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Abstract 

Background Manipulating the rhizosphere microbial community through beneficial microorganism inoculation 
has gained interest in improving crop productivity and stress resistance. Synthetic microbial communities, known 
as SynComs, mimic natural microbial compositions while reducing the number of components. However, achiev-
ing this goal requires a comprehensive understanding of natural microbial communities and carefully selecting 
compatible microorganisms with colonization traits, which still pose challenges. In this study, we employed multi-
genome metabolic modeling of 270 previously described metagenome-assembled genomes from Campos rupestres 
to design a synthetic microbial community to improve the yield of important crop plants.

Results We used a targeted approach to select a minimal community (MinCom) encompassing essential com-
pounds for microbial metabolism and compounds relevant to plant interactions. This resulted in a reduction 
of the initial community size by approximately 4.5-fold. Notably, the MinCom retained crucial genes associated 
with essential plant growth-promoting traits, such as iron acquisition, exopolysaccharide production, potassium 
solubilization, nitrogen fixation, GABA production, and IAA-related tryptophan metabolism. Furthermore, our in-
silico selection for the SymComs, based on a comprehensive understanding of microbe-microbe-plant interactions, 
yielded a set of six hub species that displayed notable taxonomic novelty, including members of the Eremiobacterota 
and Verrucomicrobiota phyla.

Conclusion Overall, the study contributes to the growing body of research on synthetic microbial communities 
and their potential to enhance agricultural practices. The insights gained from our in-silico approach and the selec-
tion of hub species pave the way for further investigations into the development of tailored microbial communities 
that can optimize crop productivity and improve stress resilience in agricultural systems.
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Background
Plants and microbial communities have a complex and 
interdependent relationship, involving various mecha-
nisms that influence ecological interactions. One cru-
cial aspect is the release of photosynthates by plants 
belowground through mucilage and exudates that serve 
as energy sources for specific microbial groups [1–3]. 
In return, certain microbial taxa can positively impact 
plant growth and protect against biotic and abiotic 
stresses [4]. They achieve this through the synthesis of 
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phytohormones, nutrient acquisition, and by engag-
ing in antagonistic interactions with plant pathogens [5, 
6]. Consequently, it is intriguing to consider that plants 
experiencing drought can dynamically influence the eco-
evolutionary dynamics of the microbial community and 
thereby affect plant performance [7].

In recent years, there has been growing interest in har-
nessing the potential of microbial communities in the 
rhizosphere to improve crop productivity and enhance 
stress resistance [8–10]. One approach gaining attention 
is the manipulation of the rhizosphere microbial com-
munity through the inoculation of beneficial microorgan-
isms. This strategy aims to establish synthetic microbial 
communities (SynCom) that can positively influence 
plant health and yield. SynCom aims to mimic the origi-
nal microbial composition by reducing the number of 
components in the community while preserving the 
essential characteristics of their natural counterparts 
[11].

The designing of SynCom that promotes plant growth 
and helps plants withstand various stresses, such as 
drought, salinity, and pathogen attacks, relies upon a 
careful selection and compatibility of specific micro-
organisms into the community that possesses traits 
for robust colonization, prevalence throughout plant 
development and specific beneficial functions for plants 
[12–16]. Genome-scale metabolic networks (GSMNs) 
play a pivotal role in elucidating the intricate metabolic 
interactions between microorganisms and their host 
plants [17–19]. GSMNs serve as comprehensive compu-
tational models, encapsulating the entirety of metabolic 
reactions and pathways present in microbial genomes 
[20]. Therefore, by reconstructing GSMNs for individual 
microorganisms and assessing their collective metabolic 
potential, we gain invaluable insights into how these 
microorganisms contribute to the overall ecosystem 
function.

Decades of extensive cultivation-independent study, 
as well as recent high-throughput sequencing technol-
ogy, have radically altered our perspectives on the diver-
sity of microbial life [21, 22]. These approaches capture 
the breadth of bacterial and archaeal genomic diversity 
across Earth’s biomes and provide a resource that under-
scores the value of genome-centric approaches for reveal-
ing genomic properties of uncultivated microorganisms 
that affect ecosystem processes [23]. However, there are 
still significant limitations in answering the fundamen-
tal ecological and evolutionary questions surrounding 
natural microbial communities. In addition, genome-
resolved metagenomics represents a valuable strategy 
for acquiring insights into the genomic properties, meta-
bolic capabilities, and functional potential of individual 
microorganisms within complex microbial communities 

[24–27]. This enables a deeper understanding of their 
ecological roles, interactions, and contributions to vari-
ous environmental processes.

The Cerrado, known for its arid conditions and nutri-
ent-poor soils, harbors a diverse array of resilient plants 
with an associated microbiome [28–30]. In addition, the 
Campos rupestres, a distinctive and biodiverse rocky 
outcrop ecosystem found in the Cerrado, contribute to 
the unique microbial communities and plant adaptations 
in this region. Therefore, harnessing novel soil bacte-
ria from harsh environments like the Brazilian Cerrado 
holds immense potential for agricultural practices. These 
novel plant-promoting bacteria can enhance the growth, 
productivity, and stress tolerance of important crop 
plants such as soybean, maize, sorghum, and sugarcane. 
Notably, their ability to mitigate drought stress in these 
crops is of utmost importance, considering the increasing 
frequency of drought events caused by climate change 
[31, 32].

In this study, our aims were threefold: (1) to recon-
struct GSMNs to gain insight into the metabolic com-
plementarity between bacterial species and host crop 
plants; (2) to define a minimal microbiota community; 
and (3) to select hub-species that preserve the essential 
plant growth-promoting traits (PGPTs). To this end, we 
integrated several in silico approaches, employing multi-
genome metabolic modeling of 270 previously described 
metagenome-assembled genomes (MAGs) from Campos 
rupestres, a grassland ecosystem located in Brazil.

Materials and methods
Genome data
A total of 270 MAGs were retrieved, belonging to two 
dominant plant species Vellozia epidendroides and Bar-
bacenia macrantha found in the Campos rupestres [33]. 
Annotated MAGs were downloaded from the National 
Center for Biotechnology Information (NCBI) under the 
BioProject PRJNA522264. MAGs were filtered based 
on co-assembly type to prevent data redundancy. MAG 
details are provided in Additional file 2: Table S1.

We applied CheckM v1.0.13 [34] with the tree_qa com-
mand to extract a set of 43 single-copy, protein-coding 
marker genes. These marker genes were employed to 
evaluate phylogenetic markers within a dataset consisting 
of 270 assembled metagenomic bins. The concatenated 
protein alignments of the 43 universal marker genes, 
obtained from CheckM, were then used to reconstruct a 
maximum-likelihood phylogenetic tree using IQ-TREE 
v1.6.11 [35]. During the reconstruction process, specific 
parameters (’-m TEST -bb 1000’) were implemented to 
ensure the generation of an accurate tree. Subsequently, 
the phylogenetic tree was uploaded to iTOL [36], where 
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it underwent visual annotation, including color coding 
and the application of heatmaps.

Reconstruction of the genome‑scale metabolic networks 
(GSMNs)
The metabolic networks of each MAG were analyzed 
using genome-scale metabolic models reconstructed 
through an automated command-line version of Path-
wayTools [37]. The entire analysis was conducted using 
the metage2metabo (m2m) tool suite [38]. To begin the 
reconstruction process, we utilized the mpwt (multiproc-
essing pathway tools) program from the m2m tool with 
the "–path" flag to create a PathoLogic environment for 
each genome in gbff format. Subsequently, we performed 
the automatic reconstruction of non-curated metabolic 
networks using the m2m recon command line.

For the analysis of metabolic producibility and cal-
culation of cooperation potential, the m2m iscope com-
mand line was employed for individual potential, and 
the m2m cscope command line for collective metabolic 
potentials. Additionally, in the m2m cscope command, 
the "-m" flag was added to incorporate the host metabolic 
network in the SBML file format. The SBML files for 
maize (Zea mays), sugarcane (Saccharum officinarum), 
and sorghum (Sorghum bicolor) were obtained from 
C4GEM [39]. Furthermore, for soybean (Glycine max), 
non-curated GSMNs were reconstructed using the m2m 
recon command line for the genome of the G. max culti-
var EMBRAPA BRS 537, downloaded from NCBI (Sup-
plementary data 1). These plants were selected based on 
their significance as major crops with economic impor-
tance and global relevance. These crops are staples in 
many regions and contribute significantly to food and 
bioenergy production.

As a nutritional constraint, root exudate-mimicking 
growth media was used [19, 40], which were imple-
mented as a "seed" (-s flag in m2m) for the targeted 
predicted producible metabolites (Additional file  2: 
Table S2).

The selection of the minimal community and computa-
tion of key species were performed using the m2m min-
com command line. For this analysis, each host GSMN 
in SBML format was considered, including essential 
compounds for metabolism such as amino acids, nucleo-
tide components, cofactors, vitamins, phytohormones, 
organic acids, and other compounds relevant to plant 
interactions (Additional file  2: Table  S3). The identifica-
tion of key species for the targeted set of compounds was 
carried out using MiSCoTo [41], which is implemented in 
the m2m suite.

The MetaCyc Metabolic Pathway Database [42] and the 
Kyoto Encyclopedia of Genes and Genomes were used as 
references to link genome annotation to metabolism. The 

data visualization was accomplished using the ggplot2 
package in the R programming environment.

Identification of plant growth‑promoting traits (PGPTs)
To identify genes linked to plant growth-promoting traits 
(PGPTs) within the MAGs, an alignment of their protein 
sequences was performed. This alignment was performed 
using a combination of BLASTP and HMMER tools 
available in the PGPT-Pred database from PLaBAse [43]. 
To ensure the accuracy of the annotations, we further val-
idated them by conducting BLASTP searches against the 
NCBI non-redundant protein, RefSeq, and UniProtKB/
Swiss-Prot databases. Hits with an E-value < 1e−5 were 
considered significant for both approaches.

To evaluate the potential interaction of the MAGs with 
plants, a criterion was established based on the presence 
or absence of 86 PGPT genes. These genes are involved 
in nitrogen fixation, phosphorus solubilization, as well as 
the production of exopolysaccharide (EPS), siderophores, 
and plant growth hormones. Specifically:

Nitrogen-fixing genes: nifA, nifB, nifD, nifE, nifF, 
nifH, nifHD1, nifHD2, nifJ, nifK, nifM, nifN, nifQ, nifS, 
nifT, nifU, nifV, nifW, nifX, nifZ.
Exopolysaccharide (EPS) production: epsE, epsD, 
epsF, epsH, epsI, epsJ, epsL, epsM, epsN, epsO.
Root colonization by nodulation: nodA, nodB, nodC, 
node, nodF, nodI, nodJ, nodU, nod, nodT, nolM, noeA, 
noeB, noeC, noeD, noeE, nodN, nodN_like, nodO, 
nodP, nodS, nodS_like, nodY, nodZ, nodV, nodV_like, 
nodW, nodX, nodX, nodO.
Oxidative stress|ROS scavenging: sodN, sodC, sod3.
Iron acquisition: lipA, lipB, lipL, lipL2, lipM, lplA.
Salinity stress-potassium transport: kdpA, kdpB, 
kdpC, kdpD, kdpE, kdpF.
Plant embryogenesis-spermidine: puuA, puuB, puuC, 
puuD, puuE, pup
IAA-related tryptophan metabolism: trpA, trpB, 
trpC, trpCF, trpD, trpE, trpEG, trpG, trpDG, trpF, 
trpS, trpR

The data visualization was accomplished using the 
ggplot2 package in the R programming environment.

Microbe–microbe and plant–microbe interactions using 
reverse ecology
Protein-level assemblies of eight MAGs were anno-
tated using KofamKOALA [44] (KOfam parameters: 
’–e-value 0.00001’). The KEGG orthologs (KO) obtained 
from these annotations were utilized for determining 
microbe-microbe interactions, specifically competition 
and complementarity indices. To calculate these indi-
ces, the Cooperation Index package in RevEcoR was 
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employed [45]. Candidates with criteria scores exceed-
ing 0.6 were considered potential competitors.

Next, a matrix that included the substrate and prod-
uct information for each species from the RevEcoR 
analysis was created. We further applied NetCooperate 
to gain insights into potential ecological host-microbe 
interactions [46]. For pairwise interactions between 
hosts and microbes, the biosynthetic support score 
(BSS) and the metabolic complementarity index (MCI) 
were measured. The KOs obtained from the annotated 
host genomes, which were sourced from the Joint 
Genome Institute (JGI, https:// genome. jgi. doe. gov/ 
portal/), were considered for these analyses. The com-
pounds involved were annotated in KEGG compounds 
with their biological roles and the Phytochemical Com-
pounds Database (https:// www. genome. jp/ kegg/ com-
pound/) as well as the MetaCyc Metabolic Pathway 
Database.

Results
Design of this study
In this study, we investigated 270 previously described 
MAGs obtained from Campos rupestres, a grassland 
ecosystem located on the geologically ancient rocky 
outcrops of central and eastern regions of Brazil [33]. 
This unique ecosystem is characterized by extremely 
low concentrations of essential nutrients, creating chal-
lenging conditions for plant growth [47]. However, it 
also serves as a habitat for microorganisms that have 
adapted to these harsh conditions. The MAGs were pri-
marily sourced from bulk soil (BS) and the rhizosphere 
(RX) of two dominant plant species in the Campos rup-
estres, namely V. epidendroides (BE) and B. macrantha 
(BM).

To gain insights into the metabolic capabilities of these 
microorganisms, GSMNs were reconstructed for the 
MAGs and determined the minimum number of species 
required to perform specific metabolic functions related 
to plant–microbe interactions. We considered a prede-
fined set of target compounds and incorporated infor-
mation about the associated plant hosts. By doing so, the 
complexity of the microbiota was successfully reduced, 
and minimal communities with comparable properties 
were identified (Fig. 1).

Furthermore, a comprehensive analysis of key species 
within these minimal communities was conducted, with 
a focus on their PGPTs. Additionally, competition and 
complementarity indices were calculated for each pair of 
species to assess their potential interactions. This thor-
ough workflow allowed us to identify beneficial microbes 
and construct SynCom that have the potential to enhance 
crop productivity (Fig. 1).

Soil and rhizosphere microbiome associated 
with dominant plant species in the Campos rupestres
Here, 270 MAGs were obtained from the soil and rhizos-
phere microbiomes of V. epidendroides (BE) and B. mac-
rantha (BM). Among the MAGs, those belonging to the 
phylum Proteobacteria were the most abundant in the 
samples (37.4%), followed by Actinobacteriota (15.9%) 
and Acidobacteriota (14.8%) (Fig. 2, Additional file 1: Fig. 
S1A). Interestingly, a significant presence of the phylum 
Eremiobacterota was observed. This phylum is known 
for its ecological versatility and ability to thrive under 
various extreme environmental conditions [48], which 
accounted for 10.3% of the species in the dataset used in 
this study.

The size of the MAGs varied, ranging from 0.6 Mb in a 
MAG affiliated with the phylum Patescibacteria to 8 Mb 
in MAGs belonging to Chloroflexota, Proteobacteria, and 
Myxococcota (Fig. 2, Additional file 1: Fig. S1B). Gener-
ally, there was no observed direct relationship between 
the distribution of phyla and the environment. Most 
MAGs were widely distributed throughout the Campos 
rupestres, which may be attributed to the heterogeneity 
of MAGs within and across phyla. A total of 48 MAGs 
were obtained from the bulk soil of V. epidendroides (BE_
BS), 55 MAGs from the rhizosphere of V. epidendroides 
(BE_RX), 82 MAGs from the bulk soil of B. macrantha 
(BM_BS) and 85 MAGs from the rhizosphere of B. mac-
rantha (BM_RX). For detailed information on each MAG 
and its taxonomic assessment, please refer to Additional 
file 2: Table S1.

Reconstruction of genome‑scale metabolic networks 
(GSMNs) to understand metabolic complementarity 
between species
Pathway Tools [37] integrated within the m2m [38] were 
used to identify metabolic functions and species of inter-
est within the Campos rupestres microbiota. Notably, 
the overall statistics of GSMNs varied depending on the 
number of MAGs per sample, with MAGs from BE_BS 
displaying relatively lower numbers. In total, the recon-
struction of GSMNs encompassed a range of 59,479 to 
101,411 compounds, 39,700 to 72,566 reactions, and 945 
to 1742 pathways. MAGs from different samples exhib-
ited a similar number of pathways (Additional file  1: 
Fig. S2, Additional file 2: Table S4, Table S5). Individual 
GSMNs for each MAGs are provided in Suplementary 
Data 1.

Next, insights into the metabolic potential, referred 
to as scopes, of individual metabolic networks, were 
acquired under specific nutritional conditions, spe-
cifically a seed representing a "root exudate-mimicking 
growth media" (see “Materials and Methods” section for 

https://genome.jgi.doe.gov/portal/
https://genome.jgi.doe.gov/portal/
https://www.genome.jp/kegg/
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details). Overall, the sizes of individual scopes remained 
relatively stable across all GSMNs. The results revealed 
that, on average, each microbiota from the samples 
could access approximately 80 metabolites (as indicated 
by the intersection of scopes) (Fig. 3A, Additional file 2: 
Table  S6). When considering the reachable metabolites 
for all organisms together, the combined scope com-
prised 521, 444, 451, and 510 metabolites in the BE_BS, 
BE_RX, BM_BS, and BM_RX samples, respectively 
(Fig. 3A, Additional file 2: Table S6).

Furthermore, a metabolic potential analysis was carried 
out, considering the metabolites accessible to the entire 
community, excluding the seeds. In total, the composi-
tion of 519 newly producible metabolites accessible to 
the community was examined (Fig. 3B, Additional file 2: 
Table S7). Interestingly, the number of these metabolites 
remained consistent regardless of the inclusion of the 
GSMNs of the host plant in the analysis (Additional file 1: 
Fig. S3) (see “Materials and methods” section for details). 

Most of these metabolites predominantly consisted of 
carbohydrates, organic acids, nucleotide components, 
and amino acids (Fig.  3C). Among the target com-
pounds included in the analysis of the entire community, 
we found that this community could produce 17 amino 
acids, five organic acids, and five aromatic compounds 
(Fig. 3D, Additional file 2: Table S8).

Defining a minimal community of microbial
The microbiota was reduced into minimal communi-
ties with equivalent properties, aligning with the ration-
ale that these communities mimic carefully selected 
microbial species to fulfill specific microbiome func-
tions. Plant-associated microbial communities adhere to 
defined phylogenetic organization and general commu-
nity assembly rules. This approach enables the controlled 
and targeted analysis of plant–microbe interactions, 
providing insights into key players and their roles within 
these ecosystems [49].
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Taking into account our desired target compounds and 
the host metabolism (crop), the community was nar-
rowed down to 68 bacterial species. To be specific, 16 
species were associated with soybean, 18 with maize, 17 
with sorghum, and 39 with sugarcane (Additional file 2: 

Table  S9). Among these species, 47 MAGs belonged to 
Proteobacteria, 13 MAGs belonged to Actinobacteriota, 
7 MAGs belonged to Eremiobacterota, and 4 MAGs 
belonged to Acidobacteriota. These phyla were generally 
present across all samples, but Eremiobacterota showed a 
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Fig. 2 Phylogeny of 270 metagenome-assembled genomes (MAGs) from Campos rupestres. A maximum likelihood phylogenetic tree based 
on 43 single-copy; protein-coding marker genes identified using CheckM. Phyla are marked in different background colors. The first arc of the tree 
represents the genome size of each MAG, followed by sequential arcs indicating the source of the obtained MAGs, distinguished by filled geometric 
forms. A phylogenetic tree was built under the model of rate heterogeneity G + F + I + G4, and a maximum of 1000 bootstrap replicates. Bootstraps 
are shown in black circles. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer 
the phylogenetic tree. Colored-filled geometric forms in the samples represent the presence of microbial taxa in those samples. Abbreviations: BE_
BS (bulk soil of V. epidendroides), BE_RX (Rhizosphere of V. epidendroides), BM_BS (bulk soil of B. macrantha), and BM_RX (rhizosphere of B. macrantha)
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stronger association with V. epidendroides (BS/BS), while 
Actinobacteriota and Acidobacteriota exhibited a prefer-
ence for B. macrantha (Fig. 4A). We also observed a core 
set of species shared among different plant hosts, with 
sugarcane hosting a unique set of species (Fig. 4B). At a 
lower taxonomic level, families such as Beijerinckiaceae, 
Binataceae, Chroococcidiopsidaceae, Enterobacteriaceae, 
Reyanellaceae, and Steroidobacteraceae were found to 
be widespread across all hosts. Sorghum had the highest 
number of unique families selected (Fig.  4C). Addition-
ally, the producible set of metabolites from this minimal 
community included essential amino acids, a selection 
of ten organic acids, aromatic compounds like indole, 
vitamins, and inorganic ions (Fig.  4D, Additional file  2: 
Table S10).

We analyzed the MAGs to identify genes encoding pro-
teins related to plant growth-promoting traits (PGPTs). 
These PGPT genes were categorized into seven classes, 
including Iron acquisition, EPS production, potassium 
solubilization, nitrogen fixation, GABA production, and 
IAA (indole-3-acetic acid) related tryptophan metabo-
lism (Fig. 5). It is noteworthy that most of these MAGs 
contained genes encoding PGPT proteins, although the 
presence and abundance varied across different host 

plants. Genes encoding for potassium solubilization, and 
IAA metabolism were more abundant across the MAGs. 
Specifically, only a few MAGs from the species Meta-
kosakonia intestini exhibited the potential for nitrogen 
fixation. Furthermore, we identified one MAG associated 
with soybean that possessed a complete set of nitrogen-
fixing genes (Fig. 5). Detail of PGPTs for each MAGs can 
be found in Additional file 2: Table S11 and Supplemen-
tary Data 2.

Designing a SymCom based on key species in a minimal 
community through pairwise interactions
Within the 68 species of the minimal community, eight 
species were identified as essential symbionts. These spe-
cies were consistently present in all minimal communi-
ties, thereby facilitating the producibility of the target 
metabolites [38]. These essential symbionts represented 
four phyla (Cyanobacteria, Eremiobacterota, Proteo-
bacteria, and Verrucomicrobiota), with only one MAG 
assigned at the species level, M. intestine. Interestingly, 
these essential symbionts were associated with all crop 
hosts (Additional file 2: Table S12).

We aimed to construct a microbial consortium by 
identifying microbe-microbe interactions. To assess the 
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dynamics within the consortium, the competition and 
complementarity indices for all pairs of species were cal-
culated using RevEcoR [45] (Additional file  1: Fig. S4). 
Among the species in the SymCom, members of Entero-
bacteriaceae, specifically M. intestine and Enterobacter 
sp., exhibited the highest competitiveness index com-
pared to other species. Consequently, we excluded these 
two species and recalculated the competition index. 
Interestingly, the results revealed that none of the species 
exceeded a competition index greater than 0.6, indicating 
a lack of competition among the species (Fig. 6A).

Regarding the complementarity index, a member of 
the phylum Eremiobacterota tended to provide support 
to most members in the SymCom (Fig. 6B). Furthermore, 
we assessed the metabolic complementarity between 
species and the host plants (Fig. 6C, D). Initially, the Bio-
synthetic Support Score (BSS) was computed to assess 
the host species’ capability to fulfill the nutritional needs 
of a parasitic or commensal species. Furthermore, the 
Metabolic Complementarity Index (MCI) was calculated 
to quantify the extent to which two microbial species can 
support each other through biosynthetic complementa-
rity [17].

The distribution of BSS values across the hosts ranged 
from approximately 0.1 to 0.8, while the MCI values 
ranged from 0.0 to 0.4 (Fig. 6A). As expected, there were 
clear differences in BSS and MCI scores between bac-
teria and hosts, indicating that hosts tend to better ful-
fill the nutritional needs of the soybean. Interestingly, a 
member of the Chthoniobacterales order, belonging to 
the Verrucomicrobiota phylum, exhibited high BSS and 
MCI scores in pairwise interactions with sorghum and 
soybean (Fig. 6C, D). A total of 641 BSS compounds were 
supported by SymCom and 1,037 compounds in which 
SymCom was supported by the hosts (Additional file  2: 
Table S13). Most of these compounds were not assigned 
to known compounds, but we found that carbohydrates, 
esters, amino acids, and aromatic compounds were the 
most frequently involved in the interaction between 
the SymCom and the hosts (Fig. 6F). Conversely, amino 
acids, lipids, organic acids, and coenzymes were found 
to be involved in the interaction between hosts and the 
SymCom (Additional file 1: Fig. S5).

We have confirmed that the six species included in the 
SymCom encoding PGPT proteins are actively involved 
in various essential processes such as nitrogen fixation, 

0.00

0.25

0.50

0.75

1.00

BE
_B
S

BE
_R
X

BM
_E
R

BM
_R
X

´P
ro
po

rti
on

Phylum

Acidobacteriota

Actinobacteriota

Armatimonadota

Bacteroidota

Binatota

Chloroflexota

Crenarchaeota

Cyanobacteria

Dormibacterota

Elusimicrobiota

Eremiobacterota

Gemmatimonadota

Myxococcota

Patescibacteria

Planctomycetota

Proteobacteria

Verrucomicrobiota

maize

so
yb
ea
n

sorghum

sugarcane

6

2 2

35

0 2 1

0 5

0 12 0

0 1

2

Acetobacteraceae
Beijerinckiaceae

Binataceae
Bryobacteraceae
Burkholderiaceae

Chroococcidiopsidaceae
Enterobacteriaceae

Frankiaceae
Isosphaeraceae

Jatrophihabitantaceae
Koribacteraceae

Mycobacteriaceae
Pseudonocardiaceae

Reyranellaceae
Rhodanobacteraceae
Solirubrobacteraceae
Steroidobacteraceae
Streptomycetaceae
Xanthobacteraceae

ma
ize

so
rgh

um

so
yb
ea
n

su
ga
rca
ne

host

family

A
m

in
o 

ac
id

le
u ile se
r

trp
in
do

le
-3
-g
ly
ce

ro
l-p ph
e

gl
y

as
n

l-a
sp

ar
ta
te va
l

ar
g ty
r

pr
o

hi
s

th
r

gl
n th
f

N
uc

le
ot

id
e am
p

ad
p

ud
p

gt
p

at
p

gd
p

Pe
ro

xi
de

hy
dr
og

en
-p
er
ox

id
e

In
or

ga
ni

c 
ac

id
h2

co
3

O
rg

an
ic

 a
ci

d

4-
fu
m
ar
yl
-a
ce

to
ac

et
at
e

l-a
rg
in
in
o-
su

cc
in
at
e

m
al

ac
et

ci
s-
ac

on
ita

te
su

c
ox

al
ac

et
ic
_a

ci
d

fo
rm

at
e

sh
ik
im

at
e

s-
ci
tra

m
al
at
e

la
ct
at
e

A
ro

m
at

ic
 c

om
po

un
d

in
do

le
fe
rr
ic
-e
nt
er
ob

ac
tin

in
do

le
_p

yr
uv

at
e

en
te
ro
ba

ct
in

En
zy

m
e 

co
fa

ct
or na
dp

h
N
A
P
D

na
d

N
A
D
H

3'
-p
ho

sp
ho

ad
en

yl
yl
-s
ul
fa
te

FA
D

M
o-
a

In
or

ga
ni

c 
ca

tio
n fe
-2

fe
-3

su
pe

r-
ox

id
e

m
o-
2

In
or

ga
ni

c 
co

m
po

un
d

ox
yg

en
-m

ol
ec

ul
e

am
m
on

ia pi
C

ar
bo

hy
dr

at
e

fru
ct
os

e-
6p

l-l
ac

ta
te

gl
yc
er
ol
-3
p

O
rg

an
ic

 p
ho

sp
ha

te
sh

ik
im

at
e-
5p

ad
en

os
yl
co

ba
la
m
in

Vi
ta

m
in

ni
ac

in
e

pa
nt
ot
he

na
te

th
ia
m
in
e-
py

ro
ph

os
ph

at
e

bi
ot
in

rib
ofl

av
in

py
rid

ox
in
e

A
m

id
e

ur
ea

In
or

ga
ni

c 
an

io
n

se
le
ni
te

se
le
na

te pp
i

A B C

D

Fig. 4 Metabolic producibility of the minimal community of the microbiome from Campos rupestres. A Taxonomic abundance of the minimal 
communities for each sample collection. BE_BS bulk soil of V. epidendroides, BE_RX Rhizosphere of V. epidendroides, BM_BS bulk soil of B. macrantha, 
BM_RX rhizosphere of B. macrantha. B The core set of species shared among different plant hosts of the reduced community. C Distribution 
of taxonomic family across different plant hosts. D Community reduction analysis of the target categories in microbiome from Campos rupestres



Page 9 of 13Gonçalves et al. Environmental Microbiome           (2023) 18:81  

phosphorus solubilization, EPS production, sidero-
phore production, and plant growth hormone produc-
tion (Additional file  2: Table  S14) Our observations 
indicate that the Beijerinckiaceae (bei) species possess 

a comprehensive set of genes responsible for phosphate 
transport, homeostasis, and degradation (pho, pts, 
and phn clusters), as well as the production of sidero-
phores like enterobacterin and mycobactin (ent and mdt 
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clusters). Furthermore, all the species exhibit the poten-
tial to promote plant germination through the produc-
tion of  H2S and the synthesis of IAA. They also possess 
the ability to solubilize potassium, with three of them 
capable of producing the GABA phytohormone and pro-
tecting against osmotic stress through the production of 
osmolytes such as glycine and betaine (Additional file 2: 
Table  S14). Collectively, our findings provide strong 
evidence that the SymCom model can generate cru-
cial PGPTs that significantly enhance crop productivity. 
In return, these enhanced plants can contribute to the 
maintenance and sustainability of SymCom (Fig. 6H).

Discussion
The integration of omics data acquisition and analysis, 
along with modeling approaches, enables computational 
predictions of an organism’s resource utilization, biosyn-
thetic capacities, limitations, and growth under diverse 
conditions [50, 51]. These models rely on the reconstruc-
tion of metabolic networks from annotated genomes, 

which integrate all the expected metabolic reactions of an 
organism. This makes it possible to predict fundamental 
information regarding the competition of members of 
the microbial community, and their cooperation among 
microbes and their host [52, 53]. Despite the limitations 
of draft genome-scale metabolic reconstructions [54, 55], 
they represent valuable starting points for understand-
ing an organism’s metabolic potential, but we recognize 
refinement and validation are necessary to overcome 
these limitations.

In this study, we used 270 MAGs derived from the 
microbiomes associated with V. epidendroides and B. 
macrantha in campos rupestres, as described by [33]. 
This unique ecosystem is characterized by remarkably 
low concentrations of essential nutrients, creating chal-
lenging conditions for plant growth. However, these con-
ditions also present an excellent opportunity to explore 
plant–microbe interactions in harsh environments. The 
authors noted a significant level of taxonomic novelty 
within this environment and highlighted the presence of 
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microbial taxa associated with low phosphorus (P) soils, 
which have the potential for phosphorus turnover [47]. 
Our in-silico approach involved reducing the microbial 
community based on the metabolic complementarity 
between bacterial species and host crop plants, aiming to 
identify hub species that preserve the essential PGPTs for 
the design of a SymCom.

We showed that the selection of this minimal com-
munity was based on our target compound, encompass-
ing essential compounds for their metabolism, such as 
amino acids, nucleotide components, cofactors, vitamins, 
phytohormones, organic acids, and other compounds 
relevant to plant interactions. Through this process, we 
successfully reduced the initial community size from 270 
to 68 species, resulting in a notable change of approxi-
mately 4.5-fold. This reduction is particularly intriguing, 
considering the intricate microbial interactions typically 
observed within soil communities [56–58]. Remarkably, 
the microbial community exhibited significant produc-
tion of amino acids, organic acids, vitamins, aromatic 
compounds, and various inorganic ions. These find-
ings align with previous studies on plant microbiomes, 
which also preferentially utilize these nutrients [19]. 
These compounds have been extensively documented to 
play a crucial role in plant–microbe interactions, par-
ticularly through root secretions where plants can signal 
and attract beneficial microbes under specific conditions 
[59–63]. In contrast, gut microbes were found to pre-
dominantly metabolize lipids, sugar derivatives, and car-
boxy acids [38].

The minimal community we identified preserved 
important genes associated with PGPTs, including those 
involved in iron acquisition, EPS production, potassium 
solubilization, nitrogen fixation, GABA production, and 
IAA-related tryptophan metabolism. This emphasizes 
the significance of screening novel microbial taxa, par-
ticularly under harsh conditions. The findings suggest 
that such microbial taxa may assist plants in thriving 
during drought conditions. Recent studies in the Ata-
cama Desert have highlighted the role of plant growth-
promoting bacteria (PGPB) and positive gene selection in 
facilitating key mechanisms for plant survival [64]. In line 
with this study, an emphasis on the presence of Acido-
bacteriota, Eremiobacterota, and Verrucomicrobiota as 
members of this group of PGPB. It is worth noting that 
members of these phyla are often characterized as slow-
growing bacteria and most lack culture representative. A 
genome-centric approach has recently provided a com-
prehensive analysis of 756 MAGs belonging to Acidobac-
teriota, revealing their potential to promote plant growth 
through their interactions (Gonçalves et al., [65]).

Within the minimal community, we carefully selected 
eight hub-species or essential symbiotics that were 

present in all minimal communities and enabled the pro-
duction of target metabolites. These hub species were 
chosen to compose the SymCom and represented four 
phyla, namely Cyanobacteria, Eremiobacterota, Proteo-
bacteria, and Verrucomicrobiota. In our initial round 
of species interactions, we excluded two proteobacteria 
that displayed high competitiveness within SymCom. It 
has been documented that genome-encoded metabolic 
potential tends to cluster quantitatively and qualitatively 
based on phylogeny, resulting in competitive behaviors 
among species [19, 66]. The exclusion of these species 
revealed that all the species within the SymCom exhibited 
cooperative interactions, with a member of the Eremio-
bacterota phylum playing a supportive role in the metab-
olism of most species. This finding further underscores 
the significance of this phylum in microbial interac-
tions. To comprehend the interaction between SymCom 
and the host, we integrated five important crop plants, 
including soybean, maize, sorghum, and sugarcane, into 
our study. Interestingly, our results demonstrated that, in 
general, only sorghum selected unique microbial species. 
However, a core set of species remained consistent across 
different hosts, suggesting their importance independent 
of the specific plant type. This result was crucial in iden-
tifying six hub species that could enhance the growth of 
all crops. Furthermore, we found that the hosts primarily 
provided amino acids, lipids, and coenzymes, while the 
SymCom, in addition to PGPTs, supplied carbohydrates, 
esters, amino acids, and aromatic compounds to the 
hosts.

Conclusion
The soil microbiome associated with plants in stress-
ful environments offers an exceptional opportunity to 
investigate how plants select beneficial microbial taxa to 
enhance their survival. It is well-known that soil microbe 
interactions are complex and depend on various biotic 
and abiotic factors. Recent advancements in sequenc-
ing technologies have allowed for insights into these 
microbes and their interactions within their natural 
environment. Computational modeling and prediction 
approaches enable the exploration of such dynamics.

In this study, we employed an in-silico approach using 
genome metabolic modeling to design a synthetic micro-
bial community aimed at improving the yield of impor-
tant crop plants. This approach relied on comprehensive 
knowledge of microbe-microbe-plant interactions and 
involved the selection of key species carrying essential 
plant growth-promoting traits. Similar approaches, as 
demonstrated here, can be combined with culturomics- 
and metagenomics-based techniques [67] to design syn-
thetic microbial communities as microbial inoculants for 
future agricultural production.
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