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Abstract
Background Root and soil microbial communities constitute the below-ground plant microbiome, are drivers 
of nutrient cycling, and affect plant productivity. However, our understanding of their spatiotemporal patterns is 
confounded by exogenous factors that covary spatially, such as changes in host plant species, climate, and edaphic 
factors. These spatiotemporal patterns likely differ across microbiome domains (bacteria and fungi) and niches (root 
vs. soil).

Results To capture spatial patterns at a regional scale, we sampled the below-ground microbiome of switchgrass 
monocultures of five sites spanning > 3 degrees of latitude within the Great Lakes region. To capture temporal 
patterns, we sampled the below-ground microbiome across the growing season within a single site. We compared 
the strength of spatiotemporal factors to nitrogen addition determining the major drivers in our perennial cropping 
system. All microbial communities were most strongly structured by sampling site, though collection date also had 
strong effects; in contrast, nitrogen addition had little to no effect on communities. Though all microbial communities 
were found to have significant spatiotemporal patterns, sampling site and collection date better explained bacterial 
than fungal community structure, which appeared more defined by stochastic processes. Root communities, 
especially bacterial, were more temporally structured than soil communities which were more spatially structured, 
both across and within sampling sites. Finally, we characterized a core set of taxa in the switchgrass microbiome 
that persists across space and time. These core taxa represented < 6% of total species richness but > 27% of relative 
abundance, with potential nitrogen fixing bacteria and fungal mutualists dominating the root community and 
saprotrophs dominating the soil community.

Conclusions Our results highlight the dynamic variability of plant microbiome composition and assembly across 
space and time, even within a single variety of a plant species. Root and soil fungal community compositions 
appeared spatiotemporally paired, while root and soil bacterial communities showed a temporal lag in compositional 
similarity suggesting active recruitment of soil bacteria into the root niche throughout the growing season. A better 
understanding of the drivers of these differential responses to space and time may improve our ability to predict 
microbial community structure and function under novel conditions.
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Introduction
Below-ground microbial communities are functionally 
important in ecosystems and respond strongly to plant 
communities. Roots, and their associated rhizospheres, 
are hot spots of activity with temporal changes in root 
exudate quality and quantity driving hot moments that 
can alter nutrient cycling [1]. Soils contain the majority 
of terrestrially stored carbon, and soil microbial com-
munities are important drivers of carbon and nutrient 
dynamics below-ground [2]. Thus, a better understanding 
of the spatiotemporal patterns in below-ground micro-
bial communities will likely improve our understanding 
of ecosystem productivity. However, previous studies 
of spatiotemporal patterns in plant microbiome niches 
(root and soil communities) have been confounded by 
plant community compositional changes. For example, 
at global and regional scales, soil pH and climate are fre-
quently cited as drivers of the plant microbiome [3–6]. 
Soil pH and climate, along with other site-specific fac-
tors, also affect plant community composition and in 
turn plant community composition can affect soil bio-
geochemistry; for example, litter from Pinaceae decreas-
ing soil pH [7], and legumes increasing soil nitrogen 
(N;[8]). These feedbacks can make it difficult to decouple 
the drivers of below-ground microbial communities. Fur-
thermore, seasonal and annual shifts in microbial com-
munities may differ between host plant species [9, 10]. 
Temporally, differential responses of microbial communi-
ties may be driven by host phenology and/or the interac-
tion between host plants and site-specific conditions.

Bacterial and fungal communities of roots and soils 
play important roles in ecosystem productivity but, 
importantly, may respond differentially to spatiotempo-
ral factors due to differences in their life history traits. 
Given their small size and single cell nature, bacteria 
tend to be much less dispersal limited than filamen-
tous fungi, leading to differential spatiotemporal pat-
terns [11]. These differences in dispersal limitation can 
lead to bacterial communities displaying more signs of 
environmental selection, such as differences in soil bio-
geochemistry across space [12] and less stochastic com-
munity assembly, compared to fungal communities [13, 
14]. Differences in dispersal ability may also affect com-
munity responses to temporal factors with increased like-
lihood of stochastic patterns in succession of the fungal 
communities [15]. This may lead to mismatches in host 
versus microbial colonization of new locations [11] as 
has been demonstrated with ectomycorrhizal tree inva-
sions [16]. However, it may be difficult to separate the 
effects of plant community composition from dispersal-
dependent effects if these two factors co-vary. For exam-
ple, although fungal communities tend to respond more 
strongly to plant community succession [17], the absence 
of nearby source fungal propagules may lead to reduced 

responsiveness to plant presence and identity, as com-
pared to bacteria [13]. To better understand the drivers 
of spatiotemporal change in microbial communities, it is 
important to control plant host identity.

The widespread planting of perennial cropping systems 
offers an ideal opportunity to explore the spatiotemporal 
patterns in microbial communities while holding plant 
host species and genotype constant. The use of peren-
nial cropping systems for food and biofuel production 
has been gaining attention recently as an alternative, or 
companion to, annual cropping systems [18]. Perennial 
cropping systems offer an opportunity to explore spa-
tiotemporal turnover of below-ground microbial com-
munities that have developed over multiple years while 
removing the confounding effects of plant species-site-
time interactions. A better understanding of the spatio-
temporal dynamics of the below-ground communities 
can also inform sustainable management and microbial 
assembly considerations that may be important to miti-
gating ongoing climate change [19]. Understanding and 
harnessing the below-ground microbial communities 
could also help off-set greenhouse gas production from 
agricultural systems, including reduced N2O production 
with reduced inorganic N inputs [20] and more sustain-
able production of cellulosic biofuel crops.

Application of N fertilizers may increase agricultural 
yields, but also may reduce the benefits of perennial 
crops, alter the microbial community, or alter plant-
microbial interactions. Meta-analyses of the effects of 
N on microbial communities have found both positive 
and negative effects on microbial biomass and diversity. 
These variable results appear to be driven by the duration 
of the experiment, crop type, other nutrients included in 
the fertilizer, and the fertilizer application rate [21–23]. 
For example, N addition increased microbial diversity 
only when coupled with phosphorus and potassium, but 
decreased diversity when added alone [22]. Furthermore, 
microbial responses to N addition seemingly depend on 
treatment duration with reductions in microbial biomass 
in studies 5–10 years in length, but longer-term treat-
ments led to increases in microbial biomass with peak 
increases found in studies of > 20 years in length [21]. 
However, the majority of studies of the effects of N addi-
tion on cropping systems have focused on annual crops. 
Therefore, the responses of perennial cropping systems 
are less well known.

After long-term N additions to a successional grass-
land at a site adjacent to the current study, N addition 
didn’t change microbial community diversity, but excess 
N addition, > 10.1  g N/m2, did affect community struc-
ture [24]. Previous research at our sites found that year to 
year variation in bacterial richness and microbial biomass 
outweighed the effects of N addition [25]. It has also been 
shown that excessive N in agricultural soils can increase 
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the sensitivity of the microbial communities to seasonal 
dynamics and alter the interactions within microbial 
communities [26]. On the other hand, N addition may 
actually reduce the long-term variability of the microbial 
community [27] by creating long-term increases in plant 
productivity, and therefore increased plant carbon inputs 
to soils, and a stable resource base for microbes [21, 28]. 
Exploring an extensively distributed perennial crop-
ping system under relatively long-term N fertilization (5 
y) could improve our understanding of the effects of N 
application on microbial communities across spatiotem-
poral scales and help us resolve the apparent inconsisten-
cies in the results described above.

Here we characterize the composition and spatio-
temporal patterns in two niches (roots and soils) and 
domains (bacteria and fungi) in the microbiome of 
switchgrass monocultures, a perennial bioenergy crop 
species planted at five locations across Michigan and 
Wisconsin. Switchgrass is a primary candidate for next-
generation cellulosic bioenergy [29], and a beneficial 
microbiome could contribute to its viability, but there 
have been few comprehensive microbiome characteriza-
tions across space and time [30]. To characterize tem-
poral changes in microbial communities, we sampled 
a single site at 2-week (soil communities) and monthly 
(root communities) intervals. First, we hypothesized that 
N addition will have strong and consistent effects alter-
ing the structure of microbial communities across the 
five sites with the effects peaking post N application. Sec-
ond, we hypothesize that the sampling site will strongly 
structure microbial communities through broadscale 
differences in climate and soil characteristics across this 
geographic region. Third, we hypothesize that the root 
microbial community structure would be more respon-
sive than soil communities to collection date over the 
growing season due to the response of the root commu-
nity to host phenology. Finally, to contribute to the fun-
damental knowledge of bioenergy crop microbiomes, we 
characterized a core switchgrass microbial community 
that is shared across sites, and a growing season.

Methods
Focal plant host
Switchgrass (Panicum virgatum, L.) is a flagship bio-
fuel perennial species native to North America that has 
shown promise for sustainable production. One trait 
that makes switchgrass particularly attractive as a biofuel 
crop is that it can be productive in bioenergy lands, lands 
that are deemed not productive enough to grow conven-
tional agricultural crops [31]. The below-ground micro-
bial community of switchgrass may be a driver of this 
hardiness since it has been shown to have the potential 
to alleviate environmentally imposed stresses, including 
low N [32], as well as increasing water use efficiency and 

biomass of seedlings [33]. Yet, we are only beginning to 
understand the spatiotemporal distributions and biodi-
versity of the microbial communities that associate with 
switchgrass [30, 34].

Study sites and treatments
We sampled the roots and bulk soils (hereafter, soils) of 
established switchgrass monocultures from the Mar-
ginal Land Experiment (MLE) of the Great Lakes Bio-
energy Research Center (GLBRC: www.glbrc.org). For a 
full description of its establishment and ongoing treat-
ments see https://data.sustainability.glbrc.org/pages/1.
html#marginal. For a description of soil health, and 
other site level characteristics, see Li et al. [25] and Table 
S1 & S2. We sampled switchgrass monocultures (G5 
treatment), which were established in 2013 by sowing 
0.78  g/m2 of Cave-in-Rock variety seeds with four plot 
replicates at each site. Each plot was subdivided into N 
addition and control (no N addition) split-plots (hereaf-
ter, subplots). Nitrogen addition subplots received 5.6  g 
N/m2 at the beginning of each growing season (late May) 
starting in 2015 with Michigan sites receiving SUPERU 
(Koch Agronomic Services, Wichita, KS, USA) and Wis-
consin sites receiving ESN (Nutrien, Saskatoon, Canada) 
slow-release urea fertilizers. Plots were managed based 
on recommended agronomic practices with the use of 
herbicides and pelletized lime to maintain switchgrass 
monocultures and soil pH, respectively (see https://data.
sustainability.glbrc.org/datatables/204).

To characterize the switchgrass microbiome at a 
regional scale, we sampled the five MLE sites of Michi-
gan and Wisconsin in July 2018 (three Michigan and two 
Wisconsin sites). These sites represent ~ 3.3 degrees of 
latitude and ~ 4.3 degrees of longitude. Plots were 19.5 m 
x 19.5 m at Lake City and Escanaba and 19.5 m x 12.2 m 
at Lux Arbor, Hancock and Rhinelander. Block 1 at Han-
cock was decommissioned in 2015 leaving three repli-
cates at the site (Table S3).

Root and soil samples were temporally paired by 
shared collection days and spatially paired by sampling 
points. To capture the switchgrass microbiome across 
the growing season (i.e., temporal patterns), we col-
lected roots and soils from Lux Arbor, the southernmost 
site in Michigan, during the 2018 growing season. Soils 
were collected every two weeks between March 19th and 
November 5th. Roots were collected every four weeks 
from May 29th to October 3rd, on days coinciding with 
soil collections (Table S4).

Plant microbiome sampling
Soil sampling was conducted following methods 
described in [35]. Briefly, cores (2.5 cm wide, 10 cm deep) 
were collected from three predetermined random sam-
pling points within each N addition and control subplot. 

http://www.glbrc.org
https://data.sustainability.glbrc.org/pages/1.html#marginal
https://data.sustainability.glbrc.org/pages/1.html#marginal
https://data.sustainability.glbrc.org/datatables/204
https://data.sustainability.glbrc.org/datatables/204
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Roots were collected from 2 – 3 mini-cores (1.27  cm 
wide, 10  cm deep) taken near each soil core sampling 
point. This resulted in six root and six soil samples per 
plot per sampling effort (total of 24 samples per niche 
per sampling effort). Coordinates for each core were 
converted to universal transverse Mercator coordinates 
based on the estimated distance to the southeast corner 
of each plot using the ‘rgdal’ and ’sp’ packages in R [36–
39]. These coordinates were used for all pairwise mea-
sures of spatial distance. Soil samples were transported 
and stored at 4 °C then roots and large particulate matter 
were removed through sieving with a 4-mm mesh sieve 
within three days of collection. Finally, soils were stored 
at -80 °C at the Kellogg Biological Station (Hickory Cor-
ners, MI, USA). Roots were transported at 4 °C and pro-
cessed at Michigan State University (MSU; East Lansing, 
MI, USA). Roots were separated from soil using bleach-
sterilized tweezers and sieves, washed in a 0.5% Tween20 
solution to remove soil debris, rinsed three times with 
sterile deionized water, flash-frozen in liquid N, and then 
lyophilized.

Microbial community characterization
Before DNA was extracted from roots with the Mag-
Bind plant kit (Omega bio-Tek Inc., Norcross, GA, USA), 
lyophilized roots were powderized using sterile tungsten 
beads on a TissueLyser II robot (QIAGEN, Hilden, Ger-
many). DNA from soils was extracted in 96-well plates 
using the KingFisher Flex Purification System (Thermo 
Fisher Scientific, Waltham, MA, USA) with the MagAt-
tract PowerSoil DNA KF kit (QIAGEN). For bacteria, the 
V4 hypervariable region of 16 S rRNA gene was amplified 
using 515 F/806R primers [40]. This primer set amplifies 
both bacteria and archaea, but we refer to the community 
as bacteria for simplicity. Illumina compatible libraries 
were prepared for soil bacterial communities using prim-
ers containing both the target sequences and the dual 
indexed Illumina compatible adapters [41] by the MSU 
Research Technology Support Facility (RTSF) Genomics 
core. Fungal ITS1 rDNA was amplified with the primer 
pair ITS1F/ITS2 [42]. Libraries for root bacterial com-
munities and both fungal communities were multiplexed 
following a three-step PCR sequence as described in [43]. 
The completed libraries were normalized with Invitrogen 
SequalPrep DNA Normalization plates (Thermo Fisher 
Scientific), pooled and cleaned up with AmpureXP mag-
netic beads (Beckman Coulter, Brea, CA, USA). Libraries 
were then paired-end sequenced by MSU RTSF Genom-
ics core on a MiSeq platform (Illumina Inc., San Diego, 
CA, USA) using the v2 kit for soil bacterial libraries and 
the v3 kit for root bacterial and fungal libraries.

Diversity and richness of soil bacteria and fungi from 
MLE sites were partially published in [25]. However, 
sequences were reprocessed and re-clustered here (see 

below) to allow for comparisons between roots and soils. 
Additionally, Lux Arbor samples used in Li et al. were 
collected on July 9th [25] while we used samples from 
July 30th for our regional comparisons to match the tim-
ing of root sampling. Soil bacterial libraries were demul-
tiplexed by MSU RTSF using Illumina bcl2fastq while 
root bacterial and fungal libraries were demultiplexed in 
QIIME 2 using “demux emp-paired” [44]. Post paired-
end sequence merging, root and soil reads were pooled 
for bacteria and fungi separately. Pooled libraries were 
separately quality filtered, and clustered into operational 
taxonomic units (OTUs) using the USEARCH pipeline 
(http://drive5.com/usearch/; [45, 46]). Primers and adapt-
ers were removed, then bacterial sequences were filtered 
and trimmed to 250 bp while fungal sequences < 100 bp 
were removed but not trimmed. Sequences were then 
quality filtered (max EE < 1), clustered into OTUs at 97% 
sequence similarity, and taxonomically classified using 
SINTAX [46, 47]. Bacterial OTUs were classified against 
SILVAv123 rRNA database [48] and all OTUs classified 
to chloroplast and mitochondria were removed. Fungal 
OTUs were classified against UNITE v8.2 (04.02.2020) 
eukaryote database [49]. OTUs classified as non-fungal 
were removed, as were Malasseziomycetes since these 
fungi are well known to be human-associated [50]. Fungal 
OTUs were then reclassified with CONSTAX2 against 
UNITE v8.2 (04.02.2020) eukaryote database to increase 
the depth of taxonomic classifications [51]. Both commu-
nity matrices were rarefied to 10,000 reads. A total of 7 
bacterial and 18 fungal samples were removed from anal-
yses due to poor quality or quantity of sequences (e.g., 
less than 10,000 reads) or because they were extreme 
outliers in NMDS space (one bacterial sample, Table S3 & 
S4). For post-processed and rarefied community richness 
and read abundances, see Table S5.

Statistical analyses
All statistical analyses, with the exception of PER-
MANOVA, were conducted in R version 4.2.1 [39]. 
To characterize the effects of spatiotemporal factors 
on microbial community composition we constructed 
PERMANOVA models, based on Bray-Curtis (BC) dis-
tance, for combinations of domain (bacteria or fungi) 
and niche (roots or soils) in Primer v6 [52]. Models for 
the MLE communities tested the effects of site, N addi-
tion, and their interactions, with plot nested within site × 
N addition as a random factor, on community composi-
tion. Models for Lux Arbor tested the effects of collec-
tion date as a factor, N addition, and their interactions, 
with plot nested within date × N addition as a random 
factor, on community composition. PERMANOVA mod-
els used type 3 sums of squares and 9999 permutations 
to determine p-values. Effects sizes were calculated using 
the coefficient of determination (R2) and omega-squared 

http://drive5.com/usearch/


Page 5 of 19Bell-Dereske et al. Environmental Microbiome           (2023) 18:50 

(ω2) according to methods in [53]. Concordant variations 
in β-diversity between two communities can indicate 
co-occurrence or similar responses of both communi-
ties to the same environmental factors. To test if varia-
tion in community structure were concordant between 
bacteria and fungi, we used Procrustes analysis [54, 55], 
combined with permutation tests [56], using the protest 
function in ‘vegan’ with 9999 permutations [57]. Tests 
of the effects of spatiotemporal factors on richness (# 
of OTUs), diversity (inverse Simpson), and residuals of 
concordance between communities (bacterial and fungal 
communities) used the same model structures described 
above, with plot as a random factor, using mixed effects 
models. To test the similarity (1 − BCdist ) between root 
and soil communities collected either 2-weeks prior to 
root collection or on the same collection date as roots, 
we constructed mixed effects models with indepen-
dent factors of collection date, N addition, soil compari-
son date (2-weeks or same day), and their interactions, 
with root sample nested within plot as a random factor. 
Importantly, though root and soil samples were spa-
tially paired for same day comparisons, the comparisons 
between roots and soils collected 2-weeks prior was the 
mean similarity between root samples and soil samples 
collected from the same subplot. All mixed effects mod-
els were constructed with lmer in ‘lme4’ [58] with type 3 
sums of squares using anova in ‘lmertest’ [59]. The nor-
mality and heteroscedasticity of model residuals were 
tested using the Shapiro–Wilk test and simulateResidu-
als in ‘DHARM’ [60] with data transformed when neces-
sary. Pairwise statistical significance was calculated using 
‘emmeans’ with Tukey honest significant difference [61].

Further testing the spatiotemporal dynamics of the 
microbial communities, we constructed generalized 
dissimilarity models (GDMs) testing the relationship 
between the pairwise distance in space and time to the 
BC pairwise distance between community composi-
tions for the combinations of domain (bacteria or fungi) 
and niche (roots or soils) with samples from Lux Arbor. 
Models were constructed using the ‘gdm’ package [62, 
63] with 95% confidence intervals surrounding the loess 
lines calculated using bootstrapping with 30% of the 
samples withheld in each of the 100 permutations. To 
explore potential drivers of the spatiotemporal dynam-
ics, we constructed GDMs with soil nutrients (NO3, 
NH4, organic C and N, pH, K, Ca, P), plant traits (SLA, 
shoot and root biomass, subplot yield), and meteorologi-
cal factors (MET: preceding seven-day rain accumula-
tion, soil moisture and temperature) as factors for MLE 
sites (Table S1) and Lux Arbor growing season (Table 
S2). Outlier values were identified and removed based 
on field and lab notes combined with the removal of val-
ues greater than 3× the inter-quantile of data from 2016 
to 2018 using is_extreme in ‘rstatix’ [64]. Missing values 

for potential drivers (Table S1 & S2) were imputed using 
a random forest imputation algorithm in the ‘missFor-
est’ package [65]. We used the gdm.varImp to select fac-
tors for the final model based on backward selection of 
importance values with 100 permutations. Partitioning 
of the deviance explained was conducted using gdm.par-
tition.deviance with MET, soil nutrient, and plant trait 
factors grouped [62, 63]. In order to fit the models, and 
allow for comparisons between niches, analyses of the 
soil communities of Lux Arbor were restricted to dates 
where roots were sampled (monthly sampling).

To characterize the core communities of switch-
grass, we used methods detailed in [66], which com-
bines occupancy-abundance and threshold effects of 
species removal on pairwise BC distance to identify the 
core community. Core community selection was con-
ducted across sites and collection dates for the MLE and 
Lux Arbor communities, respectively. We chose a single 
threshold of 5% change in BC distance across bacteria 
and fungi in roots and soils. This single threshold enabled 
standardized comparisons across these groups and 
reduced the complexity of methodological biases across 
comparisons. We used code adapted from [67] to opti-
mize the BC threshold based on the fit of neutral mod-
els (Fig. S1 - S4; [68]) and the effects of threshold on the 
richness and relative abundance of taxa included in the 
core community (Fig. S5 - S8). We examined the differ-
ences in the abundance of core taxa classified to known 
families between roots and soils using heat_tree in ‘meta-
coder’ [69]. Differential abundances were calculated 
using log2 ratio of median proportions with pairwise 
significance calculated using Wilcoxon rank-sum. Core 
taxa were then classified to guilds with FunGuild classi-
fications of “Probable” and “Highly Probable” [70]. Taxa 
with multiple guild classifications were grouped into 
symbiotrophs (putative mutualists/commensalists; e.g., 
arbuscular mycorrhizal (AM) fungi), pathogens (putative 
antagonists; e.g., plant pathogens), or saprotrophs. These 
classifications were similar to FunGuild trophic groups 
but also highlighted instances of multiple guild classifica-
tions within a given group (e.g., “Multiple Saprotroph”; 
Table S6).

Results
Effect of N addition regionally and across the growing 
season
Overall, N addition had little to no effect on the structure 
of the switchgrass below-ground microbiome. We found 
a significant effect of N addition on root bacterial compo-
sition across sites (Fig. 1a), but N only explained 1.7% of 
the variance and there were no significant effects of N on 
the other communities (p > 0.25; Table 1). Nitrogen addi-
tion also reduced the concordance between root bacte-
rial and fungal communities of Rhinelander (Fig. S9c) but 
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had no effect on the other sites or soil community con-
cordances (Table S7; Fig. S9). Finally, effects of N addition 
on diversity were context dependent, N addition reduced 
overall root bacterial richness and diversity (Fig. S10ac), 
but increased root fungal diversity in Escanaba (Table S8; 
Fig. S10d).

The effect of N addition on switchgrass growing sea-
son microbiome composition was significant but small, 

explaining 1.3 − 3.1% of the community variance, and did 
not interact with collection date (Table 2; Fig. 2ab & 3ab). 
Nitrogen addition reduced the concordance between 
bacterial and fungal community composition in both 
niches (Fig. S11) with N driven disruption the strongest 
for root bacterial and fungal communities at the end of 
the growing season (Table S9; Fig. S11ac). Similar to the 
regional results, the growing season effects of N addition 

Fig. 1 Microbiome compositions of Marginal Land Experiment (MLE) sites: NMDS plots of (a) root bacterial, (b) root fungal, (c) soil bacterial, and (d) soil 
fungal communities of switchgrass monocultures from MLE sites located in nitrogen (N) addition (filled circles) and control (open triangles) subplots; each 
point is averaged within subplot. Error bars are ± SE. Euler diagrams represent the partitioning of the deviance from generalized dissimilarity models of (e) 
root bacterial, (f) soil bacterial, (g) root fungal, and (h) soil fungal communities into spatial (pairwise distance between samples), soil (pH, total organic N 
(TON), K, and Ca), meteorological (MET: preceding seven rain day accumulation), and plant (root biomass and subplot yield)
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on diversity were context dependent. Nitrogen addition 
increased soil bacterial richness and diversity (Fig. S12ac) 
but decreased root fungal diversity (Table S10; Fig. S12d).

Regional patterns in microbial composition
Site was the strongest determinant of microbial com-
munity structure, explaining > 27% of the variance in 
communities and niches (Table  1). According to devi-
ance partitioning of the GDMs, soil variables, primarily 
soil pH, seemed to be the strongest drivers of the differ-
ences between sites (Fig.  1e-h & S13). In general, root 
communities were less structured by site than soil com-
munities while bacterial communities were more struc-
tured by site than fungal communities (Table 1). Abiotic 
factors explained most of the model deviance in bacterial 
communities (Fig. 1ef ), while pairwise distance between 
sites explained most of the model deviance in the fun-
gal communities (Fig.  1gh), suggesting that stochastic 
spatial dynamics dominate fungal communities more 
than bacterial communities. Plant traits were impor-
tant predictors of the fungal community composition 
(Fig.  1gh), specifically root biomass for root communi-
ties and subplot yield for soil communities (Fig. S13bd). 

However, no plant traits remained in the final bacterial 
models (Fig.  1ef ). Additionally, no meteorological fac-
tors remained in the final fungal models (Fig.  1gh). The 
concordance between bacterial and fungal communities 
was affected by sampling site, with root communities of 
Rhinelander having the highest concordance (Fig. S9ac) 
and the soil communities of Hancock having significantly 
lower concordance compared to the other sites (Table S7; 
Fig. S9bd). Site also had a significant effect on beta dis-
persion in all communities (Table S11; Fig. S14). Finally, 
site had a strong effect on richness and diversity across 
both niches and domains (Table S8). Lux Arbor tended 
to support the highest richness across all communities 
(Fig. S10ab) and higher bacterial diversity while Rhine-
lander tended to have the lowest richness and diversity 
(Fig. S10).

Changes in microbial communities across a growing 
season
Across the Lux Arbor growing season, the majority of 
variance in community composition was explained by 
collection date (3.8 − 8.5%; p < 0.02; Fig.  2ab & 3a) with 
the exception of soil fungi which did not significantly vary 

Table 1 PERMANOVAs of switchgrass microbiome composition from the Marginal Land Experiment sites
Root Bacteria Root Fungi

df Pseudo-F R2 ω2 P-value Pseudo-F R2 ω2 P-value

Site 4 11.53 0.373 0.354 < 0.001 7.41 0.292 0.271 < 0.001
 N add 1 2.10 0.017 0.017 0.001 1.06 0.010 0.010 0.359

Site*N add 4 1.08 0.035 0.008 0.250 0.72 0.028 0.001 0.993

Plot(Site*N add) 28 1.75 < 0.001 1.86 < 0.001
Soil Bacteria Soil Fungi

df Pseudo-F R2 ω2 P-value Pseudo-F R2 ω2 P-value

Site 4 12.79 0.460 0.443 < 0.001 9.80 0.396 0.377 < 0.001
 N add 1 0.57 0.005 0.005 0.965 0.95 0.010 0.010 0.554

Site*N add 4 0.50 0.018 < 0.001 1.000 0.61 0.025 < 0.001 1.000

Plot(Site*N add) 28 2.58 < 0.001 2.65 < 0.001
Results from models testing the effects of site and nitrogen (N) addition on the composition of bacterial and fungal communities from roots and soils of switchgrass 
monocultures from the Marginal Land Experiment sites. Bolded texts highlight significant factors

Table 2 PERMANOVAs of switchgrass microbiome composition from across the growing season at Lux Arbor
Root Bacteria Root Fungi

df Pseudo-F R2 ω2 P-value Pseudo-F R2 ω2 P-value

Collection Date 5 2.62 0.112 0.085 < 0.001 1.39 0.066 0.038 0.020
 N add 1 2.54 0.022 0.022 < 0.001 2.61 0.025 0.024 0.003
Date*N add 5 0.87 0.037 0.009 0.835 0.77 0.036 0.007 0.935

Plot(Date*N add) 6 1.54 < 0.001 1.64 < 0.001
Soil Bacteria Soil Fungi

df Pseudo-F R2 ω2 P-value Pseudo-F R2 ω2 P-value

Collection Date 14 2.06 0.111 0.077 < 0.001 1.11 0.073 0.037 0.179

 N add 1 3.33 0.013 0.013 < 0.001 6.57 0.031 0.031 < 0.001
Date*N add 14 0.60 0.033 < 0.001 1.000 0.48 0.032 < 0.001 1.000

Plot(Date*N add) 6 1.83 < 0.001 2.44 < 0.001
Results from models testing the effects of collection date and nitrogen (N) addition on the composition of bacterial and fungal communities from roots and soils of 
switchgrass monocultures across the growing season at Lux Arbor. Bolded texts highlight significant factors
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across dates (p > 0.15; Table  2; Fig.  3b). Collection date 
was a significant predictor of soil fungal composition in 
the GDM but only explained 0.8% of deviance (Table 3) 
and did not remain in the final backward selected GDM 
(Fig.  3d & S15d). Geographical distance within Lux 
Arbor was a better predictor of soil bacterial and fungal 
community change than collection date (Table 3; Fig. 2ef 

& 3ef ), while collection date was a better predictor of the 
community change for root bacteria (Fig. 2e). Supporting 
this result, collection date remained in the final root bac-
terial GDM explaining 11.6% of the community deviance 
(Fig. 2c). Importantly, the only plant trait that remained a 
significant predictor in the final GDMs of the switchgrass 
growing season microbiome was subplot yield in the soil 

Fig. 2 Bacterial community compositions across the growing season of Lux Arbor: NMDS plots of the (a) root and (b) soil communities of switchgrass. 
Symbols represent the mean composition in nitrogen (N) addition (filled circles) and control (open triangles) subplots with error bars representing SE. 
Fill color ramp represents collection dates with lighter colors representing earlier dates and darker colors later dates. Gray ellipses represent plot level 
composition at 95% confidence. Euler diagrams of (c) root bacterial and (d) soil bacterial communities represent the partitioning of the deviance from 
generalized dissimilarity models (GDMs) into spatial (pairwise distance between samples), temporal (collection date), soil (soil Ca), meteorological (MET: 
soil core gravimetric soil moisture), and soil-plant (subplot yield, soil Ca). Loess graphs from GDMs of (e) temporal and (f) spatial patterns in community 
change of root bacteria (green lines) and soil bacteria (brown lines). Dashed lines represent 95% confidence. Vertical lines along the x-axes represent 
collection dates and pairwise spatial distances
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bacterial models (Fig. S15c). Soil and MET factors, such 
as soil Ca and moisture, were more frequent predictors of 
the switchgrass microbiome (Fig. 2cd & 3 cd).

The similarity in microbiome composition within and 
between niches was temporally dependent. Root bacte-
rial communities were, in general, more similar to soils 
collected 2-weeks prior to root collection than same day 

collections (Fig. 4a) while root fungal communities were 
more similar to soils collected on the same day (Table 
S12; Fig.  4b). However, root bacterial communities col-
lected on Sept. 17 were more similar to soils collected 
the same day compared to earlier soils (Fig. 4a). This cor-
responded with a decline in overall similarity between 
root and soil communities (Fig.  4) and an increase in 

Fig. 3 Fungal community compositions across the growing season of Lux Arbor: NMDS plots of the (a) root and (b) soil communities of switchgrass 
monocultures. Symbols represent the mean composition in nitrogen (N) addition (filled circles) and control (open triangles) subplots with error bars 
representing SE. Fill color ramp represents collection dates with lighter colors representing earlier dates and darker colors representing later dates. Gray 
ellipses represent plot level composition at 95% confidence. Euler diagrams of (c) root fungal and (d) soil fungal communities represent the partitioning of 
the deviance from generalized dissimilarity models (GDMs) into spatial (pairwise distance between samples), soil (soil pH, P, K, and Ca), and meteorological 
(MET: soil core gravimetric soil moisture and 24-hour average of soil temperature). Loess graphs from GDMs of (e) temporal and (f) spatial patterns in com-
munity change of root fungi (green lines) and soil fungi (brown lines). Dashed lines represent 95% confidence. Vertical lines along the x-axes represent 
collection dates and pairwise spatial distances
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community beta dispersion (Table S13; Fig. S16) toward 
the end of the growing season. The collection date had a 
significant effect on the concordance between root bacte-
rial and fungal communities but no effect on soil com-
munities (Table S9; Fig. S11).

Characterization of a switchgrass core microbiome 
community
We characterized a switchgrass core microbiome, taxa 
that persist across space and time, which future work 
may functionally characterize and optimize to benefit 
bioenergy crops. These core taxa made up greater than 
34% and 27% of reads in the root and soil communities, 

Table 3 Generalized dissimilarity models of switchgrass microbiomes from across the growing season at Lux Arbor
Root Bacteria Soil Bacteria Root Fungi Soil Fungi

% Total deviance explained 12.90 15.54 7.21 15.06

% Partial 
deviance 
explained

P-value % Partial 
deviance 
explained

P-value % Partial 
deviance 
explained

P-value % Partial 
deviance 
explained

P-
value

Spatial 1.31 < 0.01 15.08 < 0.01 4.09 < 0.01 14.22 < 0.01

Temporal 11.46 < 0.01 0.43 0.11 3.00 < 0.01 0.79 0.03
Model fits of spatiotemporal change in the bacterial and fungal communities of roots and soils of switchgrass monocultures across the growing season at Lux Arbor

Fig. 4 Similarity (1 − BrayCurtisdist ) between root and soil microbiomes across the growing season of Lux Arbor: a) bacterial and b) fungal root 
communities and soil communities collected either the same day as roots (same day) or soil communities collected two weeks prior to the root sampling 
(2-week). “#”, “*”, ”**”, and ”***” represents p < 0.10, p < 0.05, p < 0.01, and p < 0.001 Tukey HSD adjusted significance. Nitrogen addition did not have a signifi-
cant effect on similarity and, for this reason, is not shown
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respectively (Table S14). The core root bacterial com-
munity hosted less phylogenetic diversity and 100 fewer 
OTUs than the core soil bacterial community across the 
MLE sites (Fig. S17ac), but only 8 fewer OTUs in the 
Lux Arbor growing season communities (Table S14; Fig. 
S18ac). Rhizobiales were dominant members of the core 
bacterial communities across sites and the growing sea-
son (Supporting Information Core Community Supple-
mentary Material 2) (Fig.  5ac & 6ac) and were a larger 

portion of the core root microbiome than core soil (Fig. 
S17ac & S18ac). At Lux Arbor, the relative abundance of 
Burkholderiales and Pseudomonadales was greatest at 
the start of the growing season while Xanthomonadales 
reached the highest relative abundance towards the end 
of the growing season (Fig.  6a). A Bradyrhizobium sp. 
(OTU1) dominated communities, accounting for ~ 10.3% 
of rarefied reads in the root communities while making 
up ~ 1.5 − 2.3% of rarefied reads in the soil communities 

Fig. 6 Stacked bar plots of the top ten most abundant orders across the growing season within core microbiomes (a) root bacterial, (b) root fungal, (c) 
soil bacterial, and (d) soil fungal communities of switchgrass monocultures from Lux Arbor across one growing season. Orders are grouped by phyla

 

Fig. 5 Stacked bar plots of the top ten most abundant orders across sites within core microbiomes (a) root bacterial, (b) root fungal, (c) soil bacterial, and 
(d) soil fungal communities of switchgrass monocultures at sites of the Marginal Land Experiment. Orders are grouped by phyla

 



Page 12 of 19Bell-Dereske et al. Environmental Microbiome           (2023) 18:50 

across sites and the growing season (Supporting Infor-
mation Core Community Supplementary Material 2).

Within the core fungal community, roots hosted twice 
the richness of OTUs compared to the soil communities 
across the MLE sites (Fig. S17bd), but roots hosted less 
than 50% of the richness found in soils across the grow-
ing season (Table S14; Fig. S18bd). Glomeraceae was 
the most abundant and rich classified family in the core 
root community (Fig. S17b & S18b). Hypocreales and 
Mortierellales dominated the core soil communities, but 
the dominant orders in the core root community varied 
between MLE sites (Fig.  5bd). Pleosporales, Auriculari-
ales, and Helotiales dominated the Lux Arbor, Escanaba, 
and Rhinelander core root communities, respectively 
(Fig. 5b). The dominance of Pleosporales in the core root 
community of Lux Arbor was consistent across the grow-
ing season with the order reaching its highest abundance 
in August (Fig.  6b). Two Nectriaceae spp. were domi-
nant in the core switchgrass microbiome (OTU1 and 
OTU142) across the MLE sites (Supporting Information 
Core Community Supplementary Material 2). The major-
ity of fungal species could not be unambiguously classi-
fied to a primary guild in FunGuild (unknown guilds: 64 
OTUs (43.0% of OTUs) and 95 OTUs (51.1% of OTUs) 
in regional and growing season core communities, 
respectively). The most dominant guilds in the core root 
microbiome were arbuscular mycorrhizal (AM) fungi, 
endophytes, and unidentified saprotrophs (Fig. S19a & 
S20a). The core root community of Escanaba was domi-
nated by saprotrophs while the core root community of 
Lux Arbor was dominated by AM fungi and endophytes 
(Fig. S19a). The dominance of AM fungi in the Lux Arbor 
core root community declined towards the end of the 
growing season. Consequently, endophytes and taxa 
classified as multiple guilds spanning pathogens and 
saprotrophs were dominant by the end of the growing 
season (Fig. S20a). The core soil fungal community was 
dominated by taxa classified as saprotrophs and multiple 
guilds spanning saprotrophs and symbiotrophs (Fig. S19b 
& S20b).

Discussion
Our study is among the first to simultaneously character-
ize the effects of N addition and spatiotemporal factors 
on the below-ground microbiome, across domains and 
niches, while controlling for plant species. Our results 
show that spatiotemporal factors explain more of the 
structure of the plant microbiome than N additions, 
which had surprisingly little effect on both soil and root 
microbial communities. Perhaps this was because of the 
relatively low N application rate in our system compared 
to other agricultural systems. Both bacteria and fungi, no 
matter the niche (root vs. soil), were strongly structured 
by the sampling site, highlighting the importance of soil 

and climate history on plant microbiome structure. The 
spatial location also influenced microbiomes within a 
site (0.01–250  m), especially for soil fungi. Importantly, 
while bacteria were more structured by sampling sites, 
and despite our extensive evaluation of 13 spatiotem-
porally structured environmental factors, fungal com-
munity composition had less spatial structure that could 
be explained by environmental factors indicating that 
stochastic factors, such as dispersal limitation, are likely 
dominant drivers. Even though we found spatiotempo-
ral variation, we identified a functionally important core 
microbial community that was relatively stable across 
sites and growing season, with the exception of the core 
root fungal community which was more spatiotemporally 
variable.

Greatest variation in all microbiomes seen at large spatial 
scales
Overall, we found that the sampling site explained the 
greatest portion of microbiome structure across the 
microbial niches (roots and soil) and domains (bacteria 
and fungi; Table  1). Previous research has found strong 
spatial patterns in below-ground microbial community 
compositions at similar regional [3, 71] and global scales 
[5, 6, 72]. Interestingly, a survey of switchgrass monocul-
tures in North Carolina over a similar geographic extent 
(about 460 km) found that both root and soil fungal com-
munities were most strongly structured by spatial pro-
cesses occurring at less than half of a kilometer scale, 
with both roots and soils showing similar scales of struc-
ture [34]. While we did find a significant effect at < 250 m 
scale at Lux Arbor, communities were much more struc-
tured at the > 250  m to 158,000  m scale. At this larger 
scale, the survey of North Carolina switchgrass found 
only a weak relationship between space and community 
composition [34]. Furthermore, we found that the impor-
tance of the within-site spatial scale depended on the 
niche. For instance, in a single site over a growing season, 
much of the variance in soil fungal community composi-
tion was explained by spatial distance from 0.1 to 250 m. 
In contrast, the majority of root community change 
seemingly occurred between 0.1 m and ~ 75 m (Fig. 3f ).

We found that bacterial communities varied more 
between regional sampling sites compared to fungal com-
munities. Bacterial communities’ greater responsiveness 
to large spatial drivers is consistent with recent global 
studies of soil microbial biogeography where spatial com-
munity turnover was much stronger for bacteria than for 
fungi [5]. Similar to previous studies on microbial com-
munity biogeography, we found that soil factors, spe-
cifically soil pH, were the dominant drivers of bacterial 
community structure [3]. Precipitation preceding sam-
pling was also a consistent driver of bacterial communi-
ties suggesting that short-term precipitation patterns 
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may partially underlay differences found in bacterial 
communities at regional scales [73]. Climate, especially 
precipitation, has also been found to be the major driver 
of global distributions of soil nematodes and earthworms 
[74, 75] which are major contributors to soil carbon 
cycling but beyond the scope of this study. Fungal com-
munities were also strongly structured by soil pH, but 
plant traits, specifically root biomass and aboveground 
yield, were also significant drivers. Interestingly, a green-
house bioassay study using soils from these same bioen-
ergy land sites found that bacterial community structure 
was slightly more predictive of switchgrass productiv-
ity, compared to fungal community structure (variance 
explained: bacteria 45.0% versus fungi 38.9% [76]). Much 
of the spatial structuring in the fungal community was 
not explained by our measured factors suggesting pos-
sible dispersal limitations as has been predicted to be a 
dominant driver of soil fungal structure in other biogeo-
graphic studies [4, 12]. However, our sampling sites var-
ied by other unaccounted for characteristics, such as land 
use history, the effects of which are difficult to model but 
may account for some of the unexplained variation at the 
site level.

Even though bacteria and fungi differentially responded 
to spatial factors, we found that there were strong corre-
lations between these communities across sampling sites. 
Interestingly, the highest correlation between root bac-
terial and fungal communities occurred at Rhinelander 
which had the lowest microbial richness and levels of soil 
N and pH (Table S1). It is possible that at Rhinelander the 
root communities’ interactions are more apparent than 
at other sites due to the nutrient poor soils. Regardless 
of primary drivers, bacterial communities responded 
more strongly than fungal communities to the site-level 
conditions.

Root microbial community change over a growing season
Over one growing season, at a single location (Lux 
Arbor), root bacterial community composition changed 
more temporally, compared to soil bacterial and fungal 
compositions which changed more spatially. Our results 
are consistent with a study that compared rhizosphere 
and soil bacterial community development within two 
growing seasons which found that rhizosphere commu-
nities show more turnover and increased network com-
plexity compared to soils, as perennial crops grow [77]. 
In general, soil microbial communities have been found 
to show little temporal change and are more structured 
by soil depth [78], elevation [79], and space in general 
[73, 80–82]. Soil nematode communities have also been 
shown to undergo significant turnover during the grow-
ing season, but the magnitude of turnover may depend 
on site land use and soil pore size [83]. Interestingly, 
root fungal community change was only slightly more 

structured temporally than spatially (Table  3) and the 
similarity of the fungal root and soil communities was 
highest when the sampling day was paired temporally 
and spatially (Fig. 4b) suggesting more persistent linkages 
between roots and soils for fungal communities than for 
bacterial communities. It is also possible that the larger 
size of fungal individuals, compared to bacteria, would 
increase the likelihood of capturing fungal root symbi-
onts in soils possibly leading to this higher spatiotempo-
ral pairing. In bacterial communities, the temporal lag 
in the similarity between root and soil may suggest that 
roots are recruiting bacteria from the soil throughout the 
year, driving the significant temporal community struc-
ture in the root bacterial community.

It is also possible that the differential responses of the 
bacterial and fungal communities may be driven by the 
differences in generational times with bacterial commu-
nities likely more temporally responsive due to shorter 
generations. For example, a recent study of soil microbial 
turnover over the course of four years found that bacte-
rial communities showed less community change than 
fungi [10]. Together, these indicate that a temporal scale 
of ‘years’ may better capture fungal turnover, while ‘grow-
ing season’ may better capture bacterial turnover.

Contrary to our hypothesis, plant traits and phenology 
were not drivers of the switchgrass microbiome temporal 
change but instead, weather conditions and soil factors 
were more consistently significant drivers. The only plant 
trait that we found as a significant predictor of commu-
nity composition was subplot yield predicting the soil 
bacterial community. The yield was only measured once, 
at the end of the growing season, and the soil bacterial 
community was only weakly structured temporally, indi-
cating that it is more likely an indicator of spatial com-
munity structure within Lux Arbor. On the other hand, 
the strongest predictor of the root fungal community was 
soil moisture measured at the soil core level. This soil 
moisture measurement captured both the spatial hetero-
geneity in water-holding capacity and temporal factors, 
such as precipitation and humidity. Our results indi-
cate that the below-ground plant microbiome was not 
responsive to plant traits and phenology, as seasonality of 
the Great Lakes region outweighed plant host effects. It 
is possible that in ecosystems with less seasonality, host 
plants may be a more significant driver of microbiome 
composition. Interestingly, temporal distance remained 
in the final model of the root bacterial community, with 
no measured temporally explicit factors remaining, sug-
gesting there is an unmeasured variable that is driving 
the temporal change in the root bacterial community. 
It is possible that soil bacteria recruitment into the root 
endosphere may be a partial driver of the root commu-
nity change.
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The greatest change in both root bacterial and fungal 
communities occurred toward the end of the growing 
season. This late season increase in the rate of community 
change corresponded with a reduced similarity between 
root and soil communities in both domains (Fig.  4) 
and lower correlations between root bacterial and fun-
gal communities (Fig. S11ac). This divergence could be 
driven by the interactions between plant host senescence 
and seasonal changes in weather. For example, studies 
have captured a shift in the below-ground microbiome 
from a relatively stable symbiont-dominated community 
in early growing seasons, dependent on simple root exu-
dated carbon, to a more active saprotrophic-dominated 
community, able to breakdown complex carbon sources, 
towards the end of growing seasons [84–86]. However, 
these shifts from root-associates to saprotrophs seem 
more consistently recorded for bacterial communities 
while fungal communities can lack the shifts in compo-
sition, suggesting that there are guild shifts where root-
associated fungi become saprotrophs [87, 88]. These 
differential responses of the two domains to host senes-
cence may underlay this difference in community trajec-
tories. Although we did not measure this likely complex 
interaction, it may be important for understanding 
year to year differences in the seasonal dynamics of the 
switchgrass microbiome (unpublished data, [35])

Core microbial community spatiotemporal consistency
Even though the switchgrass microbiome varied spatio-
temporally, we identified a core community that persisted 
across space and time as a way to identify taxa that may 
consistently play important roles in switchgrass-domi-
nated ecosystems. The most abundant species in the core 
root bacterial community, making up greater than 10% of 
reads, was a Bradyrhizobium sp., a group that has been 
identified as abundant members of the nifH community 
in this region and likely members of the free-living N 
fixing community associated with switchgrass [35, 89]. 
Additionally, Gammaproteobacteria were secondarily 
dominant taxa in our core community. The relative abun-
dance of this class within the putative free-living N-fixing 
community (e.g., nifH community) has been positively 
correlated with high N fixation in switchgrass soils [35] 
and correlated with switchgrass aboveground productiv-
ity [76].

Although the core bacterial community appeared sta-
ble across the growing season, the core root fungal com-
munity was more dynamic, with the relative abundance 
of symbionts and saprotrophs dependent on the sampling 
site and collection date. The core soil fungal community 
was dominated across all sites and collection dates by 
possible saprotrophs and symbionts, Hypocreales, and 
Mortierellales. The root community was relatively more 
dynamic with the dominant core taxa depending on the 

site and collection date, and it is possible that this varia-
tion in the composition may have implications for host 
health. For example, Helotiales dominated Rhinelander 
while Auriculariales and saprotrophs dominated the core 
root communities of Escanaba. Helotiales are known to 
include dark-septate root endophyte taxa, some of which 
can benefit plant health, as their extracellular enzymes 
are known to be effective in obtaining organic nutrients 
from acidic soils (Jumpponen, 2001). Although many 
Auriculariales are known to fruit on dead wood, some 
genera such as Oliveonia may be associated with plant 
roots [90]. Additionally, the important guild of root 
mutualists, arbuscular mycorrhizal (AM) fungi, specifi-
cally those belonging to Glomerales and Paraglomerales, 
were dominant members within the core root commu-
nity across sites and the growing season. Paraglomerales 
appear to be quite general and neutral in their effects on 
plants, but a bioassay study using soil from the sites we 
characterized in our study found that the abundance of 
Glomerales was predictive of switchgrass biomass [76].

Interestingly, the highest relative abundance of AM 
fungi was observed early in the growing season indicat-
ing an ecological strategy of quickly colonizing emerg-
ing fine roots. With the decline in the abundance of AM 
fungi towards the end of the growing season, other puta-
tive endophytes began to increase in relative abundance 
(Fig. S20a), suggesting that there may be phenological 
shifts in root symbionts.

Weak effects of N on microbial communities
Nitrogen addition had weak effects on microbial commu-
nity structure compared to the spatiotemporal factors. 
While we did find that N addition altered community 
composition and generally reduced diversity and richness 
in the soil and root microbiome, these effects depended 
on sites and collection dates. We also found that N addi-
tion increased root fungal diversity at our northern 
Michigan site and soil bacterial richness towards the 
end of the growing season suggesting that the effects of 
N addition are weak and inconsistent. Although nitrogen 
addition did significantly alter microbiome composition 
over the growing season, it explained < 3.2% of commu-
nity variance (Table  2) and inorganic soil nitrogen was 
not a predictor of microbiome composition (Fig. S13 & 
S15). While many studies have documented changes in 
microbial communities with N addition [23], the strength 
of effect may depend on application rate, which was rel-
atively low in our study (5.6  g/m2). A meta-analysis of 
the effects of N addition on soil bacteria in agroecosys-
tems found that N reduced diversity, but the effect was 
only significant when the rate of application was greater 
than 10  g/m2 [22]. Furthermore, a study of switch-
grass soil microbiomes found that excess N applied at a 
rate of 19.6  g/m2 altered the community composition, 
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increased metabolic function, and reduced potential N2 
fixation while N addition at a rate of 5.6 g/m2 had little 
to no effect on the soil microbial community [26, 32]. 
Our results, and results from other studies, suggest that 
the effects of N addition depend on application rates, but 
capturing weak effects of N addition may also depend on 
the timing of sampling and interactions with other abi-
otic factors such as soil phosphorus and climate.

The most apparent effect of N addition on community 
composition was the reduction in correlations between 
root bacterial and fungal communities towards the end 
of the growing season. It is likely that N addition alters 
the relative trajectory of the bacterial and fungal com-
munities in switchgrass roots. However, under the single 
collection date used in our across-sampling-site analy-
ses, switchgrass microbiome compositions, and cor-
relations between communities, of Lux Arbor showed 
no response to N application. In support of the weak 
effects of N addition on the soil environment, a study 
of our bioenergy lands site found that N increased total 
organic and microbial nitrogen but had weak to no effect 
on all other measured soil variables [25]. Our sampling 
across a growing season did find a weak but significant 
effect of N on community compositions. In opposition 
to our hypothesis, the effects of N on community com-
position did not consistently peak after-N application. In 
an experiment near Lux Arbor, temporally explicit sam-
pling of switchgrass monocultures found that N applica-
tion of 5.6 g/m2 had no effect on soil bacteria and fungi 
across the four switchgrass growth stages sampled [26]. 
Our more temporally intensive sampling (six root and 
15 soil collection dates) likely increased our ability to 
capture the weak effects of N. The effects of N addition 
were weak to non-existent and depended on site and col-
lection date; therefore, we conclude that spatiotemporal 
variables were more important drivers of the switchgrass 
microbiome.

Conclusion
In this study, we sampled a single variety of switchgrass 
in monoculture across a geographic region to understand 
factors that account for the spatiotemporal structure of 
root and soil microbiomes. We found that the switchgrass 
microbiome was structured both spatially and temporally 
and that the strength of these factors depended on the 
microbial domain and the niche that they inhabit. In gen-
eral, bacterial communities were more spatiotemporally 
structured compared to fungal communities. The larg-
est spatial scale of sampling across regional sites had the 
strongest effect on microbial communities, but all com-
munities, except for soil fungi, were structured by time 
of sampling. The relative importance of spatiotemporal 
patterns in microbial communities also depended on the 
microbial niche. We found that root communities were 

more structured temporally and soil communities were 
more structured spatially. These differential responses 
of niches and domains to spatiotemporal factors likely 
affected plant microbiome interactions and assembly 
within the plant microbiome. We found fungal commu-
nities were spatiotemporally paired while root bacteria 
appeared to be continually recruited from the soil com-
munity leading to temporal lags in community similarity. 
Our study highlights the vast differences among drivers 
of below-ground microbiome composition and assembly 
between domains and niches across space and time.
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Supplemental Tables: Table S1. Abiotic and biotic characteristics of 
switchgrass monocultures from the Marginal Land Experiment sites. Values 
are averages from core-level measurements, subplot-level measurements, 
and plot-level measurements. Values in parentheses represent the number 
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Experiment sites. Bolded texts highlight significant factors. Table S9. 
Results from mixed effects models testing the effects of collection date 
and nitrogen (N) addition on the residual error from Procrustes concor-
dance between bacterial and fungal communities from roots and soils of 
switchgrass monocultures across the growing season at Lux Arbor. Bolded 
texts highlight significant factors. Table S10. Results from mixed effects 
models testing the effects of collection date and nitrogen (N) addition on 
the richness and inverse Simpson diversity of bacterial and fungal commu-
nities from roots and soils of switchgrass monocultures across the growing 
season at Lux Arbor. Bolded texts highlight significant factors. Table S11. 
Results from mixed effects models testing the effects of site and nitrogen 
(N) addition on beta dispersion of bacterial and fungal communities from 
roots and soils of switchgrass monocultures at the Marginal Land 
Experiment sites. Bolded texts highlight significant factors. Table S12. 
Results from mixed effects models testing the effects of collection date, 
nitrogen (N) addition, and comparison date (soils either collected 2 weeks 
prior or same day as roots) on the similarity (1-Bray\ Curtis\ dist) of root 
bacterial and fungal communities to soil communities of switchgrass 
monocultures across the growing season at Lux Arbor. Bolded texts 
highlight significant factors. Table S13. Results from mixed effects models 
testing the effects of collection date and nitrogen (N) addition on beta 
dispersion of bacterial and fungal communities from roots and soils of 
switchgrass monocultures across the growing season at Lux Arbor. Bolded 
texts highlight significant factors. Table S14. Core bacterial and fungal 
community richness and relative abundance (percentage of reads) from 
roots and soils taken from switchgrass monocultures at the Marginal Land 
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Experiment (MLE) sites and across the growing season at Lux Arbor. Figure 
S1. The fit of core bacterial communities in ab) roots and cd) soils of 
switchgrass monocultures across the Marginal Land Experiment sites. ac) 
Neutral model fits of abundance-occupancy curves of the bacterial 
communities with core members fitting the neutral model filled gray, core 
members with higher-than-expected frequency are filled purple, and core 
members at lower-than-expected frequency are filled black. All other 
members of the community are represented by unfilled symbols. bd) 
OTUs ranked by their abundance/occupancy versus the Bray-Curtis 
change with the exclusion of an OTU. The red line represents the last 5% 
increase in the Bray-Curtis distance. Figure S2. The fit of core fungal 
communities in ab) roots and cd) soils of switchgrass monocultures across 
the Marginal Land Experiment sites. a) Abundance-occupancy plot, 
neutral model failed to fit of the fungal communities with core members 
filled red and all other taxa are represented by unfilled symbols. c) Neutral 
model fits of abundance-occupancy curves of the fungal communities 
with core members fitting the neutral model filled gray, core members 
with higher-than-expected frequency are filled purple, and core members 
at lower-than-expected frequency are filled black. All other members of 
the community are represented by unfilled symbols. bd) OTUs ranked by 
their abundance/occupancy versus the Bray-Curtis change with the 
exclusion of an OTU. The red line represents the last 5% increase in the 
Bray-Curtis distance. Figure S3. The fit of core bacterial communities in ab) 
roots and cd) soils of switchgrass monocultures at Lux Arbor across the 
growing season. ac) Neutral model fits of abundance-occupancy curves of 
the bacterial communities with core members fitting the neutral model 
filled gray, core members with higher-than-expected frequency are filled 
purple, and core members at lower-than-expected frequency are filled 
black. All other members of the community are represented by unfilled 
symbols. bd) OTUs ranked by their abundance/occupancy versus the 
Bray-Curtis change with the exclusion of an OTU. The red line represents 
the last 5% increase in the Bray-Curtis distance. Figure S4. The fit of core 
fungal communities in ab) roots and cd) soils of switchgrass monocultures 
at Lux Arbor across the growing season. ac) Neutral model fits of 
abundance-occupancy curves of the fungal communities with core 
members fitting the neutral model filled gray, core members with 
higher-than-expected frequency are filled purple, and core members at 
lower-than-expected frequency are filled black. All other members of the 
community are represented by unfilled symbols. bd) OTUs ranked by their 
abundance/occupancy versus the Bray-Curtis change with the exclusion 
of an OTU. The red line represents the last 5% increase in the Bray-Curtis 
distance. Figure S5. The proportion of ac) richness and bd) reads included 
in the core bacterial community at the Bray-Curtis cut-offs for ab) roots 
and cd) soils of switchgrass monocultures of the Marginal Land 
Experiment. The red line represents the chosen threshold of a 5% increase 
in Bray-Curtis. Figure S6. The proportion of ac) richness and bd) reads 
included in the core fungal community at the Bray-Curtis cut-offs for ab) 
roots and cd) soils of switchgrass monocultures of the Marginal Land 
Experiment. The red line represents the chosen threshold of a 5% increase 
in Bray-Curtis. Figure S7. The proportion of ac) richness and bd) reads 
included in the core bacterial community at the Bray-Curtis cut-offs for ab) 
roots and cd) soils of switchgrass monocultures across one growing 
season at Lux Arbor. The red line represents the chosen threshold of a 5% 
increase in Bray-Curtis. Figure S8. The proportion of ac) richness and bd) 
reads included in the core fungal community at the Bray-Curtis cut-offs for 
ab) roots and cd) soils of switchgrass monocultures across one growing 
season at Lux Arbor. The red line represents the chosen threshold of a 5% 
increase in Bray-Curtis. Figure S9. NMDS plots with Procrustes rotations of 
the fungal communities onto bacterial communities of a) root and b) soils 
of switchgrass monocultures at the Marginal Land Experiment in nitrogen 
(N) addition (filled circles) and control (open triangles) subplots sampled 
July 2018. Boxplot of the residual errors from the Procrustes models for c) 
roots and d) soils in N addition (dark fill) and control (light fill) subplots. 
Lowercase letters represent significant differences between sites for roots. 
Uppercase letters represent significant differences between sites for soil. 
“***” represents p < 0.001 Tukey HSD adjusted significance for the effect of 
N addition. Figure S10. a) Bacterial richness, b) fungal richness, c) bacterial 
diversity, and d) fungal diversity (inverse Simpson) of switchgrass 
monocultures at each Marginal Land Experiment site from nitrogen (N) 
addition (dark fill) and control (light fill) subplots. Lowercase letters 
represent significant differences between sites for roots. Uppercase letters 
represent significant differences between sites for soil. “#”, “**”, and “***” 

represents p < 0.10, p < 0.01, and p < 0.001 Tukey HSD adjusted 
significance for the effect of N addition. Figure S11. NMDS plots with 
Procrustes rotations of the fungal communities onto bacterial communi-
ties of a) root and b) soils of switchgrass monocultures at Lux Arbor from 
across one growing season in nitrogen (N) addition (filled circles) and 
control (open triangles) subplots. Boxplot of the residual errors from the 
Procrustes models for c) roots and d) soils from N addition (dark fill) and 
control (light fill) subplots. Fill color ramp represents collection dates with 
lighter colors representing earlier dates and darker colors later dates. “#”, “*”, 
and “**” represents p < 0.10, p < 0.05, and p < 0.01 Tukey HSD adjusted 
significance for the effect of N addition. Figure S12. a) Bacterial richness, b) 
fungal richness, c) bacterial diversity, and d) fungal diversity (inverse 
Simpson) of switchgrass monocultures across one growing season at Lux 
Arbor in nitrogen (N) addition (dark fill) and control (light fill) subplots. Fill 
color ramp represents collection dates with lighter colors representing 
earlier dates and darker colors representing later dates. “#”, “*”, and “**” 
represents p < 0.10, p < 0.05, and p < 0.01 Tukey HSD adjusted significance 
for the effect of N addition. Figure S13. Loess graphs from generalized 
dissimilarity models (GDMs) of the a) root bacterial, b) root fungal, c) soil 
bacterial, and d) soil fungal communities of switchgrass monocultures 
from sites of the Marginal Land Experiment. Variables were scaled (0 to 1) 
to allow for comparison. Panel text represents the significance and 
percentage of deviance explained by GDMs. Figure S14. Beta dispersion in 
a) bacterial and b) fungal communities of the roots and soils of 
switchgrass monocultures at the Marginal Land Experiment sites from 
nitrogen (N) addition (dark fill) and control (light fill) subplots. Lowercase 
letters represent significant differences between sites for roots. Uppercase 
letters represent significant differences between sites for soil. Nitrogen 
addition did not have a significant effect on beta dispersion. Figure S15. 
Loess graphs from generalized dissimilarity models (GDMs) of the a) root 
bacterial, b) root fungal, c) soil bacterial, and d) soil fungal communities of 
switchgrass monocultures from Lux Arbor across one growing season. 
Variables were scaled (0 to 1) to allow for comparison. Panel text 
represents the significance and percentage of deviance explained by 
GDMs. Figure S16. Beta dispersion in a) bacterial and b) fungal communi-
ties of the roots and soils of switchgrass monocultures at Lux Arbor from N 
addition (dark fill) and control (light fill) subplots across one growing 
season. Fill color ramp represents collection dates with lighter colors 
representing earlier dates and darker colors later dates. Nitrogen addition 
did not have a significant effect on beta dispersion. Figure S17. Heat 
phylogenetic trees of families within core a) root bacterial, b) root fungal, 
c) soil bacterial, and d) soil fungal communities of switchgrass monocul-
tures from sites of the Marginal Land Experiment. Node size represents 
richness (# of OTUs) and node color represents the log2 ratio of median 
proportions of read abundance between root (green colors) or soil (brown 
colors) communities. Grey nodes represent non-significant differences in 
taxa abundance (p > 0.05; false discovery rate adjusted Wilcoxon rank-sum 
pairwise test). Figure S18. Heat phylogenetic tree of families within core a) 
root bacterial, b) root fungal, c) soil bacterial, and d) soil fungal communi-
ties of switchgrass monocultures from Lux Arbor across one growing 
season. Node size represents richness (# of OTUs) and node color 
represents the log2 ratio of median proportions of read abundance 
between root (green colors) or soil (brown colors) communities. Grey 
nodes represent non-significant differences in taxa abundance (p > 0.05; 
false discovery rate adjusted Wilcoxon rank-sum pairwise test). Figure S19. 
Stacked bar graphs of the FunGuild classifications of core a) root and b) 
soil fungal communities of switchgrass monocultures at sites of the 
Marginal Land Experiment. Guilds with multiple hits are grouped. Figure 
S20. Stacked bar graphs of the FunGuild classifications of core a) root and 
b) soil fungal communities of switchgrass monocultures from Lux Arbor 
across one growing season. Guilds with multiple hits are grouped.
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