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Abstract
Background Plants rely on their root microbiome as the first line of defense against soil-borne fungal pathogens. 
The abundance and activities of beneficial root microbial taxa at the time prior to and during fungal infection are key 
to their protective success. If and how invading fungal root pathogens can disrupt microbiome assembly and gene 
expression is still largely unknown. Here, we investigated the impact of the fungal pathogen Fusarium oxysporum (fox) 
on the assembly of rhizosphere and endosphere microbiomes of a fox-susceptible and fox-resistant common bean 
cultivar.

Results Integration of 16S-amplicon, shotgun metagenome as well as metatranscriptome sequencing with 
community ecology analysis showed that fox infections significantly changed the composition and gene expression 
of the root microbiome in a cultivar-dependent manner. More specifically, fox infection led to increased microbial 
diversity, network complexity, and a higher proportion of the genera Flavobacterium, Bacillus, and Dyadobacter in the 
rhizosphere of the fox-resistant cultivar compared to the fox-susceptible cultivar. In the endosphere, root infection 
also led to changes in community assembly, with a higher abundance of the genera Sinorhizobium and Ensifer in 
the fox-resistant cultivar. Metagenome and metatranscriptome analyses further revealed the enrichment of terpene 
biosynthesis genes with a potential role in pathogen suppression in the fox-resistant cultivar upon fungal pathogen 
invasion.

Conclusion Collectively, these results revealed a cultivar-dependent enrichment of specific bacterial genera and 
the activation of putative disease-suppressive functions in the rhizosphere and endosphere microbiome of common 
bean under siege.
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Introduction
The rhizosphere and root endosphere are hotspots for a 
myriad of microorganisms that, upon expression of spe-
cific functional traits, can provide a range of benefits for 
the plant, including nutrient acquisition [1, 2], abiotic 
stress tolerance [3, 4], and protection against pathogens 
[5–7]. Plants and microbes have co-evolved beneficial 
relationships and a tightly regulated defense system for 
protection against diseases [8, 9]. Several rhizospheric 
and endophytic bacteria are able to prevent pathogen 
infections by producing antimicrobial compounds or 
inducing systemic resistance in the host plant [7, 10, 11]. 
Studies on disease-suppressive soils further revealed that 
plant protection is conferred by a subset of the micro-
biota selected from the indigenous soil microbiome fol-
lowing a pathogen attack on the root system [7, 12, 13]. 
Hence, microbiome assembly and activation of specific 
beneficial traits prior to, during, or after infection is key 
to the protective success of the microbiome.

Recent studies indicated that plant domestication [14–
17] and plant breeding for disease resistance [18, 19] have 
affected the assembly of rhizosphere and endosphere 
microbiomes [20]. Moreover, plant defense also impacts 
the rhizosphere microbiome composition as was exem-
plified with mutants disrupted in specific defense path-
ways [21, 22] and studies on microbiome analyses of crop 
cultivars with different levels of resistance to a specific 
pathogen [18, 19, 23]. If and how root pathogens affect 
microbiome assembly has been much less documented. 
The study by Chapelle et al. [5] showed that an invad-
ing root pathogenic fungus induces stress responses in 
the rhizobacterial community and the host plant with 
concomitant shifts in the microbiome resulting in plant 
protection. Recently, Zhou et al. [98] also showed that 
the infection of plants by Fusarium impacts the associ-
ated microbiome by changing the microbiome structure, 
decreasing diversity and network complexity. However, 
how the interplay between pathogen infection and plant 
resistance affects the assembly and gene expression of the 
root microbiome, i.e. rhizosphere and endosphere, is still 
poorly understood.

In this study, we investigated the impact of the fungal 
root pathogen Fusarium oxysporum (fox) on the assem-
bly of rhizosphere and endosphere microbiomes of a 
fox-susceptible and fox-resistant common bean culti-
var. Common bean (Phaseolus vulgaris L.) is the most 
important legume crop for low-income farmers in Latin 
America and Africa and the second in the world [24, 25]. 
Fusarium oxysporum (fox) is a major disease of common 
bean worldwide and the most efficient strategy for its 
control is the use of resistant cultivars [26]. In resistant 
cultivars, structural and chemical defense mechanisms 
restrict pathogen invasions, such as vascular occlusion, 
tyloses, deposition of additional wall layers, and infusion 

of phenols and other metabolites [27]. Although fox-
resistance in common bean has a genetic basis, we previ-
ously demonstrated that the fox-resistant common bean 
cultivar has a different rhizosphere microbiome compo-
sition than its fox-susceptible counterpart with a higher 
frequency of beneficial rhizobacterial genera [6, 28, 29]. 
More specifically, the results showed that beneficial taxa 
such as Pseudomonas, Bacillus, and Paenibacillus, and 
antifungal traits such as protein secretion systems and 
biosynthesis of phenazines, rhamnolipids, and colicin 
V were enriched in the rhizosphere of the fox-resistant 
bean accession. However, our previous community-
based analyses were limited to the rhizosphere and per-
formed in the absence of the fungal root pathogen. To 
provide a more comprehensive understanding of the 
impact of the fungal root pathogen on the assembly and 
gene expression of the root microbiome, we integrated 
16S rRNA amplicon, metagenomic, and metatranscrip-
tome sequencing to assess taxonomic and functional 
differences between the root microbiomes of these two 
common bean cultivars with contrasting levels of fox 
resistance. We hypothesized that assembly and gene 
expression in the rhizospheric and endophytic microbi-
omes of the fox-resistant common bean cultivar is more 
responsive to pathogen invasion than the root microbi-
ome of the fox-susceptible cultivar.

Materials and methods
Inoculum preparation
The soil-borne pathogen Fusarium oxysporum f.sp. pha-
seoli (fox; FOP IAC 14629), the causal agent of fusarium 
wilt in common beans, was grown in an aerated 2% malt 
extract medium. After 9 days of growth at room tem-
perature, the cultures were filtered through miracloth 
(EMD Millipore, Billerica MA, USA) to remove mycelial 
mats. Microconidia left in the filtrate were pelleted by 
centrifugation at 5000 x g for 10 min and washed twice 
with 0.01 M MgSO4.7H2O (Mgsol). The conidial density 
of the fox was determined by direct observation using a 
haemocytometer and adjusted to a final concentration of 
107 conidia mL− 1.

Bioassay and experimental design
Soil samples were collected in an agricultural field at Vre-
depeel, The Netherlands (0–30 cm depth, 51º32’25.8” N 
and 5º51’15.1” E). This soil, classified as Gleyic Podzol 
soil, is an arable agricultural field since 1955, being in 
the last years cropped with potato and rye (2010), car-
rot (2011), and maize and rye (2012–2014) under nor-
mal agricultural practices [30]. This soil presents pH 
5.4, organic matter (OM) content of 3.7%, total N of 
970 mg kg− 1, available P of 4.6 mg kg− 1, and available K 
of 209  mg kg− 1 (Supplementary Table  1). In a previous 
experiment [6] we screened four common bean cultivars 
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with different levels of resistance against the pathogen 
fox. For the mesocosm experiments of this present study, 
we used the two most contrasting common bean (Phase-
olus vulgaris L.) cultivars with different levels of genetic 
resistance to the root pathogen fox, namely fox-resistant 
IAC Milenio [31] and the susceptible IAC Alvorada [32]. 
Firstly, the plants were pre-germinated in a mixture of 
potting soil soil/sand (1/1) at 25ºC for 10 days. After this 
period the plants were carefully taken from the trays and 
their roots were washed in tap water. The clean roots 
were then immersed in a conidial suspension of the fox 
at a density of 107 conidia mL− 1 for 1 min, and the plants 
were transplanted to PVC pots containing approximately 
2 kg of soil. Control pots were used without the patho-
gen inoculation, and pots without plants were considered 
bulk soil. In each pot, two plants were transplanted and 
continued to grow at 25ºC (day/night) with 12 h photope-
riod. Temperature and moisture were regularly adjusted 
to create optimal growth conditions for the plants. In 
total, 30 pots [6 bulk soil + (2 common bean cultivars x 2 
treatments x 6 replicates)] were used in the experiments. 
The plants were grown for approximately 35 days after 
transplantation.

Rhizosphere and endosphere sampling
The plants were collected at the R1 stage (early flower) 
and the roots were shaken to remove the loose soil and 
the firmly attached soil, considered to be rhizosphere soil, 
was collected with a sterile spatula. The soil samples col-
lected from the pots without plants were considered bulk 
soil. The bulk soil and rhizosphere samples were stored 
at -80ºC until further processing. After rhizosphere sam-
pling, the remaining roots were used for the extraction of 
the endophytic community. Firstly, the roots were steril-
ized by washing with Mgsol (MgSO4.7H2O) containing 
0.01% (vol/vol) Tween 20, followed by two rinses with 
Mgsol. Roots were immersed for 2 min under slow agi-
tation in 1% bleach solution containing 0.01% (vol/vol) 
Tween 20 and rinsed five times with Mgsol. As a final 
step, the roots were rolled on Luria-Bertani (rich media) 
agar plates to verify root surface sterilization. Roots 
that showed no bacterial growth were used for further 
analysis. The plant infection was confirmed based on 
visual symptoms and plating of the fragment roots in 
the PDA medium (Supplementary Fig.  1). For the plant 
and microbial cell separation, we follow the protocol 
described by Chapelle et al. (2016) with some modifica-
tions. Briefly, root tissues were disrupted using a blender 
in a known volume of Mgsol, and the homogenate was 
filtered through 25-µm miracloth (EMD Millipore). The 
flow-through was further cleaned by centrifugation at 
500  g for 10  min, and the bacterial cells were collected 
by centrifuging the resulting supernatant at 9500  rpm 
for 15 min. The pellet, consisting of endophytic microbes 

contaminated with plant material, was suspended in 3.5 
ml Mgsol buffer supplemented with Nycodenz® resin 
(PROGEN Biotechnik, Germany) to a final concentration 
of 50% w/v. A Nycodenz density gradient was mounted 
above the sample by slowly depositing various layers of 
Nycodenz (3 ml of 35% Nycodenz, 2 ml of 20% Nycodenz, 
2 ml of 10% Nycodenz) and the gradient was centrifuged 
for 45 min at 8500 rpm in swinging bucket rotor Sorvall 
HB-6 (Thermo Scientific, Waltham, EUA). Endophytic 
microbial cells, appearing as an opalescent whitish band, 
were recovered by pipetting. The recovered thin layer was 
washed five times with Mgsol and centrifuged at 13,000 g 
for 5  min to remove the Nycodenz resin. Finally, bacte-
rial cells were suspended in 500 µl of Mgsol, recovered by 
quick centrifugation (16,000 g in a table-top centrifuge), 
frozen in liquid nitrogen, and stored at -80 °C.

DNA and RNA extraction and sequencing
DNA and RNA extraction from bulk soil and rhizosphere 
samples was carried out using the RNA PowerSoil® Total 
RNA Isolation Kit along with RNA PowerSoil® DNA Elu-
tion Accessory Kit (MoBio Laboratories, Carlsbad, CA, 
USA), according to the manufacturer’s protocol. DNA 
extraction of endophytic cells was carried out in six 
replicates using the Meta-G-Nome™ DNA Isolation Kit 
(Epicentre, Madison, WI, USA) according to the manu-
facturer’s protocol. Measurements of DNA quality and 
quantity were performed by 1% sodium boric acid [33] 
agarose gel electrophoresis, and NanoDrop 1000 spectro-
photometry (Thermo Scientific, Waltham, EUA). For tax-
onomical profiling of the bacterial communities, a total 
of 54 DNA samples (6 bulk soil, 24 rhizosphere, and 24 
endosphere) targeting the V3-V4 region of the 16 S rRNA 
gene were sequenced (Baseclear, Leiden, The Nether-
lands) on an Illumina Miseq Sequencing System (Illu-
mina, San Diego CA, USA) according to the company’s 
protocol. For shotgun metagenome, a total of 54 DNA 
samples (6 bulk soil, 24 rhizosphere, and 24 endosphere) 
were sequenced (Erasmus MC Center for Biomics, Rot-
terdam, The Netherlands) on an Illumina Hiseq PE 
2 × 300 (Illumina) according to the company’s protocol. 
For metatranscriptomics, 30 RNA samples (6 bulk soil 
and 24 rhizosphere) were sequenced (Erasmus MC) on 
an Illumina Hiseq PE 2 × 300 (Illumina) according to the 
company’s protocol.

16S rRNA processing and annotation
The data obtained by the 16S rRNA sequencing was 
analyzed with bioinformatics tools as follows. Initially, 
primer sequences were removed from the per sample 
FASTQ files using Flexbar version 2.5 [34]. All reads 
were trimmed to a minimum length of 150  bp and at 
least a Phred score of 25 by using fastq-mcf (http://code.
google.com/p/ea-utils). The remaining sequences were 

http://code.google.com/p/ea-utils
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converted to FASTA format and concatenated into a 
single file. All reads were clustered into OTUs using the 
UPARSE strategy by dereplication, sorting by the abun-
dance with at least two sequences, and clustering using 
the UCLUST smallmem algorithm [35]. These steps were 
performed with VSEARCH version 1.0.10 [100], which 
is an open-source and 64-bit multithreaded compat-
ible alternative to USEARCH. Next, chimeric sequences 
were detected using the UCHIME algorithm [36] imple-
mented in VSEARCH. All reads were mapped before the 
dereplication to OTUs using the usearch_global method 
implemented in VSEARCH to create an OTU table and 
converted to BIOM-Format 1.3.1 [37]. Finally, taxonomic 
information for each OTU was added to the BIOM file 
by using the RDP Classifier version 2.10 [38]. Singletons 
and doubletons, mitochondrion, chloroplast, and eukary-
otic sequences were removed and the BIOM file gener-
ated was used for statistical analyses. The 16S rRNA 
data are available at NCBI SRA under the identification 
PRJNA904225.

Metagenome and metatranscriptome data processing
For the metagenome and metatranscriptome data, the 
paired-end reads were trimmed with the sliding win-
dow approach used by Sickle [39] to keep reads with at 
least a Phred score of 30 and 150 base pairs in length. 
Contamination of reads originating from the host plant 
was removed by mapping with Bowtie 2.2.5 [40] in very 
sensitive mode against the draft genome of Phaseolus 
vulgaris, and paired and unpaired data were stored sepa-
rately. Reads of each treatment were pooled together for 
an assembly with Megahit [41] using kmers with lengths 
33, 55, 77, 99, and 127 and the careful flag enabled. On 
the resulting contigs, genes were predicted with Prodigal 
2.61 [42] in metagenomics mode and stored in General 
Transfer Format using Cufflinks 2.1.1 [43]. Genes were 
assigned to taxonomy by running Diamond 0.7.9 [44] 
against the non-redundant blast database of the NCBI 
from 20150311. The lowest common ancestor classifica-
tion was determined using MEGAN 5.10 [45] by taking 
the top 50% hits and filtering them for a minimum score 
of 50 and maximum expected value of 0.01 and convert-
ing the gene identifiers to taxonomy ids using the map-
ping provided by MEGAN. For functional annotation, 
UProc [46] was used to annotate genes with KEGG 
release 20140317 [47], COG release 2014 [48], and Pfam 
28 [49]. Also, Biosynthesis Gene Clusters (BGCs) were 
annotated using antiSMASH 3.0 [50]. An abundance 
table was created by first mapping all reads to the con-
tigs with BamM [99], which uses samtools 1.2 [51] and 
bwa-mem 0.7.12 [52] followed by counting all num-
ber of reads mapping to a contig with featureCounts 
[53]. The metagenome and metatranscriptome data are 

publicly available at NCBI SRA under the identifications 
PRJNA904562 and PRJNA904281, respectively.

Data analysis and statistics
To compare the microbial community structure between 
the treatments, we used a cumulative-sum scaling 
(CSS) method to avoid the biases generated by cur-
rent sequencing technologies due to uneven sequencing 
depth [54]. With the normalized OTU table, we calcu-
lated the Bray-Curtis dissimilarity matrix and used it to 
build Constrained Principal Coordinate Analysis (CAP) 
constrained by Phylogenetic Group using the function 
capscale retrieved from Vegan v.2.3-2 package [55] and 
implemented in the Phyloseq package v.1.10 [56], both in 
R. We used permutational multivariate analysis of vari-
ance PERMANOVA [57] to test whether sample catego-
ries harbored significantly different microbial community 
structures using Past 3 software [58]. For alpha diversity, 
the OTU table based on 16S rRNA sequencing was rar-
efied to counts up to 48,000 reads using the command 
alpha_rarefaction.py available in Qiime [59]. This was the 
lowest sequencing depth obtained from a sample. To cal-
culate the diversity indexes, we used the alpha_diversity.
py command, obtaining Observed OTUs, Shannon, and 
Chao1 metrics. One-way ANOVA and Tukey HSD were 
performed in R. Also, to have a better understanding of 
the microbial community assembly in each niche, we cal-
culated several species abundance distribution models 
and determined whether neutral or niche-based mecha-
nisms drove the communities. We hypothesized that bulk 
soil would be driven by neutral-based processes, while 
the rhizosphere and endosphere would respond to niche-
based processes. For this, we used the command Radfit 
from the R package vegan to evaluate several abundance 
models and a zero-sum multinomial (ZSM) model using 
TeTame [60]. Species abundance distribution models 
were compared based on the Akaike Information Crite-
rion weight calculated as previously reported [1, 61]. In 
addition, to better understand the effect of the patho-
gen infection on the community we tested the niche 
occupancy by classifying the OTUs into specialist and 
generalist. The niche occupancy was verified by the mul-
tinomial species classification method ‘clamtest’ available 
in the ‘vegan’ package. This method compares the micro-
bial abundance between two habitats and classifies the 
group of species that are similarly distributed across both 
habitats as generalist, and classifies as specialist the spe-
cies more abundant in one habitat compared to the other 
[62]. For CLAM analysis, it was considered a significant 
level for individual test of alpha 0.005 and a specialization 
threshold of 0.66.

To compare the differential abundance of groups 
between the treatments we conducted an LDA Effect 
Size (LEfSe) analysis, according to Segata et al. [63]. For 
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this, the analysis first uses the non-parametrical facto-
rial Kruskal-Wallis sum-rank test [64] to detect features 
with significant differential abundance; then, the biologi-
cal significance is subsequently investigated using a set 
of pairwise tests using unpaired Wilcoxon rank-sum test 
[65]; finally, LEfSe uses LDA [66] to estimate the effect 
size of each differentially abundant feature. We applied 
the LEfSe analysis for the three datasets, i.e. 16S rRNA, 
metagenome, and metatranscriptome to detect features 
commonly different among them.

In addition, network analyses were performed to assess 
the complexity of the interactions among microbial 
taxa. Non-random co-occurrence analyses were per-
formed using SparCC [67]. For this, the 500 most abun-
dant OTUs per treatment were retained for analysis, 
representing > 98% of the sequences. For each network 
analysis, P-values were obtained by 99 permutations of 
random selections of the data table, subjected to the same 
analytical pipeline. SparCC correlations with a magni-
tude > 0.7 or < -0.7 and statistically significant (P < 0.01) 
were included into network analyses. The nodes in the 
reconstructed networks represent the OTUs at 97% 
identity, whereas the edges (that is, connections) cor-
respond to a strong and significant correlation between 
nodes. The topology of the network was calculated based 
on a set of measures, including the number of nodes and 
edges, modularity, the number of communities, aver-
age path length, network diameter, averaged degree, and 
clustering coefficient [68, 69]. Co-occurrence analyses 
were carried out using the Python module ‘SparCC’ and 
network visualization and properties were constructed 
using the interactive platform Gephi [70]. The code 
used in the analysis can be found at Zenodo (https://doi.
org/10.5281/zenodo.7447085).

Results
Progressive change in microbiome composition moving 
from soil to rhizosphere and endosphere
After quality trimming, approximately 3.5  million 16S 
rRNA sequences were obtained and we identified 5,298 
prokaryotic operational taxonomic units (OTUs) at 97% 
sequence similarity. For metagenome and metatranscrip-
tome, we obtained approximately 388 and 111  million 
quality sequences, respectively. Taxonomic classification 
of the 16S OTUs at the phylum level highlighted that 
bulk soil samples were dominated by Proteobacteria 
(36.2% of sequences), followed by Actinobacteria (19.2%), 
Acidobacteria (15.9%), Firmicutes (7.6%), Bacteroidetes 
(5.4%), and Gemmatimonadetes (4.2%). The rhizosphere 
samples were dominated by Proteobacteria (39.5%), fol-
lowed by Actinobacteria (19.4%), Acidobacteria (12.2%), 
Bacteroidetes (9.6%), Gemmatimonadetes (4.2%), and 
Candidatus Saccharibacteria (3.5%). However, the endo-
phytic community was almost totally represented by 

Proteobacteria (97.9%), where 98.5% of these OTUs 
belong to the Alphaproteobacteria class. A small pro-
portion of sequences were classified into archaeal phyla 
(< 0.1%). The taxonomic composition of the bacte-
rial microbiome was similar among the three datasets 
obtained, i.e. 16S rRNA, metagenome, and metatran-
scriptome (Supplementary Fig. 2).

To compare the bacterial community structure 
between the three niches (i.e. bulk soil, rhizosphere, 
and endosphere), the abundance matrix of taxonomy 
was converted to the Bray-Curtis distance matrix and 
used in the analysis. The PCoA analysis showed that 
the samples were primarily clustered according to the 
niche (PERMANOVA, P = 0.0001); the cluster analysis 
showed a clear separation between niches and treatments 
(P = 0.0001) (Fig. 1 and Supplementary Table 2). The LDA 
effect size analysis comparing the microbiome composi-
tion based on the three datasets (16S, metagenome, and 
metatranscriptome) highlighted an over-abundance of 
Bacteroidetes, Verrucomicrobia, Candidatus Saccharib-
acteria, Proteobacteria, Chlorobi, and Armatimonadetes 
in the rhizosphere compared to bulk soil (P < 0.05). In the 
endosphere niche, only Proteobacteria was significantly 
more abundant as compared to bulk soil (P < 0.05) (Sup-
plementary Fig.  3). Collectively these results revealed 
a shift in community structure and composition at the 
common bean root-soil interface, which progressively 
differentiated from the bulk soil to the rhizosphere and 
endosphere.

Neutral and niche processes are governing the common 
bean microbiome assembly
To further dissect these differences in microbiome com-
position and assembly between the three niches, the 
abundance of the read counts was fitted to several spe-
cies abundance distribution (SAD) models. Comparisons 
based on Akaike’s Information Criterion (AIC) weight 
allowed us to find the best-fit value from six models. The 
results showed that the microbial assembly in the bulk 
soil and endosphere is explained by neutral process (log-
normal and ZSM, respectively). On the other hand, the 
community assembly in the rhizosphere was explained 
by niche-based process (Mandelbrot) (Supplementary 
Fig.  4). We then used SparCC correlations to construct 
co-occurrence networks to verify the response of the 
microbiome to pathogen infection in the rhizosphere 
and endosphere of both common bean cultivars. The net-
work reconstruction was markedly different between the 
treatments, showing an increased complexity in the rhi-
zosphere microbiome after pathogen infection (Fig.  2A 
and C; Table  1). Interestingly, the rhizosphere network 
of the resistant cultivar infected with fox presented 
more complexity (nodes = 363, edges = 1781, average 
degree = 9.813) compared to the susceptible (nodes = 334, 

https://doi.org/10.5281/zenodo.7447085
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edges = 1513, av. degree = 9.060). In the endosphere, the 
network dynamics was less complex compared to rhizo-
sphere, with a distinct response between the cultivars: 
the fox-resistant decreased the network complexity after 
infection (nodes = 67, edges = 103, av. degree = 3.07) while 
the susceptible cultivar exhibited an increased network 
complexity (nodes = 90, edges = 391, av. degree = 8.68) 
(Fig. 2B and D; Table 1). The phyla Proteobacteria, Bac-
teroidetes, and Actinobacteria presented the highest 
number of correlations in all networks (Supplementary 
Table 3). The key groups that responded to the pathogen 
infection in both rhizosphere and endosphere, depicted 
here as the nodes with a higher number of correlations 
and higher betweenness centrality [71], were affiliated to 
the bacterial families Flavobacteriaceae (Flavobacterium 
and Chryseobacterium), Cytophagaceae (Dyadobacter), 
Comamonadaceae, Pseudomonadaceae (Pseudomonas), 
and Oxalobacteriaceae (Supplementary Table 4).

Rhizosphere microbiome respond to the pathogen 
invasion
Changes in rhizosphere bacterial community composition
To understand the effect of the fungal root pathogen on 
the rhizosphere microbiome structure, we compared the 
samples based on the Constrained Analysis of Principal 
Coordinates (CAP), which revealed a distinct response of 
the bacterial community to pathogen invasion (Fig. 3A). 
The rhizosphere microbiome structure was differ-
ent between fox-resistant and the susceptible cultivar 
in the non-inoculated treatment (P = 0.01), while after 
fox infection the community became different from the 
non-infected treatments, but with no significant differ-
ence between the cultivars based on 16S rRNA (Fig. 3A; 
Supplementary Table 2). Additionally, we also compared 
the community structure based on the metagenome data 
and that analysis revealed a distinct microbiome for the 
cultivar and treatment (Fig.  3B). Together, these results 
indicate that each common bean cultivar assembles a dis-
tinct rhizospheric community from the same soil micro-
bial inoculum, which subsequently displays a different 
response to pathogen invasion.

Fig. 1 Microbiome composition comparative analysis, based on 16S rRNA profiling, for bulk soil, rhizospheric, and endosphytic communities non-inoc-
ulated or inoculated with Fusarium oxysporum (fox). (A) Dendogram analysis based on Bray-Curtis similarity distance. (B) Principal Coordinate Analysis 
(PCoA). R = fox-resistant cultivar; Rfox = fox-resistant cultivar inoculated with fox; S = susceptible cultivar; Sfox – susceptible cultivar inoculated with fox; 
Bulk = bulk soil
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To gain insights into the diversity parameters we com-
pared the total number of observed OTUs and Shannon’s 
index of the communities retrieved from the three niches 
(Fig.  3C). All the indices revealed a significant increase 
in bacterial richness and diversity in the treatments with 
fox infection in the rhizosphere (Tukey’s HSD, P < 0.05). 
Also, the pathogen infection affected the proportion of 
generalists and specialists across the treatments (Supple-
mentary Fig. 5). In general, pathogen infection increased 
the proportion of specialists in the rhizosphere of both 
common bean cultivars, with the fox-resistant cultivar 
presenting a higher proportion of specialists (from 4.5 to 
11.7%, 67 specialists in total) than the susceptible cultivar 
(from 4.3 to 10.3%, 26 specialists in total). This result sug-
gests a selection of specific microbial groups in the rhizo-
sphere after pathogen infection.

Next, we compared the community composition using 
the three datasets at two taxonomic levels using LEfSe 
analysis. The results revealed a significant increase in the 
abundance of bacterial families after pathogen infection. 
Here, we highlight the top eight families that increased in 
at least two of the three datasets, namely Comamonada-
ceae, Rhodocyclaceae, Rhodospirillaceae, Sandaracina-
ceae, Bacillaceae, Anaerolineaceae, Verrucomicrobiaceae, 
and Paenibacillaceae (Fig.  3D). The same pattern was 
observed at the genus level, with a large number of gen-
era with higher abundance after pathogen infection. The 

top 10 bacterial genera with higher abundance in the fox-
resistant cultivar after infection were Flavobacterium, 
Rhodobacter, Nitrospira, Dyadobacter, Geobacter, Bacil-
lus, Candidatus Saccharimonas, Pelomonas, and Entero-
bacter (Fig. 3E).

We further compared the effect of fox invasion between 
the fox-resistant and the susceptible cultivars. The 
results revealed several bacterial families and genera 
that responded differently to the pathogen. Compared 
to the susceptible cultivar, the fox-resistant cultivar pre-
sented an increased abundance of the families Chitin-
ophagaceae, Flavobacteriaceae, Sphingobacteriaceae, 
Methylophilaceae, Aphanothecaceae, Methanomas-
siliicoccaceae, Crocinitomicaceae, Prevoletaceaea, and 
Chlorobiaceae (Fig.  3F). At a deeper taxonomic level, 
the top nine bacterial genera that presented higher 
abundance in the infected fox-resistant cultivar as com-
pared with the susceptible cultivar were members of 
Bacteroidetes (Flavobacterium, Pedobacter, Lacibacter, 
Niastella, Bacteroides, Flavihumibacter spp.), Alphapro-
teobacteria (Acidiphilium and Aquamicrobium), and Ver-
rucomicrobia (Haloferula spp.) (Fig. 3G).

In conclusion, we found that pathogen invasion 
enhanced the overall diversity (Fig. 3C) and abundance of 
specific microbial groups (Fig. 3D-G), such as members 
from Bacteroidetes, Alphaproteobacteria, and Verrucom-
icrobia in the rhizosphere microbiome and this response 

Fig. 2 Co-occurrence network analysis of bacterial communities in bulk soil, rhizosphere, and endosphere of common beans non-inoculated or inocu-
lated with Fusarium oxysporum (Fox). A connection stands for SparCC correlation with magnitude > 0.6 (positive correlation – blue edges) or < -0.6 (nega-
tive correlation – red edges) and statistically significant (P < 0.01). The size of each node is proportional to the number of connections (that is, degree). 
Each node represents taxa at OTU label, but labelled at the phylum level. R = Rhizosphere Resistant; Rfox = Rhizosphere resistant inoculated with fox; 
eR = Endophytic resistant; eRfox = Endophytic resistan inoculated with fox; S = Rhizosphere susceptible; Sfox = Rhizosphere susceptible inoculated with 
fox; eS = Endophytic susceptible; eSfox = Endophytic susceptible with fox
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was distinct between the fox-resistant and susceptible 
cultivars.

Changes in rhizosphere microbiome functions of plants 
exposed to the pathogen
We subsequently examined if certain gene categories 
were enriched or depleted in the rhizosphere microbi-
ome as compared to bulk soil and rhizosphere of non-
infected and infected plants. To this end, we used 26 
broad functional gene categories based on the COG 
database [72] (Supplementary Table  5). Principal Coor-
dinate analysis based on the microbiome functional 
COG categories showed significant differences between 
the treatments (Supplementary Fig.  6A) (P < 0.05). Fur-
ther analysis using diversity indices showed a significant 
decrease in functional diversity after pathogen infection 
(Supplementary Fig. 6B). Comparing with bulk soil, our 
rhizosphere samples presented an increase of genes affili-
ated to metabolism and transport of carbohydrates and 
inorganic ions, cell motility, biogenesis of cell wall and 
membrane, and signal transduction mechanisms (Sup-
plementary Fig.  7A). Analyzing the response of the rhi-
zosphere microbiome of the fox-resistant cultivar to the 
pathogen, our analysis showed an enrichment of genes 
related to defense mechanism, RNA processing and 

modification, signal transduction mechanisms, energy 
production and conversion (Supplementary Fig.  7B and 
8). Comparing the responses between the two contrasting 
cultivars, the analysis showed that the resistant cultivar 
presented a higher abundance of genes related to defense 
mechanisms, nucleotide transport and metabolism, sig-
nal transduction mechanisms, biogenesis of cell wall 
membranes and replication, recombination and repair 
(Supplementary Fig. 9A and B). To better understand the 
effect of the pathogen invasion on the rhizosphere micro-
biome, we then compared the samples at a deeper func-
tional level (COG) using LEfSe analysis. From the total of 
4,631 COGs detected in all samples, 53 genes comprising 
15 functions were overrepresented in the microbiome of 
the fox-resistant cultivar after pathogen infection (Sup-
plementary Table 6). Comparing the response to patho-
gen infection between the two contrasting cultivars, we 
detected 26 COGs that were more present in the micro-
biome of the fox-resistant rhizosphere as compared to 
the susceptible cultivar (Supplementary Table 7).

We then investigated which biosynthetic gene clusters 
(BGCs) were expressed during pathogen infection in the 
rhizosphere and/or significantly more abundant in both 
compartments. The prediction of BGCs using antiS-
MASH revealed a total of 862 BGCs associated with the 

Table 1 Correlations and topological properties of common bean rhizosphere, endosphere and soil microbiome networks
Network properties Resistant Resistant

Fox
Susceptible Susceptible

Fox
Bulk 
Soil

Rhizosphere Number of nodesa 270 363 288 334 241

Number of edgesb 635 1781 646 1513 1527

Positive edgesc 320 957 317 899 871

Negative edgesc 315 824 329 614 656

Modularitye 37.78 6.133 -140.83 2.33 2.597

Number of communitiesf 70 44 58 56 37

Network diameterg 7 9 8 11 7

Average path lengthh 2.37 2.84 2.62 2.98 2.42

Average degreei 4.704 9.813 4.486 9.060 12.672

Average clustering coefficientj 0.114 0.139 0.090 0.148 0.174

Endosphere Number of nodes 109 67 98 90

Number of edges 237 103 174 391

Positive edges 131 68 107 226

Negative edges 106 35 67 165

Modularity 3.70 1.38 2.07 2.41

Number of communities 29 22 31 12

Network diameter 6 4 6 5

Average path length 2.22 1.58 2.37 2.18

Average degree 4.34 3.07 3.55 8.68

Average clustering coefficient 0.158 0.123 0.082 0.222
aMicrobial taxon (at genus level) with at least one significant (P < 0.01) and strong (SparCC > 0.9 
or < − 0.9) correlation. bNumber of connections/correlations obtained by SparCC analysis. 
cSparCC-positive correlation (> 0.9 with P < 0.01). dSparCC-negative correlation ( < − 0.9 with P < 0.01). eThe capability of the nodes to form highly connected 
communities, that is, a structure with high density of between nodes connections (inferred by Gephi). fA community is defined as a group of nodes densely 
connected internally (Gephi). gThe longest distance between nodes in the network, measured in number of edges (Gephi). hAverage network distance between all 
pair of nodes or the average length off all edges in the network (Gephi). iThe average number of connections per node in the network, that is, the node connectivity 
(Gephi). jHow nodes are embedded in their neighborhood and the degree to which they tend to cluster together (Gephi)
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biosynthesis of nonribosomal peptides, polyketides, ter-
penes, aryl polyenes, ribosomally synthesized and post-
translationally modified peptides (RiPPs), phosphonates, 
phenazines, and siderophores (Fig.  4A, Supplementary 

Fig. 10 and Supplementary Table 8). Our analysis showed 
that the BGC structure presented differences between 
niches and treatments (P < 0.05)(Supplementary Fig. 11). 
In the rhizosphere, the fox-resistant and susceptible 

Fig. 3 Structure, diversity and composition of the rhizosphere bacterial communities associated with two common bean cultivars non-inoculated or 
inoculated with Fusarium oxysporum (Fox). Principal coordinate analsyis (CAP) comparing the communities structures in rhizosphere microbiome using 
(A) 16S and (B) metagenome data. Significant clusters (PERMANOVA, P < 0.05) are indicated by lines in the CAP graphs. (C) Diversity measurements in 
the rhizosphere microbiome. Asterisks in the diversity graphs indicate signifcant differences based on Tukey’s test (P < 0.05). Linear discriminant analysis 
(LDA) Effect Size (LEfSe) of microbial taxa enriched after Fox inoculation in the rhizosphere of the fox-resistant cultivar at (D) family and (E) genus level. 
Comparison of the microbial taxa enriched in the rhizosphere of fox-resistant and susceptible cultivar with fox inoculation at (F) family and (G) genus level. 
Filled squares at the left side of the graphs indicate the datasets were the differential taxa were found. R = fox-resistant cultivar; Rfox = fox-resistant cultivar 
infected; S = susceptible cultivar; Sfox – susceptible cultivar infected; Bulk = bulk soil
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cultivars presented a significant overrepresentation of 
131 and 48 BGC genes, respectively (Supplementary 
Fig.  10 and Supplementary Tables  9 and 10). Among 
the overrepresented BGCs in each of the treatments, 
58 and 27 were more abundant when the pathogen was 
inoculated.

Remarkably, the metatranscriptome data showed that 
only nine and 12 BGCs were differently abundant in 
the fox-resistant and susceptible cultivars, respectively 
(Supplementary Tables  11 and 12). Of these, six and 10 
BGCs were significantly overexpressed upon pathogen 
infection in the fox-resistant and susceptible cultivars, 
respectively (Fig.  4B and C). These results indicate that 
the rhizosphere microbiome of the fox-resistant cultivar 
is more responsive to the pathogen infection. The statisti-
cal analysis of the BGCs showed that most of the over-
expressed clusters under pathogen infection belonged to 
the terpenes class (Fig. 4B and C). A further comparison 
of the increased (metagenome) and overexpressed (meta-
transcriptome) BGCs showed five statistically significant 
clusters belonging to terpenes, NRPS-like, NRPS, beta-
lactone, and arylpolyene, which were affiliated to the 
bacterial groups Acidobacteria, Myxococcales, Burkhold-
eriales, and Flavobacteriales (Fig.  4C). Interestingly, the 
BGC arylpolyene assigned to Flavobacteriales had almost 
no reads in the metagenome but was highly expressed 
(logFold = 3.86) in the metatranscriptome after fox infec-
tion. It is worth noting that members of the Flavobacte-
riales order were among the most responsive taxa under 
pathogen infection.

Microbiome response to pathogen invasion in the 
endosphere
Changes in endosphere bacterial community composition
For the endosphere, the microbiome response presented 
a reverse pattern when compared with the rhizosphere, 
where the endosphere microbiome of the susceptible 
cultivar was more altered by the root pathogen. The 
communities were similar between cultivars in the non-
inoculated treatment and became distinct (P = 0.002) 
after fox inoculation, for both 16S rRNA and metage-
nome data (Fig.  5A and B; Supplementary Table  2). For 
the diversity of the endophytic community, there was 
no difference between the treatments (Tukey’s HSD, 
P > 0.05) (Fig.  5C). The analysis of niche occupancy 
revealed that the proportion of specialists in the endo-
sphere of the fox-resistant cultivar decreased after the 
pathogen infection (from 24.1 to 7.6%) and increased in 
the susceptible cultivar (average 16.5%) (Supplementary 
Fig.  12). Taken together, these results suggest a prompt 
response of the endophytic microbial community in the 
presence of the pathogen, with the susceptible cultivar 
being more responsive.

To assess the endophytic response of the fox-resistant 
cultivar to pathogen invasion, we compared the com-
munity composition at two taxonomic levels. The LEfSe 
analysis did not point to any specific family in the endo-
sphere of the fox-resistant cultivar that increased in 
abundance after pathogen infection. At the genus level, 
however, the analysis showed that Agrobacterium, Sino-
rhizobium, Salmonella, Ensifer, and Pannonibacter 
increased after fox infection in the fox-resistant endo-
phytic root compartment (Fig.  5D). A further analysis 
comparing the effects of fox infection between the fox-
resistant cultivar and the susceptible cultivar showed 
small differences, with an increase in the abundance of 
some families and genera in the susceptible cultivar. Only 
the genus Candidatus Entotheonella was more abundant 
in the infected fox-resistant cultivar in comparison with 
the susceptible cultivar. This genus could suppress the 
pathogen by producing antibiotics and polyketides [101].

Changes in endosphere microbiome functions of plants 
exposed to the pathogen
The functional analysis of the endosphere microbiome is 
based on metagenome analyses only. In contrast to the 
rhizosphere, we could not conduct a metatranscriptome 
analysis because of technical limitations due to the sub-
stantial RNA contamination from the plant tissues. The 
COG analysis revealed that the pathogen affected the 
functional structure of both fox-resistant and susceptible 
cultivars (Supplementary Fig.  13). Comparing the sam-
ples at a deeper functional COG level using LEfSe analy-
sis, we identified 35 genes comprising 11 functions that 
were enriched in the endosphere of the fox-resistant cul-
tivar upon pathogen infection (Supplementary Table 13). 
Comparing the two contrasting cultivars, we detected 
two COGs that were more abundant in the fox-resistant 
endosphere, both classified as transposases (Supplemen-
tary Table 14).

Lastly, our results showed that pathogen infection had 
a strong effect on the composition of the BGCs (P < 0.05) 
(Supplementary Figs.  14–16). We then investigated 
which BGCs were up-regulated during pathogen infec-
tion in the endosphere and we found that the susceptible 
cultivar was more responsive compared to the fox-resis-
tant. In the resistant, only 12 out of 50 differential BGCs 
were more abundant when the plant was challenged with 
the pathogen (Supplementary Tables 15 and 16), while in 
the susceptible cultivar 27 out of 64 increased in abun-
dance upon pathogen infection. Interestingly, terpenes 
were also a major class in the endosphere of the resistant 
cultivar but were more abundant in the non-inoculated 
treatment.
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Fig. 4 Diversity and distribution of biosynthetic gene clusters (BGC) in the rhizosphere microbiome of the fox-resistant common bean cultivar inoculated 
and non-inoculated with Fusarium oxysporum. (A) Sequence similarity network [constructed with BiG-SCAPE (Navarro-Muñoz et al., 2019), threshold: 0.4] 
of the different classes of BGCs detected in the rhizosphere microbiome. Taxonomic assignment and BGC class annotation of the nodes are shown. Nodes 
with fewer than three connections were removed. Node colors represent statistical significance (FDR < 0.05): Yellow nodes are non significant, green and 
blue nodes are significantly overrepresented in bean plants inoculated and non-inoculated with F. oxysporum. (B) Clustered heat map of the differentially 
expressed BGCs among the different treatments. (C) Subset of the 9 BGCs that are significantly overexpressed in the resistant cultivar inoculated with 
the pathogen
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Discussion
In this study, we showed that root pathogenic F. oxyspo-
rum (fox) had a significant impact on the taxonomic and 
functional diversity of the rhizosphere and endosphere 
microbiome of common bean cultivars with distinct 
levels of fox-resistance. First, we observed marked dif-
ferences in the structure and composition of the micro-
bial communities associated with each niche, i.e. bulk 
soil, rhizosphere, and endosphere. Remarkably, Proteo-
bacteria exceeded 95% of the endosphere microbiome, 
with 99% of these sequences belonging to the Rhizobium 
genus, a well-known endosymbiotic nitrogen-fixing 
microbe associated with roots of leguminous species. 
Interestingly, the microbiome assembly in each niche 
followed distinct patterns, with the rhizosphere samples 
being dominated by niche-based mechanisms, while 
bulk soil and endosphere followed a neutral process. This 

result confirms and extends previous results that the rhi-
zosphere microbiome is influenced more by selection 
processes associated with biotic and abiotic factors in 
this niche [73]. Indeed, we showed that pathogen infec-
tion led to significant changes in the rhizosphere com-
munity composition and structure, extending results 
from previous studies on banana [74], barley [75], citrus 
[76], cotton [77], and sugar beet [5, 13]. We also observed 
that the rhizosphere community responded to pathogen 
invasion by enhancing diversity, community complex-
ity (i.e., number of interactions in the network), and a 
higher proportion of specialists. Enhanced microbial 
diversity together with higher community complexity 
could diminish pathogen invasion success due to a more 
efficient competition for resources and niche occupancy 
[78, 79]. Although both common bean cultivars showed 
an enhanced microbial diversity upon pathogen invasion, 

Fig. 5 Structure, diversity and composition of the endosphere bacterial community from two common bean cultivars non-inoculated or inoculated 
with Fusarium oxysporum (fox). Principal coordinate analysis (CAP) comparing the endophytic community using (A) 16S rRNA and (B) metagenome data. 
Significant clusters (PERMANOVA, P < 0.05) are indicated by lines in the CAP graphs. (C) Diversity measurements for the endophytic community. Asterisks 
in the diversity graphs indicate signifcant differences based on Tukey’s test (P < 0.05). (D) Linear discriminant analysis (LDA) Effect Size (LEfSe) of microbial 
taxa enriched after fox inoculation in the endophytic community of the fox-resistant cultivar at genus level. Filled squares at the left side of the graphs 
indicate the datasets were the differential taxa were found. R = fox-resistant cultivar; Rfox = fox-resistant cultivar infected; S = susceptible cultivar; Sfox – 
susceptible cultivar infected; Bulk = bulk soil
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we found a higher number of specialists and more com-
plexity in the fox-resistant cultivar. Previous studies have 
demonstrated that specialists have a narrow niche but 
the highest fitness in that niche [80, 81]. Also, special-
ists are more responsive to environmental disturbances 
[82, 83], such as pathogen invasion. Paenibacillus, Sac-
charibacteria, Chitinophagaceae, and Flavobacterium 
were found as specialists in the rhizosphere of the fox-
resistant cultivar. Although several of these genera have 
been previously reported for their antagonistic activities 
toward pathogenic Fusarium species of different crops 
[84, 85], future experiments will be needed to validate 
this assumption.

Also, the mechanisms underlying the observed micro-
biome changes are to be elucidated. The fox-resistance 
of the resistant cultivar is genetically and physiologically 
based, where the pathogen invasion is restricted by vas-
cular occlusion, tyloses, deposition of additional wall lay-
ers, and infusion of phenols and other metabolites [27]. 
This genetic change can alter plant exudation patterns 
and the assembly of the rhizosphere community, differ-
entiating the microbiome assembly between the cultivars 
with distinct levels of resistance to fox [6, 28, 29]. Those 
microbiome members that are differentially enriched in 
the microbiome of the fox-resistant cultivar in absence of 
the pathogen may have complementary protective activi-
ties to the intrinsic genetic fox-resistance. In the current 
study, we showed that fox infection also had a significant 
impact on the microbial communities of the rhizosphere 
and endosphere of these cultivars. These microbiome 
shifts can be caused directly by the pathogen itself or 
indirectly via plant physiological changes induced by the 
pathogen. The latter mechanism has also been referred to 
as the ‘cry for help’ [86], where plants under siege secrete 
specific exudates or signaling compounds that recruit 
and or activate specific members of the root microbi-
ome for protection against subsequent infections. Liu et 
al. [87] showed that local root infection by F. oxysporum 
in cucumber altered the concentration of 89 mostly pri-
mary metabolites in exudates, which correlated with root 
colonization by beneficial Bacillus amyloliquefaciens. 
Whether the changes we found in the community com-
position in the fox-resistant cultivar under the pathogen 
infection are the results of the induced excretion of anti-
microbial compounds by the infected roots remains to be 
investigated.

Most studies on plant microbiome have focused more 
on microbial diversity rather than on gene function [88]. 
Microbes living on and in plant roots may induce known 
and yet unknown biosynthetic pathways in plants leading 
to alterations in the plant chemistry [89]. On the other 
hand, changes in plant metabolomics may affect the 
functional profile of the associated microbiome. Thus, 
we assessed the effect of the pathogen infection on the 

functional profiles of the microbiome. A common strat-
egy used by microbes against other competitors includes 
limiting resources and producing antimicrobial com-
pounds [90]. Interestingly, the fox-resistant cultivar pre-
sented an enrichment of sequences affiliated to ‘defense 
mechanisms’ after pathogen infection. The increase of 
sequences affiliated to this category could reflect the 
more diverse and dynamic the community becomes 
after the pathogen infection (based on niche occupancy 
and network analysis). Also, there is an increase of genes 
belonging to the pathway classified as ‘signal transduc-
tion mechanism’. This pathway can act to amplify the cel-
lular response to an external signal, which could lead to a 
prompt response of the community towards the pathogen 
infection. Carrión et al. [7] found an enrichment of genes 
affiliated to signal transduction mechanisms in the endo-
phytic community of sugar beet grown in suppressive 
soils in the presence of the pathogen Rhizoctonia solani. 
They also noted that specific bacterial families were asso-
ciated with this enrichment, namely Chitinophagaceae, 
Flavobacteriaceae, and Pseudomonadaceae, groups that 
also increased in abundance in the rhizosphere and endo-
sphere of the infected fox-resistant cultivar in our experi-
ment. Later, the BGC analysis revealed several clusters 
enriched in both the rhizosphere and endosphere in pres-
ence of the pathogen. An important means of microbial 
protection are secondary metabolites, which are a very 
broad group of compounds or peptides with a wide range 
of biological activities, e.g., antimicrobial or iron chela-
tion [91, 92]. Our analysis obtained five candidate BGCs, 
with terpenes as the most representative BGC class in 
both rhizosphere and endosphere. Although terpenes 
have mostly been isolated from plants and fungi, they 
are also widely distributed in bacteria [93]. It has been 
shown that the biosynthesis of terpenes by plants [94, 95] 
and bacteria [96] suppress fox infection. Thus, the high 
abundance of terpenes in the rhizosphere microbiome 
could indicate its role in the suppression of fox infec-
tion in the resistant bean cultivar. Interestingly, the BGC 
arylpolyene was highly expressed after fox invasion and a 
previous report has shown its function in the control of 
banana fusarium wilt [96]. Interestingly, the fox-resistant 
cultivar presented an increased expression of arylpolyene 
genes, which were affiliated to Flavobacteriaceae family, a 
group of bacteria that was the most responsive to patho-
gen infection in this cultivar. The genus Flavobacterium is 
reported to suppress fox in several plant species [84, 97]. 
It’s worth noting that the rhizosphere of the fox-resistant 
cultivar was more responsive to the pathogen infection. 
On the other hand, the endosphere of the susceptible 
cultivar presented more overrepresented BGCs, sug-
gesting that this cultivar is more affected by the patho-
gen infection, revealing less efficiency of the susceptible 
rhizosphere microbiome to protect the plant against the 
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pathogen infection. Together, our analysis of the func-
tional profile indicates a pathogen-induced activation 
of disease-suppressive functions in the rhizosphere and 
endosphere of the fox-resistant cultivar, suggesting that 
breeding for fox resistance in common bean may have co-
selected for unknown plant traits that reinforce microbi-
ome-assisted plant defense.

Conclusions
Our multi-‘omics approach allowed us to identify the 
most responsive bacterial groups in the common bean 
rhizosphere and endosphere to invasion by the fungal 
root pathogen Fusarium oxysporum. We found that the 
genera Flavobacterium, Dyadobacter, Bacillus, Pedo-
bacter, Pseudomonas, and Paenibacillus were enriched 
in the rhizosphere and endosphere of the fox-resistant 
cultivar under siege. Interestingly, the genus Flavobacte-
rium showed up as the most responsive species, increas-
ing in abundance and identified as keystone species and 
a specialist group. These responsive species may display 
different mechanisms in disease suppression, including 
competition for nutrition and ecological niches, produc-
tion of antibiotics, and induction of plant systemic resis-
tance [13, 98]. Our metatranscriptome analysis showed 
that the root microbiome of the fox-resistant cultivar was 
more responsive to the pathogen invasion, with a higher 
expression of biosynthetic gene clusters classified as ter-
penes, NRPS-like, NRPS, betalactone, and arylpolyene. 
Whether the enriched members and traits of the root 
microbiome reinforce the resistance of the fox-resistant 
cultivar or if the changes in the microbiome are a con-
sequence of the fungal invasion remains to be investi-
gated. For this, a comprehensive study would involve the 
isolation of antagonistic microbial groups, as pointed by 
metagenome approach and selected from the rhizosphere 
of the fox-resistant cultivar. This would be combined with 
the use of site-directed mutagenesis to identify and con-
firm specific microbial antagonistic traits responsible 
for the soil borne pathogen antagonism. Additionally, a 
metabolomic approach would be instrumental for iden-
tifying plant compounds responsible for both microbial 
recruitment and/or pathogen antagonism. Lastly, we 
emphasize that next-generation sequencing coupled with 
a community ecology approach is pivotal to help disen-
tangle the link between plant defense and root-associated 
microbial communities.
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Supplementary Figure 1. (A) Confirmation of plant infection by isolation 
of Fusariumoxysporum from root fragments on PDA medium. (B) Plant 
infection symptoms of Fusariumoxysporum infection. Supplementary 
Figure 2. Overall composition of bacterial phyla identified in bulk soil, rhi-

zosphere and endosphere using three datasets (16S rRNA, metagenome 
and metatranscriptome). Supplementary Figure 3. Linear discriminant 
analysis (LDA) Effect Size (LEfSe) analysis of bacterial phyla present in bulk 
soil, rhizosphere and endosphere of common bean for (A) 16S rRNA, (B) 
metagenome, and (C) metatranscriptome. Red bars refer to significant 
abundant taxa in bulk soil, while purple refers to rhizosphere and green 
to endosphere. Supplementary Figure 4. Akaike Information Criterion 
(AIC) weight values for six rank abundance distribution models used in 
this work. The AIC weight varies from 0 to 1, being the highest value the 
best-fit model. The color scale was used for a better visualization, where 
green indicates the best model. Supplementary Figure 5. Multinomial 
species classification method (CLAM) for the niche occupancy test for the 
rhizosphere microbiome. The niche occupancy was evaluated in pairwise 
comparison between the treatments. The percentage of specialists is indi-
cated in the graphs. R = fox-resistant cultivar; Rfox = fox-resistant cultivar 
infected; S = susceptible cultivar; Sfox = susceptible cultivar infected; Bulk 
= bulk soil. Supplementary Figure 6. Structure and diversity of rhizop-
shere and bulk soil functional profile (based on COG) from two common 
bean cultivars non-inoculated or inoculated with Fusarium oxysporum 
(fox). Principal component analsyis (PCA) comparing the functional profile 
structure in the rhizosphere microbiome using (A) metagenome and (C) 
metatranscriptome. Diversity measurements of the rhizopshere functional 
profile using (B) metagenome and (D) metatranscriptome. R = fox-resistant 
cultivar; Rfox = fox-resistant cultivar infected; S = susceptible cultivar; Sfox 
= susceptible cultivar infected; Bulk = bulk soil. Supplementary Figure 7. 
Scatter-plot showing the differential abundance of sequences affiliated to 
bacterial functions between bulk soil and rhizosphere of common bean. 
The sequences were affiliated to functional categories based on COG 
database using (A) metagenome and (B) metatranscriptome datasets. 
Asterisks indicate enriched categories in the rhizosphere common to both 
datasets. P-values were calculated using Welch’s t-test with Benjamini-
Hochberg correction (P < 0.05). A list with all the COG categories is shown 
in the right side of the figure. Supplementary Figure 8. Scatter-plot 
showing the differential abundance of sequences affiliated to bacterial 
functions in the fox-resistant cultivar after fox inoculation. The sequences 
were affiliated to functional categories based on COG database using 
(A) metagenome and (B) metatranscriptome datasets. P-values were 
calculated using Welch’s t-test with Benjamini-Hochberg correction (P < 
0.05). A list with all the COG categories is shown in the right side of the 
figure. Supplementary Figure 9. Scatter-plot showing the differential 
abundance of sequences affiliated to bacterial functions comparing 
the fox-resistant cultivar with the susceptible after fox inoculation. The 
sequences were affiliated to functional categories based on COG database 
using (A) metagenome and (B) metatranscriptome datasets. P-values were 
calculated using Welch’s t-test with Benjamini-Hochberg correction (P < 
0.05). A list with all the COG categories is shown in the right side of the fig-
ure. Supplementary Figure 10. Diversity and distribution of biosynthetic 
gene clusters in the rhizosphere microbiome of the susceptible common 
bean cultivar, inoculated and non-inoculated with Fusarium oxysporum. 
Sequence similarity network (constructed with BiG-SCAPE, threshold: 0.4) 
of the different classes of BGCs detected in the rhizosphere microbiome. 
Taxonomic assignment and BGC class annotation of the nodes are shown. 
Nodes with fewer than three connections were removed. Node colors rep-
resent statistical significance (FDR < 0.05): Yellow nodes are nonsignificant, 
green and blue nodes are significantly overrepresented in bean plants 
inoculated and non-inoculated with fox. Supplementary Figure 11. 
Structure of the rhizopshere and bulk soil functional profile (based on Bio-
synthetic Gene Clusters) from two common bean cultivars non-inoculated 
or inoculated with Fusarium oxysporum (fox). Principal coordinate analsyis 
(PCoA) comparing the functional profile structure in the rhizosphere of the 
two common bean cultivars after fox inoculation using (A) metagenome 
and (B) metatranscriptome. Supplementary Figure 12. Multinomial 
species classification method (CLAM) for the niche occupancy test for the 
endosphere microbiome. The niche occupancy was evaluated in pairwise 
comparison between the treatments. The percentage of specialists is 
indicated in the graphs. R = fox-resistant cultivar; Rfox = fox-resistant 
cultivar infected; S = susceptible cultivar; Sfox = susceptible cultivar inocu-
lated. Supplementary Figure 13. Structure and diversity of endosphere 
functional profile (based on COG) from two common bean cultivars 
non-inoculated or inoculated with Fusarium oxysporum  (fox). (A) Principal 
component analsyis (PCA) comparing the functional profile structures 
using metagenome data. (B) Diversity measurements of the endosphere 
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functional profile using metagenome. R = fox-resistant cultivar; Rfox = 
fox-resistant cultivar infected; S = susceptible cultivar; Sfox = susceptible 
cultivar infected. Supplementary Figure 14. Principal coordinate analsyis 
(PCoA) comparing the endosphere functional profile structure (based 
on Biosynthetic Gene Clusters) in the rhizosphere of the two common 
bean cultivars non-inoculated or inoculated with Fusarium oxysporum 
(fox) using metagenome data. Supplementary Figure 15. Diversity and 
distribution of biosynthetic gene clusters in the endosphere microbiome 
of the resistant common bean cultivar, non-inoculated or inoculated with 
Fusarium oxysporum (fox). Sequence similarity network (constructed with 
BiG-SCAPE, threshold: 0.4) of the different classes of BGCs detected in the 
rhizosphere microbiome. Taxonomic assignment and BGC class annota-
tion of the nodes are shown. Nodes with fewer than three connections 
were removed. Node colors represent statistical significance (FDR < 0.05): 
Yellow nodes are nonsignificant, green and blue nodes are significantly 
overrepresented in bean plants inoculated and non-inoculated with fox. 
Supplementary Figure 16. Diversity and distribution of biosynthetic 
gene clusters in the endosphere microbiome of the susceptible common 
bean cultivar, non-inoculated or inoculated with Fusarium oxysporum (fox). 
Sequence similarity network (constructed with BiG-SCAPE, threshold: 0.4) 
of the different classes of BGCs detected in the rhizosphere microbiome. 
Taxonomic assignment and BGC class annotation of the nodes are shown. 
Nodes with fewer than three connections were removed. Node colors rep-
resent statistical significance (FDR < 0.05): Yellow nodes are nonsignificant, 
green and blue nodes are significantly overrepresented in bean plants 
inoculated and non-inoculated with fox.

Supplementary Table 1. Soil analysis of Vredepeel field. Supplemantary 
Table 2. Results of PERMANOVA analysis of the Bray-Curtis dissimilarities 
for microbial community structure based on 16S rRNA gene at OTU level. 
Bold face indicates statistical significance (P < 0.05). P-values are based in 
9999 permutations. Supplementary Table 3. Number of correlations per 
phylum. Showing the top five phyla with most correlation per treatment. 
Supplementary Table 4. Top five OTUs with more number of correlations 
(that is, degree) and betweeness centrality for each treatment. Supple-
mentary Table 5. List of 26 COG categories. Supplementary Table 6. 
Differential expression of COG genes in rhizosphere comparing the non-
inoculated fox-resistant cultivar (Rs) with the pathogen infection (Rs+fox), 
based on LDA Effect Size analysis. Supplementary Table 7. Differential 
expression of COG genes comparing the fox-resistant cultivar infected 
(Rs+fox) with the susceptible cultivar infected (Sc+fox), based on LDA 
Effect Size analysis. Supplementary Table 8. Analysis of the Biosynthetic 
Gene Clusters of the rhizosphere samples from common bean cultivars. 
Supplementary Table 9. Analysis of the abundance of Biosynthetic Gene 
Clusters in the rhizosphere comparing the non-inoculated fox-resistant 
cultivar (Rs) with the pathogen infection (Rs+fox). Supplementary Table 
10. Analysis of the abundance of Biosynthetic Gene Clusters in the rhizo-
sphere comparing the non-inoculated susceptible cultivar (Sc) with the 
pathogen infection (Sc+fox). Supplementary Table 11. Analysis of the 
abundance of Biosynthetic Gene Clusters in the rhizosphere of the fox-re-
sistant cultivar (Rs). Supplementary Table 12. Analysis of the abundance 
of Biosynthetic Gene Clusters in the rhizosphere of the susceptible cultivar 
(Sc). Supplementary Table 13. Differential expression of COG genes in 
the endosphere of common bean comparing the non-inoculated fox-
resistant cultivar (Rs) with the pathogen infection (Rs+fox), based on LDA 
Effect Size analysis. Supplementary Table 14. Differential expression of 
COG genes in the endosphere of common bean comparing the infected 
fox-resistant cultivar (Rs+fox) with the infected susceptible (Sc+fox), based 
on LDA Effect Size analysis. Supplementary Table 15. Analysis of the 
abundance of Biosynthetic Gene Clusters in the endosphere comparing 
the non-inoculated fox-resistant cultivar (Rs) with the pathogen infection 
(Rs+fox). Supplementary Table 16. Analysis of the abundance of Biosyn-
thetic Gene Clusters in the endosphere of the susceptible common bean 
cultivar comparing the non-inoculated (Sc) with the pathogen-inoculated 
(Sc+fox) treatment.
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