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Abstract 

Finding solutions for the remediation and restoration of abandoned mining areas is of great environmental impor‑
tance as they pose a risk to ecosystem health. In this study, our aim was to determine how remediation strategies 
with (i) compost amendment, (ii) planting a metal‑tolerant grass Bouteloua curtipendula, and (iii) its inoculation 
with beneficial endophytes influenced the microbiome of metal‑contaminated tailings originating from the aban‑
doned Blue Nose Mine, SE Arizona, near Patagonia (USA). We conducted an indoor microcosm experiment followed 
by a metataxonomic analysis of the mine tailings, compost, and root samples. Our results showed that each remedia‑
tion strategy promoted a distinct pattern of microbial community structure in the mine tailings, which correlated 
with changes in their chemical properties. The combination of compost amendment and endophyte inoculation 
led to the highest prokaryotic diversity and total nitrogen and organic carbon, but also induced shifts in microbial 
community structure that significantly correlated with an enhanced potential for mobilization of Cu and Sb. Our 
findings show that soil health metrics (total nitrogen, organic carbon and pH) improved, and microbial community 
changed, due to organic matter input and endophyte inoculation, which enhanced metal leaching from the mine 
waste and potentially increased environmental risks posed by Cu and Sb. We further emphasize that since the initial 
choice of remediation strategy can significantly impact trace element mobility via modulation of both soil chemistry 
and microbial communities, it should be made with careful consideration with respect to site specific, bench‑scale 
preliminary tests as reported here.
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Introduction
Sulfidic polymetallic mine tailings, or waste materials 
that accumulate after mineral extraction during min-
ing activities, are residual solids from which resource 
elements (e.g., Ag, Mn, Pb, Zn) have been extracted by 
physical and/or chemical methods [1, 2]. Regardless of 
their environmental toxicity, they can host diverse micro-
bial communities [3–6]. These communities participate 
in geochemical processes, such as the oxidative disso-
lution of sulfide minerals, which can lead to acid mine 
drainage (AMD) [7, 8]. The microbially catalyzed oxida-
tion of metallic compounds can accelerate the release of 
trace elements into groundwater [9], and, thus, can pose 
a serious risk to people and all living parts of the ecosys-
tem. Consequently, understanding the microbiome of 
these environments, and ways to manipulate it to prevent 
environmental harm, is of great importance.

Phytoremediation, or the use of plants and their asso-
ciated microorganisms to remediate contaminated soils, 
is a common strategy for restoration of disturbed sites; 
for a review see Wang et al. [2], Sun et al. [10]. It is cost-
effective, eco-friendly and suitable for difficult-to-access 
sites, such as remote historic mines. Different plant spe-
cies have been shown to positively alter the physical and 
chemical attributes of mine tailings by increasing the 
amount of organic carbon and nitrogen [11, 12], while 
decreasing the mobility of trace elements by accumula-
tion and adsorption to minerals and/or biological materi-
als such as cells, biofilms, or exopolysaccharides [13–17]. 
In addition, it has been reported that the revegetation of 
different mine tailings affected the structure and diversity 
of their microbial communities [9, 18–21].

As mine tailings are some of the most hostile substrates 
for plant growth [22, 23], choosing plant species that 
can succeed in these unfavorable environments remains 
a challenge. Even the use of metal-tolerant species [24–
27], which have the advantage of being adapted to high 
concentrations of trace elements, or hyperaccumulators 
[28, 29] can be limiting in the terms of biomass yield. For 
that reason, the use of organic amendments for improved 
phytoremediation offers the promise of a more effective 
restoration of metal-contaminated sites [30]. In addi-
tion to promoting plant growth, amendments such as 
compost can reduce the phytoavailability of toxic trace 
elements in soil [13, 31–33]. Moreover, in contrast to 
chemical fertilizers, compost amendment is eco-friendly 
and cost-effective and can improve soil health metrics 
by increasing water-holding capacity, pH, and microbial 
activity [13, 14, 34–36] and thus, can accelerate the resto-
ration of abandoned mining areas.

Another way of enhancing plant biomass production is 
by inoculating plants with beneficial endophytes. Endo-
phytes are microorganisms that live inside plants for at 

least part of their life cycle [37]. The endophytes can pro-
duce phytohormones and siderophores, fix atmospheric 
nitrogen, solubilize inorganic phosphorus, or protect the 
host plant against biotic and abiotic stresses; for a review, 
see Papik et  al. [38]. In addition, some endophytic bac-
teria have been shown to transform toxic trace elements 
into non-toxic and/or bioavailable forms, thereby result-
ing in increased tolerance to and accumulation of trace 
elements in different plant species [29, 39–41]. While 
some studies have shown that endophyte inoculation or 
compost amendment enhanced the phytoremediation of 
metal-contaminated soils, including mine tailings [13, 
42–44]), the monitoring of how these approaches influ-
ence the interactions between microbial communities, 
trace element mobility, and soil health metrics during 
compost- or endophyte-assisted mine waste phytoreme-
diation has not been extensively studied.

In this study, we analyzed the microbial communi-
ties in soil, compost, and plant roots from a microcosm 
experiment with a fully factorial design aiming to evalu-
ate how different restoration approaches: (i) compost 
amendment, (ii) planting a metal-tolerant grass Boute-
loua curtipendula, and (iii) its inoculation with benefi-
cial endophytes, influenced the microbiota and chemical 
properties of mine tailings. We hypothesized that (i) our 
approaches would act in synergy and increase microbial 
diversity in the mine tailings, (ii) the fingerprint of each 
strategy would be detectable in microbial community 
structure, and (iii) the resulting changes in tailings micro-
biota would be associated with changes in soil chemistry. 
This study specifically describes the interactive effects 
between tailings microbiota, trace element mobility, 
and organic matter content which provides a novel link 
between biotic and abiotic mine waste responses to dif-
ferent restoration approaches and combinations.

Materials and methods
Experimental design
For this pot experiment, we selected sulfidic polymetal-
lic mine tailings originating from the abandoned Blue 
Nose mine near Tucson, Arizona (31.44782, − 110.73293, 
1600  m elevation) with pH of 3.5 and high content of 
potentially toxic trace elements (As, Cd, Cu, Mn, Pb, Sb, 
Tl, Zn). Specifically, concentrations of As and Pb were 
10–20 times soil remediation levels [45], and Cd, Cu, 
Mn, Pb, Sb, and Zn exceeded water quality standards for 
people and wildlife [46], as we previously reported [47]. 
General characterization and total trace element content 
of pre-treatment materials are summarized in Additional 
file  1: Table  S1. Bouteloua curtipendula was selected 
because it is metal-tolerant, native to the US, and was 
found at the sampling site [48]. In total, there were six 
treatments: tailings only (T, control, n = 8), tailings with 
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added compost (TC, n = 8), tailings with a plant (TP, 
n = 16), tailings with a plant and added compost (TPC, 
n = 9), tailings with a plant inoculated with endophytes 
(TPE, n = 16), and tailings with a plant inoculated with 
endophytes and added compost (TPEC, n = 9) (Fig.  1). 
Due to previously observed low germination (c.a. 10%) 
and high mortality rates (c.a. 50%) of B. curtipendula in 
tailings without amendments [47], twice as many pots 
were planted in treatments without compost (n = 16) and 
one extra pot was planted in TPC treatment (n = 9) com-
pared to the controls (n = 8) to ensure a sufficient number 
of biological replicates.

Plant cultivation
Pots (Deepots™; 5 × 18 cm, Stuewe & Sons, Tangent, OR 
USA) were filled with 240 g of mine tailings mixed with 
dolomite (35.34 mg/g, corresponding to a rate of roughly 
40 tonnes/hectare) to raise their pH to 5.1 (further 
referred to as the “initial mine tailings”), which was nec-
essary to support plant growth, and wetted with 15 ml of 
deionized water. B. curtipendula seeds were either coated 
with microbial coculture of ten beneficial endophytes 
(TPE and TPEC) (Additional file  1: Table  S2) or sterile 
medium (TP and TPC). The coating procedure was per-
formed as follows: the endophyte coculture was obtained 
via cultivation in a liquid N-limited Rennie medium [49] 
under aerobic conditions to an optical density of 0.5 at 
600  nm. The coculture was subsequently sprayed onto 
B. curtipendula seeds (50  mL/30.5  g of seed for 1  min) 
and coated seeds were dried for 3 days at 25 °C. Control 
seeds were processed analogously but coated with sterile 
medium. Fifteen seeds were directly sown into the mine 
tailings in each pot the day after the pots were filled with 

tailings. In case of compost treatments (TC, TPC, TPEC), 
wet municipal compost was added (15.3  mg/g, corre-
sponding to a rate of roughly 60 tonnes/hectare) to sowed 
pots, forming an additional layer above the tailings. Seeds 
had higher germination rate when planted with compost: 
about 50% of the seeds germinated when planted with 
compost, but only 30% of the seeds germinated without 
compost. In the absence of a compost layer, the seeds 
had similar germination regardless of whether they were 
coated with endophytes or not [50], under review). The 
pots were thinned upon seedling germination to obtain 
1–2 seedlings per pot. In total, the pots were cultivated 
for two months in Deepots™ with nylon mesh lining in 
indoor growth chambers (one chamber per treatment), 
each of which was equipped with a fan enabling continu-
ous air circulation and a LED grow light (HIGROW™ 
600W) placed approximately 40  cm above the Deepot 
racks. The lighting in chambers followed a 12 h diurnal 
cycle (12  h on; 12  h off). Pots were regularly watered 
using the automatic gravity-fed drip irrigation system 
to maintain a target of 55% water holding capacity. For 
treatments without compost (TP and TPE), 3 out of 16 
pots did not germinate or all its seedlings died.

Sample collection, processing, and chemical analyses
After 2  months of plant growth, the pots were destruc-
tively harvested over the course of three days to process 
and subsample the mine tailings, compost, and plants 
for further analyses. Due to a large number of samples 
that required immediate processing upon harvest, the 
pots corresponding to TP and TPC treatments were 
harvested after 56 days of plant growth, TPE and TPEC 
treatments on day 57, and T and TC treatments on day 

Fig. 1 Schematic representation of the pot experiment. The treatments included: tailings (T), tailings with added compost (TC), tailings with a plant 
(TP), tailings with a plant and added compost (TPC), tailings with a plant inoculated with endophytes (TPE) and tailings with a plant inoculated 
with endophytes and compost (TPEC)
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58. To harvest the pots, first, if the compost layer was 
present, it was separated from the mine tailings. Subse-
quently, the B. curtipendula roots were gently removed 
from the mine tailings and washed with deionized water. 
Roots were stored for two days at 4 °C and then, together 
with seeds, surface-sterilized by vigorous agitation in 
70% ethanol for 3 min, followed by agitation in 2.5% (v/v) 
sodium hypochlorite (NaOCl) for 5 min as described by 
Barra et  al. [51]. Immediately after the surface steriliza-
tion, the roots were washed with sterile deionized water 
three times for 5  min per wash cycle. One hundred µL 
of the final wash solutions were spread on Luria Bert-
rani (LB) agar plates and incubated at 28 °C for 5 days to 
check for sterility. Surface-sterilized roots and seeds were 
then stored at − 80  °C until grinding, which was per-
formed aseptically in liquid nitrogen in a ceramic mortar 
using a pestle. Due to low biomass quantities, only the 
roots from TPC and TPEC were used for the analysis of 
endophytic microbial communities, and the roots from 
pots within a treatment were combined to enable at least 
three replicates to provide the minimum of 20 mg of root 
biomass for the DNA extraction.

Harvested mine tailings and compost layers were 
homogenized using a sterile plastic spoon and approxi-
mately 2  g were subsampled and stored at − 20  °C for 
DNA extraction. The remaining homogenized compost 
was air-dried for 14  days, and homogenized tailings 
were oven-dried at 40  °C for 7–8  days. The initial mine 
tailings, compost, and seeds inoculated with either the 
endophytic coculture or sterile medium were processed 
analogously.

Mine tailings subsamples were subjected to the analy-
sis of basic soil properties, including pH, carbon and 
nitrogen content, and elemental composition [details 
were presented in Creamer et al. [52]. The pH was meas-
ured in deionized water [1:5 solid: solution ratio (w/v)] 
after agitation for 15 min at 110 rev/min and settling for 
10 min. Fifteen grams of mine tailings were ground to a 
fine powder (< 105  µm) in a sintered corundum (99.7% 
 Al2O3) planetary ball mill (25 min at speed 7; Fritsch pul-
verisette™ 5, CA, USA) and analyzed for total nitrogen 
and carbon in a CN analyzer (Carlo-Erba™, CE Elantech, 
Lakewood NJ). Organic carbon was analyzed using the 
CN analyzer after overnight fumigation with 12  M HCl 
[53]. To quantify 51 water-soluble elements, the ground 
mine tailings were agitated with deionized water in a 1:30 
(m/v) ratio for 2 h and analyzed by using inductively cou-
pled plasma optical emission spectroscopy (ICP-OES) or 
mass spectrometry (ICP-MS). Analyses were conducted 
by AGAT Labs (Canada) under contract to the U.S. 
Geological Survey Mineral Resources Program (Ana-
lytical Chemistry Division, Denver, CO) with QA/QC as 
described in Creamer et al. [52].

DNA extraction and quantification
Total DNA was extracted from 700 mg of mine tailings, 
500 mg of compost, and 20 mg of surface-sterilized roots 
using the FastDNA SPIN kit for soil (MP Biomedicals, 
Ohio, USA) following the manufacturer’s protocol with a 
few modifications to enhance DNA yield: increased time 
of homogenization (15  min) and air-drying the samples 
in a laminar flow hood (10  min) prior to DNA elution 
[20]. DNA samples were purified and concentrated using 
the DNA Clean and Concentrator kit (Zymo Research, 
Irving, CA, USA). DNA concentration was determined 
using a PicoGreen dsDNA Assay Kit (Thermo Fisher Sci-
entific Technologies, Wilmington, DE) and normalized to 
15 ng/µL per sample prior to the library preparation for 
amplicon sequencing.

The abundance of bacterial and fungal marker genes 
in compost and tailings was quantified with qPCR on 
purified DNA (diluted to 2  ng/µL). The bacterial com-
munity abundance (16S rRNA gene) was assessed using 
primers and conditions from Fierer et  al. [54]: forward 
Eub338 (5′-GCT GCC TCC CGT AGG AGT -3′) and 
reverse Eub518 (5′-ATT ACC GCG GCT GCTGG-3). Fun-
gal community abundance (28S rRNA gene) was assessed 
with primers and conditions detailed in White et  al. 
[55]: cTW13 (5′-CGT CTT GAA ACA CGG ACC -3′) and 
TW14 (5′-GCT ATC CTG AGG GAA ACT TC-3′). Each 
10 µL PCR reaction for 16S and 28S rRNA contained: 5 
µL of KAPA SYBR FAST qPCR Master Mix (2X) Univer-
sal (0.02 U/μL, KAPA Biosystems, Boston, USA), 0.2 µL 
of Low Rox, 0.2 µL of each forward and reverse primers 
(10 µM), 2 µL of template DNA (2 ng/µL) and PCR-grade 
water.

16S rRNA gene and ITS2 region amplicon sequencing
The V4-V5 hypervariable region of the 16S rRNA gene 
was amplified using the 515 forward (5′-GTG YCA 
GCMGCNGCGG-3′) and 926 reverse primers (5′-CCG 
YCA ATTYMTTT RAG TTT-3′) [56]. ITS2 region was 
amplified using 5.8S_Fun forward primer (5′-AAC TTT 
YRR CAA YGG ATC WCT-3′) and ITS4_Fun reverse 
primer (5′-AGC CTC CGC TTA TTG ATA TGC TTA ART-
3′) [57].

Mine tailings and compost DNA samples were ampli-
fied using a two-step PCR process. The first 15 µL reac-
tion contained: 0.02 U/µl KAPA HiFi HotStart ReadyMix 
(Kapa Biosystems, USA), 0.3 µM of each primer (Sigma-
Aldrich, USA), ~ 10 ng of template DNA and PCR grade 
water (Sigma-Aldrich, USA). The cycling conditions 
were as follows: an initial DNA denaturation for 5 min at 
95  °C, 25–28 cycles of 20  s at 98  °C, 15  s at 56  °C (16S 
rRNA) or 50  °C (ITS), 15 s at 72  °C, and final extension 
for 5  min at 72  °C [58]. A volume of 0.5 µL of the PCR 
product was used as a template in a second PCR with the 
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same primers containing internal barcodes and sequenc-
ing adapters [59]. This round of PCR was performed 
analogously as before, except that the final reaction vol-
ume was 25 µL, the concentration of each primer was 
1 mM, and the number of cycles and annealing tempera-
ture were decreased to 8–10 and 50 °C, respectively.

For root DNA samples, ITS2 region amplicons were 
prepared using the same 2-step PCR procedure as 
described above for the mine tailings and compost sam-
ples. For 16S rRNA gene amplicon preparation, each 
sample was amplified using three rounds of PCR. First, 
peptide nucleic acids were used to prevent the amplifica-
tion of mitochondrial (mPNA) and plastid (pPNA) DNA 
[60]. This 15 µL reaction contained: 0.3 µM of each PNA 
probe: mPNAs (5′-GGC AAG TGT TCT TCGGA-3′) and 
pPNAs (5′-GGC TCA ACC CTG GACAG-3′) (PNA Bio, 
Thousand Oaks, CA), 0.02 U/µl of KAPA HiFi HotStart 
ReadyMix (Kapa Biosystems, USA), 0.3  µM of the 515 
forward primer, 0.3 µM of 1068 reverse primer (5′-CTG 
RCG RCR RCC ATGCA-3′, Sigma-Aldrich, USA), 10  ng 
of template DNA and PCR grade water (Sigma-Aldrich, 
USA) [61]. The temperature cycling conditions were 
as follows: initial DNA denaturation at 95  °C for 5 min, 
25–30 cycles of 20 s at 98 °C, 15 s at 75 °C (annealing of 
the PNAs), 15 s at 50 °C, 15 s at 72 °C, and final extension 
at 72 °C for 5 min. Each sample was prepared in 9 copies 
that were pooled together and separated by electrophore-
sis on 1.5% agarose gel. The fragments corresponding to 
the size of 550 bp were excised from the gel and purified 
using a Zymoclean Gel DNA Recovery Kit (ZYMORE-
SEARCH, USA). 0.5 µL of the purified PCR product was 
used as a template in the same 2-step PCR process as 
described above for the mine tailings and compost.

Amplicons were then purified with SPRI magnetic 
beads (Beckman Coulter, USA) according to the manu-
facturer’s instructions. The concentration of each purified 
sample was measured using a Picogreen assay for dsDNA 
(Thermo Fisher Scientific Technologies, Wilmington, 
DE) following the manufacturer’s protocol. To identify 
potential sequencing errors during data processing, mock 
community DNA standards (ZymoBIOMICS Micro-
bial Community DNA Standard, Zymo Research, Irvine, 
CA) were used and subjected to the same procedures as 
the mine tailings, compost, and root DNA samples. All 
further downstream analyses, including the finalization 
of library preparation and sequencing, were performed 
at the Core Facility for Nucleic Acid at the University of 
Alaska, Fairbanks as follows: purified amplicons were 
pooled in equimolar concentrations using Sequal Prep 
Kit (Thermo Fisher Scientific Technologies, Wilming-
ton, DE), and the final quality and concentration of the 
library were determined via NEBNext Library (New Eng-
land BioLabs, Ipswich, MA). Libraries were spiked with 

PhiX (15%) and followed standard Illumina denature and 
dilute protocols. 10 pmol of amplicon libraries were then 
loaded and sequenced using the Illumina MiSeq V3 rea-
gent kit.

Data processing and statistical analyses
Sequence data were processed using the DADA2 pipe-
line [62] in R (v.4.1.0) [63] with a few modifications. The 
primer sequences were removed if found present, oth-
erwise the whole read was discarded. 16S rRNA gene 
sequences were filtered and trimmed using the follow-
ing parameters: trimLeft = c(0, 0), maxN = 0, maxEE = 2, 
truncQ = 2. The reads were truncated to 247 and 189 
bases for forward and reverse reads, respectively. ITS 
region sequences were filtered using the same param-
eters, but no truncation was performed. 16S rRNA 
sequences were merged if they differed by only a single 
base and ITS2 region sequences were merged if they dif-
fered by up to two bases, bioinformatic steps were cho-
sen based on analysis of the mock community. To create 
the database of amplicon sequence variants (ASVs), tax-
onomy was assigned using the silva_nr_v132_train_set.
fa.gz database [64] and the UNITE database [65] for 
16S rRNA gene and ITS region, respectively. All further 
statistical analyses were performed in R within the phy-
loseq [66], vegan [67] and DESeq2 [68] packages. Differ-
ences at p ≤ 0.05 were considered statistically significant. 
All graphical outputs were created using ggplot2 [69] 
package.

To describe alpha diversity of the microbial commu-
nities, we calculated the Shannon diversity index of 
microbial communities [70] and tested how different 
treatments (T, TC, TP, TPC, TPE, TPEC) influenced 
microbial diversity using a Pairwise Wilcoxon rank 
sum test. The resulting p values were adjusted using a 
false discovery rate (FDR) method. The sequence data-
sets were rarefied to the smallest sample size and the 
relative abundance of 16S rRNA and ITS ASVs at the 
phylum level were displayed in bar plots to compare 
the phyla representation across treatments. To test the 
influence of (i) compost amendment, (ii) endophyte 
inoculation, (iii) presence of B. curtipendula, as well 
as the interaction of these variables on microbial com-
munity structure at an ASV level, the data were Hell-
inger-transformed [71], and permutational multivariate 
analysis of variance (PERMANOVA, 999 permutations) 
based on Bray–Curtis dissimilarity was used [72]. In 
addition, a Pairwise PERMANOVA was conducted 
to compare microbial community structure between 
individual treatments with the resulting p values being 
adjusted using a FDR method. To investigate which 
microbial genera had significantly different abundance 
between T and either TC, TP, TPC, TPE, or TPEC, we 
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used differential expression analysis (DESeq2 package) 
on non-transformed and non-rarefied datasets merged 
at the genus level [68]. In total, five pairwise compari-
sons were performed: (i) T vs TP, (ii) T vs TPE, (iii) T 
vs TC, (iv) T vs TPC, and (v) T vs TPEC. The lfcShrink 
function was applied to shrink logarithmic fold change 
values. We established a logarithmic fold (Log twofold) 
change threshold of 1.2 and a FDR of 1% as criteria for 
determining statistical significance. The results of dif-
ferential abundance analyses were presented using 
heatmaps with a dendrogram constructed using Ward’s 
hierarchical clustering (Euclidean distance, genus 
level), with missing values being replaced with zeroes.

In order to compare the values of water-extracta-
ble trace elements in treated tailings against control, 
a Pairwise Wilcoxon rank sum test was performed 
with p values being adjusted using a FDR method. To 
further explore how measured chemical properties 
correlated with microbial community structure, the 
chemical parameters were fitted onto a Bray–Curtis-
based NMDS ordination using the envfit function from 
the vegan package [67].

Differences in 16S rRNA or 28S rRNA gene copy 
number, and the ratio of bacterial to fungal gene copy 
number (F:B ratio) in compost and tailings samples col-
lected after 2  months of plant growth were analyzed 
with a Kruskal–Wallis test using treatment (no treat-
ment, compost, plant, or plant + endophyte addition) 
as the factors. Differences between treatments were 
further tested using a Pairwise Wilcoxon rank sum test, 
and corrected for multiple comparisons using a FDR 
correction.

Results
Chemical properties of the mine tailings
The detailed results of the mine tailings analyses are 
described in Creamer et al. [52], however we briefly sum-
marize those finding here (Table 1). Blue Nose mine tail-
ings contained several potentially toxic water-extractable 
trace elements at high concentrations: As, Cd, Cu, Mn, 
Pb, Sb, and Zn, which exceeded water quality criteria 
for people and wildlife [46], as well as low concentra-
tions of organic carbon and nitrogen (Table 1). As there 
were significant differences between control (T) and all 
treatments for several measured chemical parameters 
(padj ≤ 0.05, Pairwise Wilcoxon rank sum test; Table  1), 
the associations between microbial community structure 
and tailings chemistry under different treatments were 
subsequently investigated.

Microbial abundance
We quantified bacterial and fungal populations (i.e., copy 
numbers of 16S rRNA and 28S rRNA genes, respectively) 
separately in compost and tailings layers (Additional 
file 1: Fig. S1). In compost, fungal gene copy number was 
significantly different (p = 0.02, Kruskal–Wallis) across 
treatments after 2  months of plant growth and further 
testing revealed that fungal gene copy number was signif-
icantly higher in the TPC treatment compared to TPEC 
treatment (padj = 0.046, Pairwise Wilcoxon rank sum 
test). In tailings, the ratio of fungal:bacterial abundance 
was significantly increased in treatments with added 
compost after 2 months of plant growth (padj < 0.05, Pair-
wise Wilcoxon rank sum test). There were no significant 
differences in bacterial and fungal gene copy numbers in 

Table 1 Water‑extractable trace elements and soil health metrics of the mine tailings (mean ± standard deviation)

Pre‑treatment materials: initial tailings  (Tin). Treatments: tailings (T, n = 8), tailings with added compost (TC, n = 8), tailings with a plant (TP, n = 13), tailings with a 
plant and added compost (TPC, n = 8), tailings with a plant inoculated with endophytes (TPE, n = 11) and tailings with a plant inoculated with endophytes and added 
compost (TPEC, n = 7). Values corresponding to treatments that significantly differed from control, i.e., T, (padj ≤ 0.05, Pairwise Wilcoxon rank sum test) are underlined 
and shown in bold. Full data sets available for download from Creamer et al. [52] and Creamer et al. [73] (US Geological Survey Science Base Repository Data Releases: 
https:// doi. org/ 10. 5066/ P9M2J W70 and https:// doi. org/ 10. 5066/ P99OY EXQ)

Tin T TC TP TPC TPE TPEC

As (ng/g) 11 75 ± 19 56 ± 21 86 ± 20 76 ± 27 74 ± 17 66 ± 19

Cd (ng/g) 2160 706 ± 46 669 ± 17 701 ± 34 727 ± 29 696 ± 29 672 ± 24

Co (ng/g) 798 147 ± 9 145 ± 5 137 ± 12 155 ± 8 141 ± 7 145 ± 5

Cu (ng/g) 1210 557 ± 59 639 ± 109 296 ± 121 754 ± 50 657 ± 106 830 ± 67
Mn (μg/g) 455 68 ± 8 61 ± 9 71 ± 6 81 ± 10 68 ± 5 62 ± 4

Pb (μg/g) 104 73 ± 4 69 ± 4 72 ± 4 69 ± 4 74 ± 5 68 ± 2

Sb (ng/g) 137 600 ± 47 690 ± 29 548 ± 34 693 ± 43 608 ± 34 703 ± 44
Zn (μg/g) 215 21 ± 2 21 ± 1 21 ± 2 22 ± 1 20 ± 1 21 ± 1

pH 5.11 6.63 ± 0.03 6.7 ± 0.06 6.68 ± 0.06 6.69 ± 0.04 6.65 ± 0.06 6.75 ± 0.05
Total nitrogen (mg/g) 0.08 0.14 ± 0.04 0.16 ± 0.01 0.12 ± 0.01 0.17 ± 0.01 0.12 ± 0.02 0.16 ± 0.01
Inorganic carbon (mg/g) 4.70 3.99 ± 0.31 3.79 ± 0.22 3.66 ± 0.29 3.73 ± 0.28 3.90 ± 0.34 3.67 ± 0.18

Organic carbon (mg/g) 2.00 2.00 ± 0.07 2.28 ± 0.11 2.09 ± 0.07 2.44 ± 0.20 2.10 ± 0.08 2.48 ± 0.06

https://doi.org/10.5066/P9M2JW70
https://doi.org/10.5066/P99OYEXQ
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tailings among treatments (padj > 0.05, Pairwise Wilcoxon 
rank sum test).

Microbial diversity in compost, B. curtipendula roots, 
and tailings
In total, 3,532,593 16S rRNA gene sequences and 
3,017,378 ITS2 region sequences were obtained. ASVs 
assigned to mitochondria at the family level or to chlo-
roplast at the order level were discarded from the 16S 
rRNA ASV dataset, accounting for 1.8% sequences in 
total. The remaining datasets were rarefied to the small-
est sample size: 4,400 and 3,200 reads for 16S rRNA 
and ITS, respectively, which resulted in 2,396 unique 
prokaryotic taxa and 615 unique fungal taxa. Shan-
non diversity index (Fig. 2) showed that alpha diversity 
of both prokaryotic and fungal communities was sig-
nificantly higher in the initial mine tailings  (Tin) when 
compared to the tailings (T, TP, TPE, TC, TPC, TPEC) 
collected after two months of plant growth (padj < 0.01 
for prokaryotes and padj < 0.05 for fungi, Pairwise 
Wilcoxon rank sum test, Additional file  1: Table  S3). 

Prokaryotic diversity was significantly higher in the 
tailings of all treatments except for TP when compared 
to the control T (padj < 0.01, Pairwise Wilcoxon rank 
sum test), and the highest diversity increase in tail-
ings was observed when compost amendment, planting 
and endophyte inoculation were all combined (TPEC). 
Fungal diversity in the tailings of all treatments did 
not significantly differ from the control T (padj > 0.05, 
Pairwise Wilcoxon rank sum test), but TPE treatment 
resulted in significantly higher diversity compared 
to TP, TC, and TPC treatments (padj < 0.05, Pairwise 
Wilcoxon rank sum test, Additional file  1: Table  S3). 
Microbial diversity in the initial compost  (Cin) also 
significantly differed from the compost samples col-
lected after two months of plant growth; prokaryotic 
diversity was significantly lower while fungal diversity 
was significantly higher in  Cin vs TC, TCP, and TPEC 
(padj < 0.05, Pairwise Wilcoxon rank sum test, Addi-
tional file 1: Table S3). In contrast to tailings, microbial 
diversity in compost did not significantly differ across 
the treatments, and endophytic diversity in roots of 

Fig. 2 Prokaryotic (a) and fungal (b) diversity in compost, roots, and tailings incubated under different treatments: tailings (T), tailings with added 
compost (TC), tailings with a plant (TP), tailings with a plant and added compost (TPC), tailings with a plant inoculated with endophytes (TPE) 
and tailings with a plant inoculated with endophytes and added compost (TPEC). Initial materials included initial tailings  (Tin), initial compost  (Cin), 
seeds inoculated with beneficial endophytes  (S+e), and seeds treated with sterile medium  (S‑e)
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B. curtipendula was not significantly associated with 
endophyte inoculation (padj > 0.05, Pairwise Wilcoxon 
rank sum test).

Microbial community structure in compost, roots, 
and tailings under different treatments
In total, 24 prokaryotic and ten fungal phyla were 
detected in the samples of compost, roots, tailings, and 
initial materials. Nine bacterial and six fungal phyla had 
a higher relative abundance than 0.1% (Fig. 3). The larg-
est differences in the distribution of bacterial phyla were 
observed between the initial tailings and compost mate-
rials  (Tin,  Cin) and those collected at the end of the pot 
experiment. At project initiation,  Tin and  Cin were domi-
nated by Bacillota, and at project harvest (after 56 days; 
57 days; and 58 days in the case of TP and TPC; TPE and 
TPEC; and T and TC treatments, respectively) all tailings 
were dominated by Pseudomonadota. The distribution 
of dominant fungal phyla was notably different among 
treatments without compost (T, TP, and TPE), which 
were largely dominated by the reads of Ascomycota, and 
with compost (TC, TPC, and TPEC), which were largely 
dominated by Mucoromycota (Fig. 3).

Both prokaryotic and fungal community structure in 
the mine tailings were significantly associated with com-
post amendment, the presence of B. curtipendula, and 
the interaction of these two factors (PERMANOVA at 
ASV level, Table 2). The changes in prokaryotic commu-
nity structure were also associated with endophyte inoc-
ulation and its interaction with compost amendment. 
These results are consistent with the pairwise compari-
son of individual treatments, which showed significant 
differences in prokaryotic community structure between 
all the treatments (padj < 0.001, Pairwise PERMANOVA, 
Additional file 1: Table S4). Fungal community structure 
also significantly differed between treatments except for 
TC vs TPC, and TPC vs TPEC. Of all the variables tested, 
compost amendment explained most of the variation in 
microbial community structure: 39% in prokaryotic and 
47% in fungal communities (PERMANOVA, Table  2). 
In particular, the highest variability in prokaryotic com-
munity structure was observed between TC vs TPE, TP 
vs TPEC, and TPE vs TPEC  (R2 = 0.60,  R2 = 0.65, and 
 R2 = 0.67, respectively, Pairwise PERMANOVA, Addi-
tional file  1: Table  S4). The highest variation in fungal 
community structure was observed between T vs TC, 

Fig. 3 Relative abundance of bacterial (a) and fungal (b) phyla in compost, roots, and tailings across the treatments: tailings (T), tailings with added 
compost (TC), tailings with a plant (TP), tailings with a plant and added compost (TPC), tailings with a plant inoculated with endophytes 
(TPE) and tailings with a plant inoculated with endophytes and added compost (TPEC). Initial materials include initial compost  (Cin), seeds 
without and with endophytes coating  (S‑e, and  S+e, respectively), and initial tailings  (Tin). Phyla with relative abundance lower than 0.1% are grouped 
and labeled as “Other”
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TPC vs TPE, TPE vs TPEC, and TC vs TPE  (R2 = 0.58, 
 R2 = 0.58,  R2 = 0.58, and  R2 = 0.61, respectively, Pairwise 
PERMANOVA, Additional file  1: Table  S4). Both endo-
phyte inoculation and the presence of B. curtipendula 
were significantly associated with the prokaryotic com-
munity structure in the compost sampled from amended 
pots, while no significant associations were found in 
the structure of compost fungal communities (Table  2). 
Finally, the fungal and prokaryotic endophytic commu-
nities in the roots of B. curtipendula were not found to 
be significantly associated with any treatment (PER-
MANOVA, Table 2).

Differential abundance analysis using DESeq2 revealed 
that 36 bacterial and 16 fungal genera were enriched in at 
least one of the treatments TC, TP, TPE, TPC, and TPEC 
when compared to T (padj ≤ 0.01, Fig.  4). The hierarchi-
cal clustering of obtained Log twofold change values, as 
shown in Fig. 4, revealed two main clusters: the grouping 
of treatments with compost (TPC, TC, TPEC) and treat-
ments without compost (TP and TPE). When we com-
pared the individual treatments vs control (T), we found 
that bacterial genera (Fig.  4a) were primarily enriched 
in treatments with compost, while the TPEC treatment 
resulted in the highest number of enriched genera (33) 
(Fig. 4a).

Changes in tailings chemical properties related 
to microbial community structure
Statistically significant correlations (NMDS with sub-
sequent fitting of environmental variables, p ≤ 0.05) 
between the chemical properties of the mine tailings 

samples and microbial community structure are dis-
played in Fig. 5. The ordination plots show a clear separa-
tion of both prokaryotic and fungal communities in the 
mine tailings along the first axis, forming two main clus-
ters based on the presence (TC, TPC, TPEC) or absence 
of compost (T, TP, TPE). The content of organic carbon 
 (R2 = 0.63 for prokaryotes,  R2 = 0.53 for fungi, p ≤ 0.05), 
total nitrogen  (R2 = 0.53 for prokaryotes,  R2 = 0.47 for 
fungi, p ≤ 0.05), Sb  (R2 = 0.68 for prokaryotes,  R2 = 0.63 
for fungi, p ≤ 0.05), and Cu  (R2 = 0.64 for prokaryotes, 
 R2 = 0.42 for fungi, p ≤ 0.05) were identified as the factors 
that are most strongly associated with microbial commu-
nity structure (Fig. 5).

Discussion
In this study, we investigated how: (i) compost amend-
ment, (ii) planting B. curtipendula, and (iii) inoculation 
of B. curtipendula with beneficial endophytes influenced 
the microbiome of metal-contaminated mine tailings. We 
found that compost amendment and endophyte inocula-
tion synergistically increased prokaryotic diversity in the 
mine tailings and influenced both fungal and prokaryotic 
community composition, with compost amendment hav-
ing a dominant effect on microbial communities (Table 2, 
Fig. 5). Total nitrogen, organic carbon, and water-extract-
able concentrations of Cu and Sb, which were signifi-
cantly higher in compost-amended treatments, were 
identified as the variables that were most strongly asso-
ciated with community structure in the mine tailings 
(Fig. 5, Table 1).

Table 2 The association of compost amendment, endophyte inoculation, and the presence of B. curtipendula with microbial 
community structure in tailings, compost, and roots of B. curtipendula (PERMANOVA)

Significant p values (p ≤ 0.05) are underlined and shown in bold

(a) prokaryotes (b) fungi

Endophyte inoculation Compost amendment Presence of B. 
curtipendula

Endophyte inoculation Compost amendment Presence 
of B. 
curtipendula

TAILINGS* p = 0.001 p = 0.001 p = 0.003 p = 0.095 p = 0.001 p = 0.001
R2 = 0.07410 R2 = 0.39263 R2 = 0.03569 R2 = 0.01501 R2 = 0.46620 R2 = 0.06405

COMPOST p = 0.001 – p = 0.001 p = 0.565 – p = 0.621

R2 = 0.11744 – R2 = 0.09765 R2 = 0.03312 – R2 = 0.02535

ROOTS p = 0.21 – – p = 0.416 – –

R2 = 0.21945 – – R2 = 0.15093 – –

*Significant interaction of:

(a) prokaryotes

Compost amendment x Endophyte inoculation  (R2 = 0.07614; p = 0.001), and Compost amendment x Presence of B. curtipendula  (R2 = 0. 07614; 
p = 0.001)

(b) fungi

Compost amendment x Presence of B. curtipendula  (R2 = 0.04570; p = 0.001)
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Compost application has been shown to promote resto-
ration of metalliferous soils via modulation of both biotic 
and abiotic factors in the soil [42, 74–76]. For instance, 
compost amendment was shown to have a beneficial 
influence on revegetation of mine tailings by enhanc-
ing soil structure [77], bacterial root colonization [43], 
and plant biomass production [43, 77]. Here, we estab-
lish that compost amendment significantly increased 
prokaryotic diversity, which also corresponded to higher 

content of organic carbon and total nitrogen in the mine 
tailings (Table  1) and higher plant biomass [50],under 
review). Similar results were also reported in a study 
by Maron et  al. [78], an increase of prokaryotic diver-
sity that positively correlated with nutrient availability 
and organic matter transformation in soil. Furthermore, 
our results show that organic carbon and total nitrogen 
originating from compost were significantly associated 
with changes in the structure of both prokaryotic and 

Fig. 4 Heatmap of Log twofold change values representing significantly enriched bacterial (a) and fungal (b) genera across treatments: tailings 
with added compost (TC), tailings with a plant (TP), tailings with a plant and added compost (TPC), tailings with a plant inoculated with endophytes 
(TPE) and tailings with a plant inoculated with endophytes and added compost (TPEC) vs tailings only (T, control) as revealed by differential 
abundance analysis. Genera that were significantly more abundant in T are represented by a positive Log twofold change, while genera that were 
significantly more abundant in either TP, TC, TPE, TPC, or TPEC vs T are represented by a negative Log twofold change
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fungal communities (Fig. 5). Nutrients and/or carbon and 
energy sources released during microbial decomposi-
tion of added compost could be used by plants and their 
associated microorganisms and, in turn, promote sec-
ondary succession of both plants and microorganisms in 
these degraded soils if applied in the field, as analogously 
reported by Gil-Loaiza et al. [13].

Planting B. curtipendula did not significantly influence 
microbial diversity, which is in contrast with studies that 
reported an increase in microbial diversity upon reveg-
etation of mine tailings [19, 79, 80]. However, planting B. 
curtipendula did affect prokaryotic and fungal commu-
nity structure in the tailings, and in the case of prokary-
otes, in compost as well. The observed shift in microbial 
communities as a response to planting could be attrib-
uted to (i) physical changes in tailings structure induced 
by the roots and/or (ii) rhizodeposition and resulting 
enrichment of microbial populations which can use 
rhizodeposits as carbon and/or energy sources [81].

Several studies have demonstrated the potential of 
plant inoculation with beneficial endophytes to increase 
phytoremediation efficiency of metal-contaminated 
soils [82–84]. Here, we report that endophyte inocula-
tion significantly influenced the structure of prokary-
otic communities in both mine tailings and compost 
(Table 2) and increased prokaryotic and fungal diversity 
in the mine tailings. In the case of tailings, there was a 
significant interactive effect between the endophyte 
inoculation and compost addition on the prokaryotic 
community structure. Moreover, compost amendment 
and endophyte inoculation synergistically increased 
prokaryotic diversity in the mine tailings (Fig.  2). Sur-
prisingly, the initial pre-treatment mine tailings had the 
highest prokaryotic and fungal diversity compared to 

any of the treated tailings post-incubation. This dem-
onstrates that despite their hostility to plants, mine tail-
ings harbor diverse prokaryotic and fungal communities 
that are well adapted to these anthropogenic soils [3, 85, 
86]. The increase in moisture by regular watering and 
initial adjustment of pH by the addition of dolomite, 
which was necessary to support plant growth [47], likely 
caused the loss of prokaryotic taxa that were specifically 
adapted to dry and acidic conditions [87, 88]. The initial 
mine tailings were dominated by Bacillota (Fig. 3), mem-
bers of this phylum are known for their ability to form 
endospores and survive in extreme environments [89]. 
Therefore, it is not surprising that they formed a major-
ity in dry and metal-contaminated mine tailings, simi-
larly to the findings of Khan et al. [90], Ji et al. [91]. High 
diversity of taxa mainly belonging to Bacillota that are 
generally well adapted to these unique yet hostile human-
made microbial habitats does not necessarily mean that 
such communities would support restorative processes, 
including improving soil health and allowing plant colo-
nization. In the case of fungi, the phylum Mucormycota 
was found predominantly in the initial compost and rep-
resented only a minor fraction in the initial mine tailings 
and seeds. After 2  months of plant growth, Mucormy-
cota were found to be more abundant in the mine tail-
ings amended with compost (TC, TPC, and TPEC) and 
in the roots (TPC and TPEC) in contrast to mine tailings 
without added compost (T, TP, and TPE) (Fig.  3. This 
confirmed the occurrence of horizontal transmission of 
microorganisms between the studied habitats: the mine 
tailings, compost, and roots. Although there were no sig-
nificant differences in bacterial and fungal abundances in 
tailings among treatments; the fungal:bacterial ratio was 
significantly higher in tailings in treatments amended 

Fig. 5 Non‑metric multidimensional scaling (NMDS) of prokaryotic (a, stress = 0.077) and fungal (b, stress = 0.13) communities in tailings using 
Bray–Curtis distances and subsequent fitting of environmental variables (p ≤ 0.05) significantly associated with the distribution of samples 
in the ordination space. Treatments: tailings (T), tailings with added compost (TC), tailings with a plant (TP), tailings with a plant and added compost 
(TPC), tailings with a plant inoculated with endophytes (TPE) and tailings with a plant inoculated with endophytes and added compost (TPEC)
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with compost in contrast to treatments without compost 
(Additional file  1: Fig. S1), which possibly reflects the 
spread of compost-associated fungi from the compost 
layer into tailings. Thus, in addition to being a source of 
organic carbon and total nitrogen, compost also served 
as a microbial inoculum. As recently argued by See et al. 
[92], fungal hyphae colonize mineral microsites in soil 
and, together with bacteria that use hyphae as routes 
for transmission, contribute to the deposition of organic 
matter onto minerals and further transformation of min-
eral-associated organic matter. With that in mind, meas-
ured increases in organic carbon, total nitrogen (Table 1) 
and prokaryotic diversity in the tailings (Fig. 2) could be 
related to the spread of compost-associated microorgan-
isms into the tailings, hypothetically acting in synergy 
with endophytic inoculation.

Differential abundance analysis revealed that: (i) com-
post amendment, (ii) planting B. curtipendula, and (iii) 
endophyte inoculation, as well as combinations of these 
strategies, influenced community members in the mine 
tailings. Thirty-six bacterial genera and sixteen fungal 
genera were significantly enriched in the mine tailings 
subjected to at least one of the following treatments: TC, 
TP, TCP, TPE and TPEC vs control (T) (Fig.  4). While 
some genera were unique to a specific treatment, oth-
ers were shared, and importantly, a combination of all 
approaches (TPEC) resulted in the highest number of 
enriched bacterial genera (Fig.  4A). While the endo-
phytic inoculants were not found to be among the sig-
nificantly enriched taxa, treatments with compost (TC, 
TPC and TPEC), which had the highest content of total 
nitrogen, were enriched in Brevibacillus, Brevundi-
monas, Corynebacterium, Lysinibacillus, Mycobacterium, 
Rhodococcus and Streptomyces. These bacterial genera 
have been shown to contain members that are able to 
fix atmospheric nitrogen [93–97] and, thus, activity of 
these potentially diazotrophic taxa could have contrib-
uted to the observed increase in total nitrogen in tailings 
amended with compost. Furthermore, changes in micro-
bial community composition significantly corresponded 
to increased water-extractable concentrations of two 
potentially toxic trace elements: Cu and Sb, which were 
highest in TPEC treatment and exceeded water regula-
tory limits for aquatic and wildlife by at least four orders 
of magnitude [46] (Table 1, Fig. 5). Microorganisms have 
been shown to influence the mobility of trace elements 
in the soil through biosorption, oxidation/reduction, or 
complexation with siderophores and extracellular poly-
meric substances [98]. While it would require further 
investigation to reveal potential mechanisms of trace ele-
ment transformation by the enriched populations in the 
current study, it should be noted that the activity of these 
taxa could be behind the increased mobilization of Cu 

and Sb in the mine tailings. In addition, it has been shown 
that higher content of dissolved organic compounds 
associated with compost amendment can facilitate solu-
bilization of trace elements such as Cu via complexa-
tion [99, 100]. Thus, it is also possible that the observed 
increase in mobilization of Cu and Sb was mediated by 
changes in organic matter pools resulting from compost 
addition or by a joint contribution of both the abiotic and 
microbial processes in compost-amended tailings.

To conclude, we show that the combination of com-
post amendment, planting B. curtipendula, and endo-
phyte inoculation (TPEC) increased prokaryotic 
diversity and shifted tailings microbiota composition, 
which significantly correlated with an improvement 
in soil health metrics (higher levels of total nitrogen, 
organic carbon, and pH). On the other hand, observed 
shifts in tailings microbiota due to treatments with 
compost also corresponded to increased mobilization 
of Cu and Sb, which was highest under TPEC treat-
ment. Our study demonstrates that the initial choice 
of remediation strategy can cause downstream shifts in 
mine waste microbiome, and that an increase in micro-
bial diversity and soil health metrics, which are often 
linked to functioning of healthy ecosystems and their 
stability [101, 102], can be accompanied by increased 
potential for toxic metal leaching from the mine waste 
which could pose a serious risk to human health. With 
that in mind, we further urge the importance of pre-
liminary investigation of the responses of both biotic 
and abiotic factors to potential restoration strategies ex 
situ. Only by deciphering how to steer microbiomes in 
degraded soils in a direction which is beneficial to both 
soil and human health, will we be able to more effi-
ciently restore disturbed ecosystems.
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Pairwise comparison of prokaryotic (a) and fungal (b) community struc‑
ture in tailings, compost, and roots of B. curtipendula between treatments.
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