2023) 18:84 

Fig. S1). Conventional management practices such as 
mechanical leaf thinning and spray applications of pesti-
cides and fungicides were employed at all vineyards.

One of the three vineyards (San Joaquin) contained all 
six scion/rootstock combinations (‘Cabernet Sauvignon’ 
grafted to ‘Freedom’, ‘1103P, and ‘Teleki 5C’; and ‘Char-
donnay’ grafted to ‘Freedom’, ‘1103P, and ‘Teleki 5C’). 
Six collection blocks were sampled at the San Joaquin 
site (i.e., sets of 24 vines, at least 10 vines from the edge, 
across 2–3 rows; Fig. 1A; Additional file 2: Table S1). In 
the other two vineyards, Madera and Merced, collection 
blocks for four of the six scion/rootstock combinations 
were sampled as not all scion/rootstock combinations 
were present at these vineyards (Fig. 1A; Additional file 2: 
Table  S1). In Madera, blocks were sampled for ‘Caber-
net Sauvignon’ grafted to ‘Teleki 5C’ and ‘Freedom’ and 
‘Chardonnay’ grafted to ‘1103P’ and ‘Freedom’. In Merced, 
blocks for ‘Cabernet Sauvignon’ grafted to ‘1103P’ and 
‘Freedom’ and ‘Chardonnay’ grafted to ‘Teleki 5C’ and 
‘Freedom’ were established (Fig.  1A). From each collec-
tion block, three representative vines per scion/rootstock 
combination were selected. Different vines were sampled 
in each collection window to minimize disturbance of the 
vine and its microbiome from repeated collections. Care 
was taken to ensure that selected vines did not exhibit 
signs of pathogen infection. We staggered collection win-
dows over the course of the season to capture vine devel-
opment: in 2018 we made three collections three weeks 
apart from June 19th to August 2nd, 2018, and in 2019 we 
made two collections four weeks apart June 11th to July 
31st, 2019 (Fig. 1B, C; Additional file 1: Fig. S2). Sampling 
periods coincided with multiple developmental stages 
for the vines, starting at early fruit formation to veraison 
and, for ‘Chardonnay’, early harvest.

Three compartments (roots, leaves, berries) were 
sampled from each vine. Care was taken to ensure each 
sample was collected in a sterile manner, tools were sur-
face sterilized between samples using 95% ethanol and 

all samples were stored in sterile single use plastic bags. 
Roots were excavated to a depth of 20–30  cm using a 
sterilized shovel, and then several root segments were 
collected by hand with the aid of sterilized stainless-steel 
scissors. Roots segments were shaken to remove loosely 
attached soil prior to storage. Three to five leaves were 
clipped at the base (i.e., removing the petiole and leav-
ing only leaf blade) using sterilized stainless-steel scis-
sors, leaves were approximately 8–12  cm in diameter 
and were collected at roughly the middle position along 
a shoot and at a height of 1.5 m on the vine. Berries were 
collected as an intact cluster, clipping the rachis of the 
cluster at the point of attachment with the shoot using 
sterilized stainless-steel pruning shears. We measured 
total soluble solids (sugar content) in °Brix using a hand-
held refractometer (ATAGO) by selecting berries from 
a damage-free representative cluster on the same vine. 
Sugar content measurements were collected each time 
berry clusters were sampled as well as once per week at 
each vineyard to track berry development (Fig.  1B, C). 
An approximately 200–300  g soil sample was collected 
during the final sampling time point each year from 
between two vines, spaced approximately 1–2  m from 
either vine depending on vine spacing (Additional file 2: 
Table S1), for each collection block. Soil was collected at 
a similar depth to root collection, 20–30 cm, with a steri-
lized shovel, discarding the first 3–5  cm of topsoil, and 
passed through a sterile sieve (American Standard No. 
16; 1 mm pore size). All samples were placed in a cooler 
with ice packs in the field prior to shipping on dry ice and 
storage at − 20  °C at the Danforth Plant Science Center 
(St. Louis, MO).

Soil texture and elemental composition
Soil samples were split into two portions: one for molec-
ular processing (see below) and one for texture and 
elemental composition analysis. Prior to texture and ele-
mental composition analysis, soil was dried until a con-
sistent weight was achieved, approximately one week at 
70 °C. For texture analysis, 50 g of each soil sample was 
added to a screw-top jar along with 125  mL of sodium 
hexametaphosphate solution (Sigma-Aldrich; 0.065  M) 
and allowed to agitate overnight on a stir plate. The next 
day the contents of the jar were transferred to a 1L gradu-
ated cylinder and filled to 1L with deionized water. The 
cylinder was capped and agitated by inverting approxi-
mately 30 times for 1  min. A hydrometer (H-B Instru-
ment Company, 152H) was placed in the cylinder, and 
the first reading was taken after 40 s. Readings were then 
taken periodically for the next six hours. Elemental com-
position analysis was conducted at the Agricultural Diag-
nostic Laboratory (Fayetteville, AR) following established 
protocols [69, 70] to determine concentrations (in ppm) 

Table 1 Parentage of rootstocks within this study (Source of 
parentage information: Foundation Plant services—University of 
California, Davis)

† Vitis berlandieri is also commonly known as Vitis cineria var. helleri
a Vitis × othello is of hybrid origin from a cross of Vitis vinifera × Vitis labrusca/
riparia
b Vitis solonis is a synonym of Vitis acerifolia
c Vitis × champinii is of hybrid origin from a cross of Vitis mustangensis × Vitis 
rupestris)

Rootstock Parent 1 Parent 2

Teleki 5C berlandieri† Riparia

1103 Paulsen berlandieri† Rupestris

Freedom solonisb × othelloa champiniic
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of the following elements; B, Ca, Cu, Fe, K, Mg, Mn, Na, 
P, S, and Zn, along with pH.

DNA extraction and 16S rRNA amplicon sequencing
Soil, root, leaf, and berry samples were processed using 
previously described methods [53]. DNA extractions 
were performed with the DNeasy Powersoil Pro Kit (Qia-
gen) following the manufacturers protocol with two mod-
ifications: we used 150  mg of plant tissue (non-surface 
sterilized; i.e., containing both endophytes and epiphytes) 
per extraction, and we added a 10-min incubation at 
70 °C prior to homogenization with a bead mill (Retsch, 
MM 400). DNA extracts were qualified on a DS-11 Spec-
trophotometer (DeNovix) and sent to the Environmental 
Sample Preparation and Sequencing Facility at Argonne 
National Laboratory for 16S rRNA amplicon sequencing. 
Amplicon sequencing and library preparation were con-
ducted following Swift et  al. (2021). Samples were split 
into two pools of 336 samples each for sequencing con-
ducted on an Illumina MiSeq, with a 2 × 151 bp Pair-End 
kit. Samples that produced fewer than 20,000 reads after 
preliminary quality control and filtering were combined 
into a third pool that was sequenced on an additional 
flow cell.

Amplicon processing and ASV filtering
Sequence processing was conducted using a similar 
workflow to Swift et al. [53]. Briefly, QIIME2 v2021.4 [71] 
was used to demultiplex samples according to barcode 
sequence. The DADA2 plugin [72] in QIIME2 was used 
to denoise, dereplicate, and filter chimeric sequences 
on each sequencing run individually for accurate error 
model generation. The resulting amplicon sequence vari-
ant (ASV) tables and catalogs of representative sequences 
for each sequence plate were merged. A Naive Bayes 
classifier pre-trained on the SILVA v.138 16S rRNA gene 
database [73, 74] was used for taxonomic classification. 
ASVs not assigned to a phylum were removed along with 
ASVs assigned to chloroplasts and mitochondria (2.2% 
and 1.9%, respectively), resulting in 45,332 ASVs. The 
Decontam v1.12.0 package [75] was used to remove con-
taminants using the prevalence-based detection method 
with a threshold of 0.5, removing contaminant ASVs 
more prevalent in the negative controls than real sam-
ples. Decontam identified 183 ASVs as contaminants. 
The data set was filtered to remove singletons by retain-
ing only ASVs present in five or more samples and by 
removing samples with a read count less than 1,000.

Statistical analysis
All analyses were conducted within the R environment 
v4.1.0 [76]. We first modeled the sugar content of the 
berries of the vines across the growing season. Using a 

linear model, we assessed effects from the experimental 
design (rootstock, scion, site, collection week, and their 
interactions) on sugar content (°Brix). The car package 
v3.0-11 [77] was used to assess the model under a type-3 
ANOVA framework. For significant terms in this model, 
and all other models, we conducted post hoc compari-
sons of estimated marginal means using the emmeans 
package v.1.6.2.1 [78], utilizing a Tukey-correction for 
multiple comparisons.

For soil texture, hydrometer readings were processed 
using the envalysis package v0.5.1 [79] to obtain percent-
ages of sand, silt, and clay. Independent linear models for 
sand, silt, and clay were fit with collection site and year 
as main effects. For elemental composition analysis, con-
centration more than five standard deviations from the 
mean were removed. A biplot was generated using the 
factoextra package v1.0.7 [80] to visualize clustering of 
soil samples by collection site along with the loadings of 
the principal component analysis (PCA). A linear model 
was fit to the first two principal components (PC) with 
collection site and year as main effects. Each of the linear 
models was assessed via a type-2 ANOVA framework.

ASV counts were normalized by applying a variance 
stabilizing transformation from the package DESeq2 
[81] with a model containing all of the main effects 
(Rootstock + Scion + Compartment + Year + Site + Sugar 
Content). Alpha diversity statistics, Chao1 and Faith’s 
Phylogenetic distance [82], were calculated using vegan 
v2.5.1 [83] and picante v1.8.2 [84], respectively. Linear 
mixed models were fit via the lmerTest package v3.1.3 
[85] to assess the effects of the experimental design on 
alpha diversity indices (response ~ Rootstock (R) + Scion 
(S) + Compartment (C) + Sugar Content (Su) + Year + Sit
e + R × S + C × Su).

We used principal coordinate analysis (PCoA) with 
Bray–Curtis dissimilarity in order to visualize clustering 
of samples across experimental factors. PERMANOVA 
analyses were conducted using the function Adonis from 
the package vegan. For each plant compartment (ber-
ries, leaves, roots) a model with Bray–Curtis dissimilarity 
as the response was fit with all factors as marginal fixed 
effects, using 1,000 permutations per model. Using a lin-
ear model framework, we examined the abundance of 
each of the top ten bacterial phyla by relative abundance. 
A linear model was fit with rootstock, scion, brix, year, 
and site as fixed effects with each phylum as the response 
variable. The P-values from all tests, across phyla, were 
corrected for multiple testing using false discovery rate 
[86].

Machine learning
For machine learning, categorical factors are preferred 
over continuous factors to allow for easier statistical 
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interpretation. As such, we discretized berry sugar con-
tent values. To choose where to split sugar content val-
ues into groups, we plotted values and chose the natural 
break point in the values. Samples were given the labels 
pre-ripening (3–7°Bx; n = 357) and ripening (> 7°Bx; 
n = 237; Additional file  1: Fig. S3).We used ranger’s 
v0.13.1 [87] implementation of the random forest algo-
rithm in the caret package v6.0.90 [88] to assess predict-
ability of sample labels and identify ASVs that contribute 
to prediction accuracy. For training the random forest 
classifier, the dataset was randomly split into a train-
ing set (80%) and a testing set (20%). Optimal hyperpa-
rameters for each classifier were determined using a 
grid search over the number of trees (1–501; Additional 
file 1: Fig. S4), minimum node size (1, 5, 10), and num-
ber of features available at each node (10–100% of the 
ASVs). For each combination in the grid, performance 
of the classifier on out-of-bag samples was assessed with 
tenfold cross validation. Classifiers were then trained to 
predict each of the categorical factors (rootstock, scion, 

compartment, year, and site) along with all possible pair-
wise joint predictions. Tile plots were used to visualize 
output confusion matrix results. We determined relative 
importance of phyla in classification accuracy per factor, 
as well as ASVs that contributed considerably to classifier 
accuracy (i.e., high gini importance).

Results
Soil properties and soil microbiome showed site‑specific 
differences
Soil texture, elemental composition and the diversity and 
richness of the soil microbiome differed across collec-
tion sites and by year. Soil texture was modeled in pro-
portions of sand, silt, and clay, and clay was significantly 
different between collection sites (Fig.  2A; Additional 
file 2: Table S4; P = 0.041). Post-hoc comparisons revealed 
a 3.3% increase in clay content in Madera as compared 
to Merced (Fig. 2A; P = 0.035). Sand and silt showed no 
significant differences across collection sites or years 
(Additional file  2: Table  S4). The principal component 

Fig. 2 Soil properties and microbiome for the collection sites. A The soil texture measured in proportions of sand, silt, and clay and B a principal 
component analysis of soil elemental composition and pH, arrows represent loadings of elements and pH on principal components 1 and 2. C 
Taxonomic barplots depicting the relative abundance of the top ten phyla subdivided into the top three classes, phyla below the top ten are 
condensed into the “Low Abundance Taxa” category. D Principal coordinate analysis on Bray–Curtis dissimilarity for soil samples. For both panels B 
and D, the colors correspond to collection sites
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analysis of the elemental composition data showed clus-
tering of samples by collection site (Fig. 2B). PCs 1 and 
2 collectively explained over 70% of the elemental varia-
tion (52.6% and 13.8% respectively), and each was with a 
linear model parameterized with collection site and year. 
Collection site showed a significant effect on the first PC 
(Additional file 2: Table S5; P < 0.001) but not the second 
PC (Additional file  2: Table  S5), while collection year 
showed no significant effect on either PC. Post-hoc com-
parisons on the first PC model showed that the Madera 
site was differentiated from both Merced (P < 0.001) and 
San Joaquin (P < 0.001; Fig.  1A) whereas the Merced vs 
San Joaquin comparison was non-significant.

To assess the soil microbiome, we recovered 921,649 
bacterial reads (n = 28; sample mean 32,916) across 4197 
ASVs after quality filtering. The top ten most abundant 
bacterial phyla recovered from soil samples were shared 
between sites (Fig.  2C). Principal coordinate analy-
sis of Bray–Curtis dissimilarity revealed clustering by 
site  (R2 = 0.296); we observed tight groupings for Mad-
era and San Joaquin samples, but observed more vari-
ance in Merced samples, with some clustering closer to 
Madera samples (Fig.  2D). PERMANOVA analysis fur-
ther illustrated that differences in the composition of 
the soil microbiome were attributable to site (Additional 
file  2: Table  S6; P < 0.001), while sample collection year 
was non-significant. Both bacterial richness and diver-
sity were impacted by collection year (Additional file  2: 
Table S7; P = 0.028 and P = 0.039, respectively), with post-
hoc comparisons showing that both richness and diver-
sity were lower in 2018.

Sugar content tracked vine development 
across the growing seasons
The sugar content of berries provided a standardized 
measure to assess development of the grapevines across 
season and site, as well as to characterize differences 
between scions ‘Cabernet Sauvignon’ and ‘Chardonnay’. 
The three-way interaction of collection site, scion, and 
collection week explained observed patterns in sugar 
content (Additional file 2: Table S8; P < 0.001). In the last 
collection week, ‘Cabernet Sauvignon’ was, on average, 
4.957 ± 0.824°Brix lower in the northernmost collection 
site, San Joaquin, compared to °Brix observed in Mad-
era and Merced (Fig. 1A). All post-hoc comparisons for 
‘Cabernet Sauvignon’ were significant (P < 0.001) with 
the exception of ‘Cabernet Sauvignon’ in the last collec-
tion week of 2018 (San Joaquin vs Merced; P = 0.108). 
For ‘Chardonnay’, we found a similar pattern, with the 
last collection week showing the most divergence in 
°Brix between the sites, with San Joaquin on average 
1.382 ± 0.813 lower than Madera and Merced (Fig.  1A). 
Post-hoc comparisons for ‘Chardonnay’ showed that only 

the comparison of San Joaquin to Merced in the last col-
lection week of 2018 was significant (P = 0.033). Given 
that berry sugar content tracks vine development across 
sites, season, and scions, we elected to use this measure 
in place of collection week in subsequent linear models.

Bacterial diversity and richness were impacted 
by compartment, year, and rootstock by scion interactions
We generated bacterial sequence data for root (n = 206), 
leaf (n = 204), and berry (n = 184) samples of grafted 
grapevines growing in three vineyards in the Central 
Valley of California. The resulting dataset comprised 
7,981 ASVs and a total read count of 24,502,564 (sam-
ple mean 41,250). We observed a large overlap of ASVs 
from below-ground and above-ground compartments, 
with 36% of ASVs shared among roots and either berries, 
leaves, or both (Additional file 1: Fig. S5A). When includ-
ing soil samples, we observed 7% of ASV shared among 
berry, leaf, root, and soil samples and the largest overlap 
of ASVs, 28%, to be between roots and soil (Additional 
file  1: Fig. S5B). Berries (1 ASV), leaves (14 ASVs), and 
soil (18 ASVs) had a low number of unique ASVs in con-
trast to roots (3105 ASVs; Additional file 1: Fig. S5B).

Plant compartment had the largest impact on Faith’s 
phylogenetic diversity index and richness (Additional 
file  2: Tables S9 and S10; Fig.  3A). Root samples were 
significantly more diverse than both berries and leaves 
(Fig. 3A; P < 0.001) with mean values of 61.07, 4.63, and 
5.71, respectively. Soil samples had a slightly lower level 
of diversity than roots with a mean value of 52.08. In 
addition to compartment, Faith’s phylogenetic diversity 
index also varied significantly across collection years 
(Additional file 2: Table S9; P < 0.001), with samples col-
lected in 2018 having slightly higher diversity than sam-
ples collected in 2019. While site had a significant effect 
on Faith’s phylogenetic diversity index for plant compart-
ments overall (Additional file  2: Table  S9; P = 0.041), no 
post-hoc comparisons were significant among sites. The 
interaction between rootstock and scion genotypes also 
explained patterns of bacterial diversity (Additional file 2: 
Table S9; P < 0.001); post-hoc comparisons revealed that 
the rootstock ‘Teleki 5C’ grafted to the scion ‘Chardon-
nay’ had a lower mean bacterial diversity than other 
rootstocks (‘1103P’ vs ‘Teleki 5C’, P < 0.001 and ‘Free-
dom’ vs ‘Teleki 5C’, P < 0.001). This pattern was particular 
to the root samples (Fig.  3B) and partially explained by 
a specific vineyard block at the Merced vineyard, Mer-4 
(Additional file  2: Tables S1 and S2) featuring ‘Char-
donnay’ grafted to ‘Teleki 5C’. Root samples within this 
block had a mean Faith’s phylogenetic diversity index 
of 37.10 ± 5.15, whereas the same rootstock/scion com-
bination at the San Joaquin vineyard was 54.05 ± 2.39. 
Due to the experimental design, we are not able to fully 
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disentangle the effects of particular vineyard blocks from 
rootstock/scion combinations. Although, the soil pH 
of this block was the lowest of the study at 5.7 (overall 
mean = 7.6; Additional file 2: Table S2).

Bacterial composition of the root varied by site 
and by rootstock genotype but was relatively stable 
over time
Principal coordinate analysis on Bray–Curtis dissimilar-
ity values showed clear clustering of the bacterial com-
position of samples by plant compartment on axis 1 and 
2 (Additional file 1: Fig. S6A), explaining 17.5% and 4.6% 
of the variance, respectively. The third axis clustered root 
samples by the site of collection (Fig. 4C and Additional 
file  1: Fig. S6B), with San Joaquin separated from Mad-
era and Merced. This pattern was unique to the root sam-
ples as berries and leaves were tightly clustered together 
on axis 3 (Fig.  4A, B). The bacterial composition of the 
root compartment samples was relatively stable over the 
course of the growing seasons but was variable within a 
site, particularly Merced, and across the sites (Fig.  4D; 
Table 2). Interestingly, for the Merced block (Mer-4) with 
the lower-than-average pH, we observed an enrichment 
of the bacterial class Acidobacteriae and depletion of the 
phylum Chloroflexi (e.g., classes Anaerolineae and Chlor-
oflexia), which may relate to pH preferences for members 
these groups [89–91].

We examined the impact of experimental factors on 
the top ten phyla based off relative abundance for root 

samples (Fig.  4E). Collection site impacted eight of 
the ten phyla and had the strongest impact overall on 
Planctomycetota (variation explained [VE] = 31.56%; 
PFDR < 0.001), Bacteroidota (VE = 30.16%; PFDR < 0.001), 
Acidobacteriota (VE = 13.67%; PFDR < 0.001), Myxo-
coccota (VE = 13.1%; PFDR < 0.001), and Proteobacteria 
(VE = 12.5%; PFDR < 0.001; Fig.  4E). As expected, given 
the clustering in the PCoA (Fig. 4C), the post-hoc com-
parisons of the other sites with San Joaquin were nearly 
all significant. Only Myxococcota and Proteobacteria 
showed different patterns, with post-hoc comparisons 
showing significant differences for Merced instead when 
compared to other sites. Only Deinococcota and Firmi-
cutes, which together account for an average of 6.53% of 
relative abundance in root samples, had no significant 
associations.

Next, we examined the influence of rootstock geno-
type and scion genotype on the relative abundance 
of the top ten phyla of the root compartment. Root-
stock genotype was an important factor explaining 
the relative abundance of eight of the top ten phyla, 
particularly Chloroflexi (VE = 15.9%; PFDR < 0.001), 
Verrucomicrobiota (VE = 14.41%; PFDR < 0.001), Planc-
tomycetota (VE = 12.62%; PFDR < 0.001), and Myxo-
coccota (VE = 10.2%; PFDR < 0.001; Fig.  4D). Post-hoc 
comparisons showed that these differences were driven 
primarily by ‘Teleki 5C’, with higher relative abun-
dances for Chloroflexi (mean = 1.9% increase), Planc-
tomycetota (mean = 1.87% increase), and Myxococcota 

Fig. 3 Faith’s phylogenetic diversity index was impacted by multiple factors of the experimental design. A Plant compartment showed the largest 
effect on diversity and B Root samples showed a rootstock by scion genotype effect on diversity. Boxplot hinges represent the 1st and 3rd quartiles 
with whiskers that represent 1.5 times the inter-quartile range; letters above box plots denote significant differences in means (TukeyHSD test)
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Fig. 4 Principal coordinate analysis (PCoA) by sample compartment of Bray–Curtis dissimilarity. A Berry, B leaf and C root samples, only the root 
compartment displays clustering by collection site (right panels, Axis 1 v. 2; left panels, Axis 1 v. 3). For PCoA plots displaying compartments 
together and additional experimental factors, see Additional file 1: Figs. S6 and S7, respectively. Taxonomic barplots with the relative abundance 
of the top ten phyla subdivided into the top three classes for root samples, D delineated by collection site, each bar represents an individual 
sample and samples are ordered according to collection date with the black line denoting collection year. Phyla below the top ten are condensed 
into the “Low Abundance Taxa” category. E A tile plot summarizes the significant (PFDR < 0.05) impact of the experimental factors on the relative 
abundance of the top ten phyla (Deinococcota and Firmicutes are omitted as no factors were significant)
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(mean = 0.57% increase) and lower relative abundance 
for Verrucomicrobiota (mean = 1.01% decrease). Com-
pared to rootstock genotype, scion genotype had a 
smaller impact on relative abundance of the top ten phyla 
recorded in the roots. Only four of the ten phyla of the 
root compartment showed significant impacts for scion 
genotype. For Acidobacteria, Chloroflexi, Planctomy-
cetota, and Proteobacteria, scion cultivar explained less 
than 5% of the variance (Fig. 4D). Post-hoc comparisons 
showed that ‘Cabernet Sauvignon’ had a larger relative 
abundance of Acidobacteria, Chloroflexi, and Plancto-
mycetota but the difference for each phylum was < 1% 
between scion genotypes, while Proteobacteria had a 
smaller relative abundance (mean = 1.16% decrease).

Finally, we examined the influence of two aspects of 
time, collection year, and sugar content of the berries 
(an analog for vine development within a season) on 
the relative abundance of the top ten phyla of the root 
compartment (Fig.  4E). Collection year significantly 
impacted six of ten phyla. Collection year had a particu-
larly strong impact on the relative abundance of Actino-
bacteria (PFDR < 0.001) explaining 15.6% of the variance 
(Fig.  4E). The 2019 collection year showed enrichment 
of Actinobacteria in comparison to 2018 (mean = 2.73% 
increase). In comparison, sugar content was among the 
least impactful factors, with only four of the ten phyla 
showing significant impacts of this factor. Sugar con-
tent explained < 6% of the variance for Actinobacteriota, 
Bacteroidota, Proteobacteria, and Verrucomicrobiota 
(Fig. 4E). Additional root compartment modeling across 
taxonomic levels can be found in Additional file  2: 
Table S11.

Bacterial composition of berries and leaves showed 
less predictable patterns across sites
Principal coordinate analysis showed clear clustering of 
bacterial communities by plant compartments (Addi-
tional file  1: Fig. S6C and D). Bacterial composition of 

the root showed a clear signature of site; however, we 
did not observe the same clustering in relation to site 
for berry and leaf samples (Fig.  4A, B). For berries and 
leaves, PERMANOVA analysis showed a small effect 
of sugar content (Berries:  R2 = 0.014, P = 0.001; Leaves 
 R2 = 0.010, P = 0.001) and collection year on Bray–Cur-
tis dissimilarity (Berries:  R2 = 0.015, P = 0.001; Leaves 
 R2 = 0.034, P = 0.001; Table 2). Taxonomic barplots of the 
top ten phyla for berry and leaf compartments showed 
fluctuations in relative abundance but were non-specific 
to collection sites (Fig.  5). Using the same linear model 
framework as above, we found that, for berries, only a 
single phylum, Bacteroidota showed a significant effect 
of collection year (VE = 4.12%: PFDR = 0.029). Post-hoc 
comparisons revealed that berries in 2018 had on aver-
age 2% greater abundance of Bacteroidota. For leaves, 
only two phyla were impacted by the experimental fac-
tors. First, Firmicutes showed patterning by collection 
site (VE = 6.00%; PFDR = 0.010), post-hoc comparisons 
of Firmicutes showed that the Merced site had, on aver-
age, 4.29% increased relative abundance compared to 
the other two sites (Fig.  1A) for leaf samples. Of note, 
Firmicutes did not show any significant impact of the 
experimental design for root samples (Fig.  4E). Second, 
Actinobacteriota showed patterning by the collection 
year (VE = 7.02%; PFDR < 0.001), post-hoc comparisons 
of Actinobacteria showed a 5.42% decrease in relative 
abundance for 2018 versus 2019. Additional leaf and 
berry compartment modeling across taxonomic levels 
can be found in Additional file  2: Tables S12 and S13, 
respectively.

Machine learning accurately predicts the root 
compartment but not berries or leaves
We used machine learning to identify the factors 
that were predictable across the experimental design 
(Additional file 1: Fig. S8) and the ASVs that aided the 
accuracy of those predictions (Additional file  1: Figs. 

Table 2 Permutational multivariate analysis of variance (PERMANOVA) using Bray–Curtis dissimilarity fit separately for each 
compartment

Bold values indicate significant results, P < 0.05

Factor Berry Leaf Root

R2 P R2 P R2 P

Rootstock 0.011 0.474 0.010 0.258 0.046 0.001
Scion 0.007 0.110 0.005 0.280 0.018 0.001
Sugar Content 0.014 0.001 0.010 0.001 0.006 0.032
Year 0.015 0.001 0.034 0.001 0.014 0.001
Site 0.012 0.175 0.012 0.062 0.166 0.001
Residual 0.943 0.928 0.713
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S9 and S10). Overall, model accuracy was 68% (Addi-
tional file 1: Fig. S8A); however, the classifier was nearly 
perfect when predicting root samples (F1 = 0.986; 
Additional file  2: Table  S14) and less accurate when 
predicting leaf (F1 = 0.525) and berry (F1 = 0.565). For 
rootstock genotype, model accuracy was 50% (Addi-
tional file  1: Fig. S8B) and ‘Freedom’ was the most 
predictable genotype (F1 = 0.623; Additional file  2: 
Table  S14) while ‘1103 Paulsen’ and ‘Teleki 5C’ were 
considerably lower (F1 = 0.431 and 0.204, respec-
tively). Model accuracy for the collection site was 59% 
(Additional file  1: Fig. S8C), the most predictable site 
was San Joaquin (F1 = 0.672), followed by Merced 
(F1 = 0.559) and then Madera (F1 = 0.431; Additional 
file  2: Table  S14). For collection year model accuracy 
was 83% (Additional file  1: Fig. S6D) and an F1 score 
of 0.882 (Additional file 2: Table S15). For scion geno-
type, model accuracy was 61% (Additional file  1: Fig. 
S8E) and with an F1 score of 0.623 (Additional file  2: 
Table  S12). Finally, for sugar content, model wide 

accuracy was 71% (Additional file 1: Fig. S8F) and an F1 
score of 0.795 (positive class was pre-ripening; Addi-
tional file 2: Table S15).

When examining the phyla that were the most impor-
tant in the classifier’s predictions, we found that across 
all factors many of the phyla have similar relative impor-
tance to their respective classifier (Additional file 1: Fig. 
S9). Proteobacteria was the most important phylum mak-
ing between 39.7 and 54.6% of the relative importance 
to the classifier and Actinobacteria was the second most 
important phylum with between 14 and 24.9% of the rela-
tive importance to the classifier (Additional file  1: Fig. 
S9). Crenarchaeota was only important to the classifica-
tion of plant compartments and collection sites with all 
ASVs showing affinity to the root compartment and some 
showing site-specificity. ASVs of this phylum (Additional 
file  1: Fig. S10), were annotated to the family Nitros-
osphaeraceae of which isolated members are known to 
oxidize ammonia and have been recovered previously 
from soils [92, 93].

Fig. 5 Taxonomic barplots with the relative abundance of the top ten phyla subdivided into the top three classes for A berry and B leaf samples 
delineated by collection site. Each bar represents an individual sample and samples are ordered according to collection date with the black line 
denoting collection year. All phyla below the top ten are condensed into the “Low Abundance Taxa” category
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Discussion
The goal of this study was to investigate factors influ-
encing bacterial communities of grapevine roots, 
leaves, and berries, including rootstock genotype, 
scion genotype, and vineyard site, within growing sea-
sons and over multiple years. We observed differences 
among vineyard sites in soil texture, elemental com-
position, and bacterial communities. We detected dif-
ferences in bacterial composition of grapevine root 
compartments across sites; however, site-specific dif-
ferences were less pronounced in the microbiota of the 
berries and leaves. Both rootstock and scion genotype 
impacted composition and diversity of vine microbiota. 
Using Brix (berry sugar content) as a proxy for devel-
opment, we observed only minor associations between 
developmental stage and bacterial community compo-
sition of the berries and leaves. This suggests that berry 
and leaf bacterial communities undergo largely sto-
chastic changes in community composition across the 
season.

Soils and the soil microbiome differ across sites
In the cultivation of wine grapes, the term “terroir” 
describes regional environmental factors, including soil 
properties, geography, and climate, that influence char-
acteristics of wine [94–96]. These same factors influence 
the soil microbiome, a primary reservoir of microorgan-
isms that colonize and ultimately become associated with 
plants [3, 14, 16, 97, 98]. Thus, many studies have uncov-
ered a role for microorganisms in shaping the terroir 
of wine, often called the microbial terroir [46, 99, 100]. 
Previous research has shown that across regional scales, 
grapevine musts (crushed berry clusters) and wines 
exhibit site specific microbiota [46, 101–103], which are 
associated with the metabolomic composition of the 
wine [49, 104].

In this study, we demonstrated that vineyard soils 
within the Central Valley of California varied in elemen-
tal composition and soil texture (Fig. 2B, D). Further, dif-
ferences in soil microbial communities were apparent 
across vineyards, an observation consistent with previous 
work in other viticultural regions [16, 45, 104, 105]. For 
instance, a recent global survey of vineyard soils across 
five continents [44], revealed prokaryotic communi-
ties bear a signature of spatial distance, with dissimilar-
ity strongly positively correlated with geographic scales 
(regional to continental). Here, we found similar patterns 
at an intra-regional scale (~ 177  km apart between far-
thest vineyards) in the Central Valley of California. This 
work contributes to a growing body of literature docu-
menting site-specific differences in biotic and abiotic 
properties of vineyard soils.

Vineyard site influences bacterial composition 
of the grapevine root, but not berries or leaves
Within grapevines, bacterial composition bears a 
strong signature of compartment with roots, leaves, 
and berries exhibiting distinct microbiota [16, 53, 106]. 
Data presented here confirm that compartment spe-
cific dynamics primarily dictate the grapevine micro-
biota, an observation consistent with previous studies 
across plant species [4, 5]. Given differences in bacte-
rial composition of different grapevine compartments, 
we might expect that compartment microbiota shift in 
unique ways in response to different geographic loca-
tions. For example, Zarraonaindia et al. [16] found that 
bacterial communities of the soil differed across several 
vineyards in the Northeastern United States, but those 
differences were not reflected in plant compartments. 
Conversely, a study conducted across the California 
coastal growing regions showed regional patterning 
for grapevine musts (crushed berries) for both bacte-
rial and fungal communities [46]. The amount of vari-
ation explained by region and vineyard for bacteria was 
generally lower than for fungi, indicating that kingdoms 
exhibit different diversity patterns across local and 
regional environmental conditions [44].

Data presented here indicate that the bacterial commu-
nity of the root was strongly influenced by vineyard site 
(Table  2; Fig.  3B, D), whereas bacterial communities of 
leaves and berries did not show site-specific patterning 
(Table  2; Fig.  5). Differences in how bacterial composi-
tion of specific compartments respond to vineyard loca-
tion may reflect various biological and/or environmental 
factors. From a biological perspective, leaves and berries 
are short-lived compartments, developing anew annually, 
while the root system remains intact for a longer period 
of time. The senescence of leaves or harvest of berries 
may purge many bacterial community members estab-
lished in a given season, restarting community succession 
and leading to more stochastic assembly patterns across 
years, while root communities remain intact. In addi-
tion, the root system is the only compartment assessed 
here that is in direct, sustained contact with the soil. 
Thus, it makes sense that the bacterial community of the 
root would more closely reflect the soil microbiome than 
the bacterial communities of the above-ground com-
partments of the vine, which were not in direct contact 
with the soil. While it has been shown that microorgan-
isms can be transmitted from the soil to above-ground 
compartments via the roots [14, 107]. It is possible that 
filtering occurs, across the graft junction, by the scion 
genotype, as well as through selective pressure in the leaf 
and berry compartments, which may serve to obscure 
site-specific patterning of microbial communities from 
the roots to the shoot system.
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Beyond the biology of the soil-root connections, there 
may be other viticultural and environmental factors that 
dictate compositional patterns in bacterial communities 
of above-ground vs. below-ground compartments [21, 
108, 109]. Above-ground compartments were routinely 
spray treated to control pest and pathogen levels, as is 
common in conventionally managed vineyards, these 
treatments may alter the native microbial communities of 
leaves and berries [110, 111]. This disturbance in micro-
bial communities, particularly epiphytic members, is 
likely to play a role in dictating compositional patterns in 
bacterial communities of leaves and berries. On the envi-
ronmental side, rainfall serves as a dispersal mechanism 
for microorganisms, either through deposition from the 
atmosphere via precipitation [21, 112–114] or through 
water splashes containing soil [108, 115, 116]. Rainfall 
events catalyzed community succession in canola (Bras-
sica napus L.) leaf microbiota [117]. In both 2018 and 
2019, vineyards sampled for this study did not experi-
ence any precipitation during the sampling window and 
all hydration for the vine was supplied by drip irriga-
tion. Consequently, it is unlikely that microbes would be 
dispersed from adjacent soil to aerial parts of the plant 
(leaves and berries) via water splashes at these vineyards 
during our sampling window.

A second possible environmental factor underlying 
our observation that root microbiota bear a signature of 
the geographic location, but leaves and berries do not, is 
the influence of the wind. Wind dispersal of soil microbi-
omes as observed in other plant systems [20, 118, 119] is 
a more likely factor in the Central Valley of California, as 
the majority of vines sampled in this study were covered 
in soil. A recent study found that airborne fungal micro-
biota (collected as settled dust) across the Central Valley 
of California were distinct from coinciding soil fungal 
microbiota, exhibiting remarkable similarity even from 
sites over 150  km apart [120]. Similarly, leaf and berry 
microbiota described here, despite variance in soil and 
root microbiota, are largely homogeneous, possibly due 
to airborne dispersal and deposition of dust/soil particles 
and the absence of physical disturbance by rain and water 
splashes.

The influence of rootstock and scion genotype
Beyond the influence of the vineyard environment, there 
is evidence to suggest that both the rootstock and scion 
genotype play a role in shaping the bacterial communi-
ties in vine compartments. We detected an effect of both 
rootstock and scion genotype on bacterial composi-
tion of the root (Fig. 4; Table 2), as well as the bacterial 
diversity of the vine as a whole (Additional file 2: Tables 
S9 and S10). Interestingly, while the bacterial composi-
tion of root samples showed a signal of both rootstock 

and scion genotype, berry and leaf bacterial composition 
showed no significant patterning by either host genotype 
(Table  2). This is consistent with a recent study, where 
rootstock by scion interactions were associated with 
changes in the diversity and composition of root bacte-
rial communities in grapevine [63] and previous studies 
examining rootstock-specific rhizospheres of multiple 
rootstock genotypes [59–61]. The phenotype most likely 
to drive host genotypic differences in vine bacterial com-
position is the root exudate profile, consisting of sugars, 
organic acids, and amino acids, among other compounds 
[7]. In Arabidopsis thaliana, root exudate variation was 
linked to the genomic variation among A. thaliana acces-
sions [6] and has been associated with distinct rhizos-
phere bacterial communities [8].

Rootstocks studied here, and employed in most com-
mercial vineyards, are of complex genetic backgrounds 
with two or more genetically distinct species serving as 
parents (Table  1; Riaz et  al. [121]). Thus, there is likely 
substantial variation between the rootstock genotypes 
that may influence root exudate profiles, root archi-
tecture, and subsequently, the associated root micro-
biota. Relative to the rootstock genotype, the genotype 
of the grafted scion had a smaller overall influence on 
the composition of the root microbiome. This could be 
explained by proximity, with the rootstock genotype 
indirect contact with soil microorganisms. Further, com-
pared to rootstock genotypes, the scion genotypes are 
more genetically similar to one another because both are 
cultivars of a single domesticated species, Vitis vinifera. 
Despite this, we found evidence for rootstock by scion 
interactions indicating both rootstock and scion geno-
types contribute to the formation of the root microbi-
ome. Experiments utilizing reciprocal rootstock/scion 
combinations can further serve to quantify the contribu-
tion of both the rootstock and scion in shaping the grape-
vine microbiome.

A limitation to our sample collection strategy is that we 
did not surface sterilize plant tissues, and as a result our 
plant samples contained a mixture of both endophytic 
and epiphytic bacteria. The assembly of leaf endophytic 
and epiphytic bacterial communities are governed to dif-
ferent degrees by both biotic and abiotic processes, with 
endophytic communities driven primarily by host plant 
identity whereas epiphytic communities are more influ-
enced by site characteristics and dispersal patterns [122–
125]. Similar findings have been recovered for grapevine 
berry and leaf epiphytic communities, with notable dif-
ferences observed in the effect of host genotype (grape-
vine cultivar) based on the analysis scale, stronger within 
a viticultural zone and weaker at the larger national 
scale [126]. By sampling both endophytic and epiphytic 
bacterial communities together we limited our ability 
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to differentiate factors shaping these two components 
of the grapevine microbiome, and only detected signifi-
cant effects of factors that may act upon both communi-
ties simultaneously (e.g., year and sugar content). Future 
studies designed to separate endophytic and epiphytic 
bacterial communities will provide further insights into 
biotic and abiotic contributions in shaping the grapevine 
microbiome.

Bacterial diversity is stable over the growing season 
and may be decoupled from patterns of fungal diversity
By sampling across the growing season over multiple 
years, our experimental design allowed us to investigate 
the progression of bacterial communities of multiple 
compartments of the vine. We used berry sugar content 
to track vine development across the growing season 
and determined that the bacterial diversity of grapevine 
compartments generally do not shift based on vine devel-
opmental stage (Additional file  2: Tables S9 and S10). 
Despite this, we observed compartment specific tempo-
ral shifts in bacterial composition, however, sugar con-
tent and year explained only a small proportion of the 
variance (Table  2). Given that our experimental factors 
only captured a small amount of the variation in bacterial 
composition of both berries and leaves, this may indicate 
that community composition of these aerial compart-
ments reflect stochastic processes and/or are influenced 
by environmental factors that were not measured over 
the course of this study (e.g., wind dispersal).

Data presented here focus on the bacterial communi-
ties of the grapevines. It is important to note that results 
for bacteria presented here and elsewhere [127], contrast 
with some patterns of fungal communities, where plant 
development has been shown to be a stronger predic-
tor of shoot system community composition [32]. Other 
studies examining the microbiota of the berry epidermis 
reported associations between development stages and 
fungal [128, 129] and bacterial communities [130]. Given 
the sample size here (berries n = 184; leaves n = 204), we 
should be able to detect even subtle changes in commu-
nity diversity and composition across vine development. 
However, it is possible that the sampling window may 
have been too narrow. Including samples from the earli-
est developmental stages (leaf flush and fruit set) to latest 
stages (senescence and harvest), may have resulted in a 
stronger signature of development on the microbiota.

Conclusions
Uncovering factors shaping plant-associated microbi-
omes has implications for understanding how plants 
establish and respond to their environments, in both 
natural and agricultural settings. Work described here 
demonstrates site-specific biogeographical patterns in 

bacterial communities in the soil, as well as correspond-
ing patterns in the root compartment of grafted grape-
vines. However, bacterial communities of berries and 
leaves reflected patterning by development and collec-
tion year, not site. This result illustrates that the microbial 
community composition of different plant compartments 
are impacted uniquely by the local conditions of a par-
ticular geographic location. In addition, we show that 
grapevine rootstock genotype more strongly influences 
the bacterial communities of the compartments than the 
scion genotype, providing further resolution into the pro-
cesses underlying microbial terroir in grafted grapevines. 
Future studies should leverage experimental designs that 
allow simultaneous sampling of multiple plant compart-
ments across both space and time along with metagen-
omic techniques to probe the functional significance of 
differences between microbiomes.
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dissimilarity each experimental factor across compartments. Figure 
S8 Confusion matrices for each experimental factor. Figure S9 Relative 
importance of phyla to random forest classifiers for each experimental 
factor. Figure S10 Individual ASVs contributing to the accuracy of random 
forest classifiers for each experimental factor.

Additional file 2. Table S1 Characteristics of the vineyard blocks used 
within the study. Table S2 Soil elemental composition of the vineyard 
blocks used within the study. Values are reported in mg/kg (ppm) with the 
exception of pH which is reported in the standard scale. Table S3 Optimal 
hyperparameters for training machine learning models. Table S4 Linear 
model results for soil texture. Type-2 ANOVA table. Table S5 Linear model 
results for soil elemental composition principal components (PC). Type-2 
ANOVA table. Table S6 Linear model results for Bray-Curtis Dissimilarity for 
soil samples. Type-2 ANOVA table. Table S7 Linear model results for alpha 
diversity statistics for soil samples, Chao1 index and Faith’s phylogenetic 
diversity. Type-2 ANOVA table. Table S8 Linear model results for sugar 
content of the berries. Type-3 ANOVA table. Table S9 Linear mixed model 
results for Faith’s Diversity index. Type-3 ANOVA table. Table S10 Linear 
mixed model results for Chao1 index. Type-3 ANOVA table. Table S11 
Linear model results for root compartment taxa across taxonomic levels 
for each experimental factor. Table S12 Linear model results for leaf 
compartment taxa across taxonomic levels for each experimental fac-
tor. Table S13 Linear model results for berry compartment taxa across 
taxonomic levels for each experimental factor. Table S14 Output statistics 
for three-class machine learning models predicting rootstock genotype, 
collection site, and plant compartment. Table S15 Output statistics for 
binary class machine learning models predicting scion genotype and col-
lection year. In these models Cabernet Sauvignon and 2018 represented 
the positive class. 
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