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Abstract 

Understanding the variability of microbial niches and their interaction with abiotic and biotic factors in the Arc‑
tic can provide valuable insights into microbial adaptations to extreme environments. This study investigates the 
structure and diversity of soil bacterial communities obtained from sites with varying vegetation coverage and soil 
biogeochemical properties in the low Arctic tundra and explores how bacteria interact under different environ‑
mental parameters. Our findings reveal differences in bacterial composition and abundance among three bacterial 
niche breadths (specialists, common taxa, and generalists). Co‑occurrence network analysis revealed Rhizobiales and 
Ktedonobacterales as keystone taxa that connect and support other microbes in the habitat. Low‑elevation indica‑
tors, such as vascular plants and moisture content, were correlated with two out of three generalist modular hubs 
and were linked to a large proportion of generalists’ distribution (18%). Structural equation modeling revealed that 
generalists’ distribution, which influenced the remaining microbial communities, was mainly regulated by vegetation 
coverage as well as other abiotic and biotic factors. These results suggest that elevation‑dependent environmental 
factors directly influence microbial community structure and module formation through the regulation of generalists’ 
distribution. Furthermore, the distribution of generalists was mainly affected by macroenvironment filtering, whereas 
the distribution of specialists was mainly affected by microenvironment filtering (species‑engineered microbial niche 
construction). In summary, our findings highlight the strong top–down control exerted by vegetation on generalists’ 
distribution, which in turn shapes the overall microbial community structure in the low Arctic tundra.
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Introduction
The Arctic region is classified as an extreme environment 
due to prolonged periods of wide temperature varia-
tion, freezing and thawing cycles [65], high UV radiation 
exposure [54], and nutrient limitations [63]. Moreover, 
the Arctic region is currently undergoing unprecedented 
disturbances as a result of global warming [33]. One such 
disturbance is the observed greening of the tundra eco-
system, characterized by increased plant productivity 
and expansion of shrubs and trees northwards and into 
previously treeless areas [23, 30]. Soil microorganisms, 
which play a crucial role in maintaining ecosystem func-
tion and soil fertility in the Arctic, are highly sensitive to 
climate changes and are likely to be affected by the ongo-
ing warming of the Arctic region.

A previous study has revealed that microbial species 
can be categorized into different ecological groups based 
on their ability to adapt to various ecological niches [58]. 
Understanding the dimensions of these niches and the 
distribution of organisms can provide insights into the 
tolerance and responses of organisms to environmental 
changes [4]. Generalists, for example, are more adapt-
able to different environmental conditions than special-
ists and have a wider distribution range [76]. In contrast, 
specialists have narrower tolerances than generalists and 
restricted distributions, making them more vulnerable to 
extinction when environmental conditions change [70].

The distribution of microbial generalists and special-
ists is regulated by a combination of stochastic (neutral 
theory-based) and deterministic (niche theory-based) 
processes [43, 51]. Correlation-based microbial co-
occurrence network analysis has revealed that micro-
bial assemblages exhibit nonrandom patterns and are 
predominantly influenced by deterministic processes 
through environmental filtering [2, 27]. For example, 
macroenvironmental filtering focuses on the relationship 
between species and the macroenvironment, where spe-
cies with similar traits tend to coexist and survive in the 
same habitat [12, 20, 38, 39, 41].

In the Arctic, the distribution of soil microorganisms 
is highly dependent on soil characteristics [8], vegeta-
tion types [11], and geographical distance [67]. Vegeta-
tion types influence soil biogeochemical properties [10], 
which in turn affect local microbiological communities in 
tundra soils [11, 78]. In the low Arctic, dominant bacte-
rial communities, particularly Acidobacteria, tend to be 
similar regardless of vegetation type but differ in terms 
of relative abundance and the presence of other minor 
phyla [11]. In contrast, microenvironmental filtering or 
niche construction emphasizes on the capacity of spe-
cies to modify their microenvironments through bio-
logical metabolism and individual activities and choices 
[12, 55]. Niche construction (microenvironment) can 

alter environmental filtering (macroenvironment); there-
fore, the use of the concept of modified environmental 
filtering, which includes both biotic microenvironmen-
tal filtering and abiotic macroenvironmental filtering, is 
recommended for more accurately predicting different 
interactions [29, 75].

Development of biological association networks is cru-
cial in determining complex microbial interactions in 
diverse ecosystems, as they can extract new information 
on ecological interactions, organizational patterns, and 
keystone organisms and their responses to environmen-
tal variables that may not be revealed using conventional 
techniques [12–15, 18, 19, 22]. For instance, co-occur-
rence network analysis of tundra soils has revealed that 
a node correlated to pH is linked to the members of Alp-
haproteobacteria and Acidobacteria [21].

Although several studies on direct interactions 
between microorganisms and various environmental 
parameters in the Arctic have been conducted, there is 
still a lack of in-depth studies exploring both direct and 
indirect interactions and association patterns between 
different microbial groups that coexist in this environ-
ment. In the present study, we used network analysis and 
structural equation modeling to investigate the associa-
tions between different soil bacterial groups from three 
different elevations with distinct vegetation coverage pat-
terns in the low Arctic tundra of Salluit. Our study aims 
to address the following questions: (i) which taxa belong 
to different niche-based ecological categories, namely, 
microbial generalist (broadly distributed) and specialist 
(restricted distribution) groups; (ii) how do these ecologi-
cal categories shape the overall microbial network struc-
ture and which are the keystone species in the low Arctic; 
and (iii) how sensitively do microbes from different eco-
logical categories respond to abiotic and biotic factors.

Materials and methods
Study area and field surveys
Field surveys were conducted during the summer of 
2017 at Salluit, Quebec, Canada (62.1°  N 75.4°  W). 
The mean annual air temperature in Salluit is approxi-
mately − 8.5  °C, with a mean annual precipitation of 
300 mm [32]. Soil sampling was conducted at three sites 
(S1, S2, and S3) by establishing three line transects at 
low-, mid-, and high-elevation areas that represented dif-
ferent vegetation and environmental conditions at each 
site (Fig. 1A. Transect A, referred to as the high-elevation 
area, was established on the crest of hills with limited 
vegetation cover; transect B, referred to as the mid-eleva-
tion area, was established in a mid-slope area with inter-
mediate vegetation coverage; and transect C, referred to 
as the low-elevation area, was established in lower slopes 
with high vegetation coverage (Fig.  1B). Twenty-five 
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1 m × 1 m quadrats were set at 6 m intervals along each 
150 m transect, and soil samples were randomly collected 
from each quadrat. In total, 225 top soil samples were 
collected using a sterile scoop and placed into 5-mL ster-
ile sampling tubes containing RNA Stabilization Solution 
(Ambion, Austin, Texas). Samples were frozen at − 20 °C 
upon sampling and stored in this condition until DNA 
extraction.

Soil biogeochemical analyses and vegetation cover
Soil biogeochemical analyses were conducted following 
previously described methods [36]. Total soil carbon (C) 
and nitrogen (N) concentrations were determined using 
an NC analyzer (Sumigraph NCH-22F, Sumika Chemical 

Analysis Service, Osaka, Japan). The depth of plant litter 
and mineral soil was measured using a 150-mm rod at 
three different points within each sampling quadrat. Soil 
samples at depths of 0.5–2.0 cm were collected after the 
removal of plant materials and living roots for characteri-
zation of water content (soil moisture), soil pH, electrical 
conductivity (EC), and C and N concentrations. EC and 
pH were measured using EC and pH meters, respectively 
(Twin EC and Twin pH, respectively; Horiba Ltd., Kyoto, 
Japan). Soil moisture was measured using a soil mois-
ture sensor (HH2; DeltaT Devices Ltd., Burwell, UK), 
and final results were represented as the average of three 
readings at each sampling point. In addition, the ratio 
of wet and dry soil weight was estimated as a proxy for 

Fig. 1 A Map of the study area and the nine sampling sites in Salluit, Nunavik. In total, 225 samples were collected (between the points in each 
sampling site). B Land and vegetation coverage at each sampling site
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the water content of soil. Approximately 15 g of wet soil 
was weighed and remeasured after oven-drying at 60 °C 
for 48  h. The cover of vascular plant species, rock, and 
cryptogams (bryophytes and lichens) was recorded using 
a 1 m × 1 m quadrat at each sampling point. Soil tempera-
ture was measured using digital stick thermometers that 
were inserted into the soil to a depth of 1 cm. Measure-
ments were performed from 10:00 to 18:00 on sunny days 
between July 24 and 31, 2017 to ensure consistent meas-
urement conditions.

Bacterial community composition analysis
DNA was extracted from approximately 0.5  g soil sam-
ples using a Fast DNA Spin Kit for Soil (MP Biomedical, 
Santa Ana, CA) according to the manufacturer’s instruc-
tions. The bacterial 16S rRNA gene was amplified using a 
universal bacterial primer set, 341F/805R (341F: 5′-CCT 
ACG GGNGGC WGC AG-3′; 805R: 5′-GAC TAC HVGGG 
TAT CTA ATC C-3′), targeting the V3–V4 region of the 
16S rRNA gene (Herlemann et  al., 2011). PCR amplifi-
cation, purification, and quantification were performed 
according to the Illumina 16S metagenomic sequencing 
library protocol. Paired-end sequencing was performed 
using a MiSeq Reagent Kit v3 (600 – cycle) (Illumina) 
according to the manufacturer’s instructions.

To investigate sequence variants of a single nucleotide 
in the gene, amplicon sequence variants (ASVs) of the 
16S rRNA gene were calculated using DADA2 (version 
1.8) following the pipeline tutorial 1.8 (date of access: 
March 2021; https:// benjj neb. github. io/ dada2/ tutor ial_1_ 
8. html) in R [9]. Singletons, doubletons, and tripletons 
were removed from the dataset of the 16S rRNA gene to 
further reduce any sequencing errors produced by the 
MiSeq Illumina sequencing platform. The latest Silva 
database (release 138) was used to align and classify the 
sequences of the 16S rRNA gene [62]. After sequence 
classification, the chloroplast, mitochondria, archaea, 
and eukaryote sequences were removed.

To measure habitat specialization, we used the niche 
breadth (B) index described by Levins [42] based on the 
following formula:

where Bj and Pij indicate niche breadth and relative 
abundance of species, respectively. Generalists distrib-
uted across a wider environmental range exhibit higher 
B-values than specialists. Given that extremely rare ASVs 
could erroneously indicate specialists, ASVs with aver-
aged relative abundances of < 2 ×  10−5 were excluded 
from network analysis and structural equation modeling 
(SEM) [44, 58]. Furthermore, ASVs observed in at least 

Bj =
1

N
i=1 P

2
ij

,

25 samples (approximately 10% of the total samples) were 
selected for network analysis and SEM. In this study, a 
B-value of > 78 was chosen as a cutoff criterion for gen-
eralists, as this value lies within the outlier area of the 
B-value distribution [44, 45], whereas ASVs with B-values 
of < 22 were regarded as specialists (lower quartile) (Fig. 
S1), and the remaining ASVs were regarded as common 
taxa. The Shannon diversity index was calculated using 
functions in Vegan. To normalize the data for diversity 
indices, the reads were normalized to the lowest number 
of reads using the “rrarefy” function of Vegan.

Microbial association network and topological features
To investigate the relationships among generalists, com-
mon taxa, specialists, and environmental variables, we 
constructed microbial networks based on microbial niche 
breadth, specifically the niche breadth network. This net-
work included separate networks for generalists, com-
mon taxa, and specialists. We also constructed a total 
network that included generalists, common taxa, and 
specialists to explore the relationships between microbes 
and environmental variables. Spearman’s rank correla-
tion coefficient (ρ) was used to construct microbial asso-
ciation networks, and calculations were performed using 
the Hmisc package [28] in R. To reduce the impact of rare 
ASVs in the dataset, we applied the following thresholds 
for each dataset: (i) at least 25 observed samples and (ii) 
a relative proportion of > 0.05% in at least one sample. 
P-values were approximated using t or F distributions, 
and Q-values (adjusted P-values; false discovery rate) 
were calculated using the Benjamini and Hochberg false 
discovery rate procedure [5] to account for multiple test-
ing. For further analyses, only positive correlations with 
|ρ|> 0.5 and both P- and Q-values of < 0.001 were selected. 
The resulting networks were visualized using Cytoscape 
3.8.2 [66], and the yFiles organic layout algorithm in 
Cytoscape was employed for network layout. To com-
pare network topological features, randomly distributed 
Erdős–Rényi networks (with the same number of nodes 
and links) were used as a null model, and calculations 
were performed using the Network Randomizer plugin 
in Cytoscape. Network topological features were calcu-
lated using the “Networkanalyzer” plugin in Cytoscape 
and the R package igraph [1, 17]. For the purpose of com-
parison, Erdős–Rényi random networks were employed 
as null models using the Network Randomizer plugin in 
Cytoscape [17]. The small-world coefficient (SW) was 
defined as follows: SW = clustering coefficient (C/CR)/
characteristic path length (L/LR), where R represents 
parameters from a random network (Table  1). To iden-
tify the topological features of each node in the microbial 
network, we calculated the within-module degree (Zi) 
and among-module connectivity (Pi) [26]. Based on their 

https://benjjneb.github.io/dada2/tutorial_1_8.html
https://benjjneb.github.io/dada2/tutorial_1_8.html
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Zi and Pi scores, nodes were classified into four roles: 
peripheral nodes with limited links to other nodes within 
their module (Zi ≤ 2.5 and Pi ≤ 0.62), connectors that are 
highly connected to nodes from other modules (Zi ≤ 2.5 
and Pi > 0.62), module hubs that are highly linked to other 
nodes within their module (Zi > 2.5 and Pi ≤ 0.62), and 
network hubs that bridge both module hubs and connec-
tors (Zi > 2.5 and Pi > 0.62) [57]. The modules were identi-
fied using the Louvain algorithm in the igraph package of 
R [6]. To calculate the distribution patterns of the major 
modules, the relative abundances of ASVs (except for 
environmental parameters) in each module were normal-
ized using feature scaling [Xʹ = (X −  Xmin)/(Xmax −  Xmin]. 
After normalization, the normalized ASVs in each mod-
ule were averaged to obtain the distribution patterns of 
each module [13]. Finally, a dendrogram was constructed 
based on the distribution patterns of the major modules 
using Ward’s method, as implemented via the “hclust” 
function in R (version 3.4.0) (Team, 2013).

GeoChip analysis
Total DNA and RNA for GeoChip analysis were extracted 
from 0.5 g soil samples using a ZymoBIOMICS DNA & 
RNA Kit (Zymo Research, Irvine, CA, USA). The total 
RNA extracted was subjected to DNAse I treatment, and 
the success of the DNAse treatment was confirmed by 
the absence of PCR amplification of the V1–V3 bacterial 
16S rRNA gene. cDNA was synthesized from the RNA 

template using the SuperScript IV First-Strand Synthesis 
System for RT-PCR (Invitrogen, Carlsbad, CA, USA) fol-
lowing the manufacturer’s instructions. GeoChip 5.0 M, a 
comprehensive functional microarray, was used to reveal 
the functional diversity of the soil samples. For each soil 
sample, both DNA and paired cDNA samples were sent 
to Glomics Inc. (Oklahoma, USA) for functional gene 
sequencing using the GeoChip 5.0 M Microarray (Agilent 
Technologies Inc., Santa Clara, USA) and the method 
described by Shi et al. [68]. In brief, 500 ng of DNA was 
labeled with the fluorescent dye Cy-3 (GE Healthcare, 
CA, USA) using random priming with Klenow frag-
ments, purified using a QIAquick Purification Kit (Qia-
gen), and then dried. The labeled DNA was suspended 
in hybridization solution containing 10% formamide, 
Hi-RPM Hybridization Buffer, aCGH blocking agent, 
Cot-1 DNA, and common oligonucleotide reference 
standards. The solution was denatured at 95 °C for 3 min, 
incubated at 37  °C for 30  min, loaded onto the micro-
array slide well, and hybridized at 67  °C for 24  h. After 
hybridization, the slides were rinsed and imaged with a 
NimbleGen MS200 microarray scanner (Roche Nimble-
Gen, Madison, WI, USA). Functional gene names listed 
in this study were assigned based on the original func-
tional gene annotations in GeoChip 5.0 M (http:// ieg. ou. 
edu/ gcs/ gcsmm. cgi? versi on= gc50_ 180k). For normaliza-
tion, the total abundance and expression of each category 
or gene were divided by those of the housekeeping gene 

Table 1 Microbial association network topological features and statistics

Topological features Generalist network 
(Fig. 2A)

Common taxa network 
(Fig. 2B)

Specialist network 
(Fig. 2C)

Total 
network 
(Fig. 4A)

Nodes 94 794 460 1,461

Edges 368 7112 1243 13,470

Diameter 10 12 28 13

Average number of neighbours 8.0 18.7 5.9 19.2

Network density 0.09 0.03 0.01 0.01

Network heterogeneity 0.93 1.12 0.91 1.26

Network heterogeneity, random 0.32 0.23 0.42 0.24

Centralization 0.19 0.15 0.07 0.10

Centralization, random 0.09 0.02 0.02 0.01

Modularity 0.46 0.60 0.77 0.62

Modularity, random 0.31 0.21 0.43 0.21

Average clustering coefficient (C) 0.45 0.46 0.33 0.40

Clustering coefficient, random  (Cr) 0.09 0.02 0.01 0.01

Characteristic path length (L) 4.30 4.97 9.43 5.03

Characteristic path length, random  (Lr) 2.41 2.64 3.82 2.80

C/Cr 5.29 20.00 27.50 30.77

L/Lr 1.78 1.89 2.47 1.80

Small‑world coefficient (SW) 2.97 10.62 11.14 17.13

http://ieg.ou.edu/gcs/gcsmm.cgi?version=gc50_180k
http://ieg.ou.edu/gcs/gcsmm.cgi?version=gc50_180k
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gyrB [16]. Heatmaps were constructed using the function 
“heatmap.2” with row z-score normalization in the gplots 
package of R [79].

SEM
The relationships among environmental factors, veg-
etation (vascular plants and cryptogams), and bacterial 
communities were estimated using SEM. Spearman’s 
rank correlation coefficient (ρ) was calculated to elimi-
nate multicollinear environmental variables prior to SEM 
analysis. SEM was performed using the “sem” function 
in the Lavvan package [64]. The conceptual model of the 
hypothetical relationships proposed that (i) plant cover-
age was influenced by environmental factors, (ii) both 
plant coverage and environmental factors influenced 
bacterial communities (generalists, common taxa, and 
specialists), and (iii) generalists drove the dynamics of 
common taxa and specialists, with common taxa further 
influencing specialists. Plant coverage was considered 
a latent variable indicated by vascular plant and crypto-
gam coverage. The first detrended correspondence analy-
sis (DCA) axis scores were used in the subsequent SEM 
analysis for generalists, common taxa, and specialists.

Statistical analyses
All statistical analyses were performed using the R pack-
age (version 3.4.0) [73]. To compare the differences in the 
compositions of generalists, common taxa, and special-
ists among elevations, we used DCA with the “decorana” 
function in Vegan [56]. Differences in taxonomic compo-
sition among elevations were tested using PERMANOVA 
with 999 permutations, employing the “adonis” func-
tion in Vegan. The relationships between environmental 
parameters and bacterial community composition were 
examined by fitting vectors onto the ordination space 
using the “envfit” function in Vegan. The significance of 
the fitted vectors was assessed using a permutation pro-
cedure with 999 permutations. One-way analysis of vari-
ance followed by Tukey’s honest significant difference 
test were used to determine significant differences in 
environmental parameters among the three elevations.

Results
Environmental parameters
In total, 225 soil samples were categorized into three 
groups based on sampling elevation and vegetation cov-
erage: high (crest, low vegetation coverage), middle (mid-
slopes, intermediate vegetation coverage), and low (lower 
slopes, high vegetation coverage) at 302 ± 39, 251 ± 21, 
and 162 ± 43  m, respectively (Fig.  1A). Environmental 
parameters and vegetation coverage varied significantly 
among the elevations (Additional file 1: Table S1; Fig. 1B). 
For example, vascular plant coverage in low-elevation 

samples was approximately four times higher (70%) than 
that in high-elevation samples, whereas cryptogam cov-
erage was significantly higher in high-elevation samples 
(Table 1; Fig. 1B). Top soil temperature increased signifi-
cantly with elevation, ranging from 10.2 to 17.1 °C. Mois-
ture content ranged from 18 to 59%, with the highest and 
lowest values observed at lower and higher elevations, 
respectively (Additional file  1: Table  S1). The average 
C/N ratio was 13.1 ± 2.6, with significantly higher values 
at low elevations (Additional file 1: Table S1). The mean 
pH value across the sampling areas was 5.1 ± 0.3, and no 
significant differences in pH values were observed among 
the three elevations (Additional file 1: Table S1).

Bacterial community composition and habitat 
specialization
In total, 19,979 ASVs were identified from 7,699,439 
high-quality reads in 225 soil samples, with an aver-
age of 835 ± 503 ASVs in each sample. Among all sam-
pling sites, the phylum Proteobacteria (27.9%) was the 
most abundant microbial group, followed by Acidobac-
teria (19.5%), Verrucomicrobiota (12.9%), Chloroflexi 
(11.1%), and Actinobacteriota (9.7%). After removing 
rare ASVs (refer to the Materials and Methods for the 
exclusion criteria), 2,141 ASVs remained for further anal-
ysis based on the niche breadth index (Fig. 2A). Among 
these, 112 (22.2% ± 6.4%), 1190 (41.0% ± 6.3%), and 839 
(10.0% ± 3.2%) ASVs were identified in generalists, com-
mon taxa, and specialists, respectively (Fig. 2B).

To explore the prevailing patterns of generalist, com-
mon taxa, and specialist compositions and identify 
environmental parameters serving as potential drivers, 
we performed DCA. Microbial variation was more sig-
nificant among specialists than among common taxa or 
generalists (Fig. 3A–C) and was segregated according to 
low-, mid-, and high-elevation levels (PERMANOVA; 
generalists, common taxa, and specialists pseudo‐
F = 5.21, 3.93, and 2.46, respectively; p < 0.001). The 
microbial variation for the three niche-based groups was 
significantly influenced by elevation level, vascular plant 
coverage, soil temperature, and C/N ratio (Additional 
file  1: Table  S2). However, no significant difference was 
observed in the bacterial diversity index among the sam-
pling sites (Additional file 1: Fig. S2).

At the class level, major microbes among generalists, 
common taxa, and specialists displayed significant differ-
ences in their abundances (Fig. 3D–F). For instance, the 
proportions of Alphaproteobacteria and Acidobacteriae 
were two- to three-fold higher among generalists than 
among specialists (t-test, p < 0.001), whereas Ktedono-
bacteria and Vicinamibacteria were absent among gener-
alists. In contrast, the proportions of Verrucomicrobiae, 
Planctomycetes, Phycisphaerae, and Bacteroidia were 
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two- to three-fold higher among specialists than among 
generalists (t-test, p < 0.001). As expected, the microbial 
components were relatively evenly distributed in the gen-
eralists’ group compared with the specialists’ group.

Niche breadth‑based distribution networks and modules
Niche breadth-based distribution networks were con-
structed using the ASVs assigned to the generalists, 
common taxa, and specialists along with 15 different 
environmental parameters. These networks were des-
ignated as generalist, common taxa, and specialist net-
works (Fig.  4A–C), and their topological features are 
summarized in Table  1. The characteristic path length, 
representing the average shortest path between all pairs 
of species, was approximately two-fold higher in the spe-
cialist network than in the common taxa and generalist 
networks. Network centralization was lower in the spe-
cialist network (0.07) than in the common taxa (0.15) 
and generalist (0.19) networks. However, the special-
ist network exhibited the highest modularity (0.77), and 
the modularity of each niche breadth-based distribution 
network was higher than that of its Erdős–Rényi ran-
dom network. In addition, all SW values, with higher 
values indicating higher small-worldliness of the net-
work, were > 1, suggesting that all niche breadth-based 
distribution networks in this study exhibited small‐world 
properties.

Each niche breadth-based distribution network com-
prised 4–10 major modules, which occupied 87%–
95% of the total nodes in each association network. 

Dendrograms constructed using the major module distri-
bution patterns allowed separation of the major modules 
into several different groups related to the elevation types 
of samples (Fig.  4D). As expected, the modules of gen-
eralists (G_Modules) were clustered into a single group, 
displaying relatively less variation among elevations. 
However, the module patterns of common taxa (C_Mod-
ules) and specialists (S_Modules) were elevation-depend-
ent. For instance, C_Modules I and V and S_Modules II, 
VI, and VIII were clustered together, and their propor-
tions were higher at low elevations, whereas the propor-
tions of C_Modules II and IV and S_Modules III, IV, V, 
VII, and IX were higher at high elevations. The major 
bacterial components of the modules varied significantly 
for each of the individual modules but were generally 
similar across closely clustered modules in the dendro-
gram (Fig.  4E). For instance, Rhizobiales was the major 
group in the G_Modules, whereas Ktedonobacterales and 
Chitinophagales were abundant in the C_Modules and 
S_Modules.

Total network and modules
The total network (T_Module) comprised six major mod-
ules, which occupied 96% of the nodes in the network 
(Fig. 5A). In contrast to the niche breadth networks, the 
structure of the total network was topologically similar to 
that of the common taxa network (Fig. 4B). For instance, 
approximately 98% of the common taxa ASVs in T_Mod-
ules I, II, III, and V were derived from C_Modules I, II, 
III, and IV, respectively (Additional file  1: Fig  S3). The 
topological parameters of the total network were also 

Fig. 2 A Niche breadth (B) of the specialists, common taxa, and generalists. The x‑axis indicates average relative log‑abundances. Each dot 
represents an individual amplicon sequence variant (ASV). The ASVs of generalists (B > 78), common taxa (22 ≤ B ≤ 78), and specialists (B < 22) are 
indicated in black, red, and orange, respectively. B Relative abundance of generalists, common taxa, and specialists in the total bacterial community 
composition
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similar to those of the common taxa network (Table 1). 
T_Modules I and II were located at the center of Group 
I and Group II and were connected to other modules 
on both sides. Specifically, the ASVs of generalists and 
common taxa were located at the center of the network 
and the center of each module, respectively, whereas 
those of specialists were located on the sides of the net-
work (Fig.  5B). The topological characteristics of the 
ASVs of generalists, common taxa, and specialists in the 
total network also supported these results (Fig. 5C). The 
among-module connectivity, betweenness centrality, and 
closeness centrality values were significantly higher in the 
generalist group than in the common taxa and special-
ist groups. In contrast, compared with the generalist and 
common taxa groups, the specialist group showed a high 
average shortest path length value as well as low within-
module degree and neighborhood connectivity values.

The relative abundance of generalists in T_modules 
I and II was approximately two-fold higher than that in 
other modules (Additional file 1: Fig. S3B). However, the 
relative abundance of common taxa was two-fold higher 
in T_modules III and V than in other modules (Addi-
tional file 1: Fig. S3B). The bacterial community structure 
of the total network also differed among modules (Addi-
tional file 1: Fig. S3B). For instance, Rhizobiales, the most 
abundant group of generalists, appeared to be dominant 
in most modules; however, Ktedonobacterales, the most 
abundant group of specialists, was also dominant as a 
specialist group in T_module II. The distribution pat-
terns of each T_module were calculated and linked to dif-
ferent environmental variables (Additional file 1: Fig. S4). 
Altitude, respiration, moisture, dry/wet ratio, and vas-
cular plant coverage were the main environmental vari-
ables that correlated with the distribution patterns of 
individual modules. T_Modules I and II showed opposite 

Fig. 3 Detrended component analysis (DCA) plots based on the similarity of ASV composition in A generalists, B common taxa, and C specialists. 
The relative abundance of D generalists, E common taxa, and (F) specialists at the class level



Page 9 of 18Wong et al. Environmental Microbiome           (2023) 18:41  

distribution patterns, with T_Module I being positively 
correlated with moisture and vascular plant coverage and 
T_Module II being positively correlated with altitude, 
respiration, and soil dry/wet weight ratio. T_Module I, 
but not T_Module IV, was weakly positively correlated 
with temperature. In contrast, T_Module IV, but not 
T_Module I, was weakly positively correlated with C/N 
ratio. Therefore, although T_Modules I and IV showed 
similar distribution patterns and were closely clustered, 
their correlation patterns in relation to temperature and 
C/N ratio were different.

To investigate the links between environmental factors 
and individual microbial taxa, we constructed a subnet-
work consisting of 10 different environmental factors 
and nodes containing the microbial taxa to which they 
were directly linked (Fig.  6). Interestingly, the major-
ity of nodes that were linked to vascular plant coverage 
(51%) and moisture content (28%) were from habitat gen-
eralists. Considering the number of generalists in this 
study, 21% and 14% of generalists were correlated with 
vascular plant coverage and moisture content, respec-
tively. However, temperature and soil dry/wet weight 

Fig. 4 Specific microbial association networks with A generalists, B common taxa, and C specialists. Node colors represent major modules. D 
Dendrogram and heatmap obtained via hierarchical clustering analysis based on the distribution patterns of individual modules. E The average 
relative abundance of bacterial groups in the major modules at the order level
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ratio were closely linked to common taxa; the propor-
tions of common taxa within all nodes that were linked 
to temperature, soil dry weight, and soil dry/wet weight 
ratio were 100%, 75%, and 84% respectively. Two corre-
lations were observed between environmental factors 
and microbes: one with moisture content and the other 
with soil dry/wet weight ratio. Approximately 30–40% of 
microbes that were correlated with vascular plant cover-
age and moisture content were assigned to Burkholde-
riales, Chthoniobacterales, and Rhizobiales, whereas 
approximately 40–50% of microbes that were correlated 
with soil temperature and soil dry/wet weight ratio were 
assigned to Acidobacteriales, Chthoniobacterales, and 
Ktedonobacterales.

Module hubs and connectors in the total network
To assess the importance of individual nodes in the tun-
dra ecosystem, we calculated Zi and Pi. The Zi score indi-
cates how well the node i is connected to other nodes 
within its own module, whereas the Pi score indicates 
how well the node i interacts and connects with nodes 
from other modules, forming a more coherent network. 

In short, Pi = 0 if the node is only linked to nodes within 
its own module, whereas Pi → 1 if the node is evenly 
linked to other nodes from other modules within the 
network.

Out of 1,461 nodes detected in this study, we observed 
42 module hubs (Zi score > 2.5), which accounted for 
2.9% of the total nodes, and 6 connectors (C score > 0.62), 
which occupied < 0.5% of the total nodes. Among the 42 
modular hubs, 3, 36, and 3 were from generalists, com-
mon taxa, and specialists, respectively. Three connec-
tors each were observed in generalists and common taxa 
(Additional file 1: Table S3). Approximately 20% of total 
edges were related to the aforementioned module hubs.

Taxonomically, the module hubs and connectors con-
sisted of a wide variety of bacterial groups. The top four 
most observed bacterial groups at the order level were 
Rhizobiales (nine module hubs and one connector), Kte-
donobacterales (six module hubs and two connectors), 
Chthoniobacterales (three module hubs), and Tepidis-
phaerales (three module hubs). Notably, vascular plant 
coverage and moisture content (indicators of low-eleva-
tion areas) were correlated with six and seven module 

Fig. 5 Total microbial association network representing A major modules and B generalist, common taxa, and specialist ASVs. C Topological 
characteristics of generalist, common taxa, and specialist ASVs in the total microbial association network. *: 0.01 ≤ p < 0.05; **: 0.001 ≤ p < 0.01; ***: 
p < 0.001
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hubs, respectively, of which two belonged to generalists 
(Fig. 6). Considering that only three module hubs in the 
network were from generalists, these two environmen-
tal factors were correlated with two-thirds of the module 
hubs of generalists. In addition, the soil dry/wet weight 
ratio was correlated with five module hubs, including 
four and one from common taxa and specialists, respec-
tively. Only three module hubs in the network were from 
specialists; therefore, the soil dry/wet weight ratio was 
related to one-third of the module hubs of specialists.

Comparison of vegetation‑related ecological functional 
structures
In total, 1185 genes belonging to 16 functional cat-
egories, including virulence (389), carbon cycling (132), 
metal homeostasis (115), stress (102), virus (101), organic 
contaminant degradation (100), microbial defense (63), 
and nitrogen cycling (26), were detected using Geo-
Chip 5.0  M. With the exception of functions related 
to the categories plant growth promotion, protist, and 
virus, most functions exhibited higher values in vascular 
plant-dominant samples (S1B01 and S2B01) at the DNA 
level (Fig. 7). Gene expression (RNA) related to C and N 
cycling was higher in vascular plant-dominant samples 
(S1B01 and S2B01), whereas that of genes related to plant 

growth promotion was higher in cryptogam-dominant 
samples (S1A01 and S3A01). In contrast, gene expression 
related to cellulose degradation, such as cellulase, endo-
glucanase, and exoglucanase gene expression, increased 
in vascular plant-dominant samples.

SEM
A hypothetical model linking different environmental 
variables; vegetation coverage; and the dynamics of gen-
eralists, common taxa, and specialists was constructed 
and evaluated (Fig.  8). Several candidate models were 
compared, and the model that best represented the data 
was selected. The final structural equation model exhib-
ited the following values: χ2 test statistic = 18.26 with 
10 degrees of freedom; RMSEA = 0.061; CFI = 0.996; 
TLI = 0.985; SRMR = 0.030 (Fig. 8). These fit indices indi-
cated that the model remained within acceptable limits 
and had a good fit for its purpose. In addition, the SEM 
results revealed that temperature, elevation, and moisture 
content were the major abiotic environmental factors 
influencing vegetation coverage. Vegetation coverage, 
along with pH, moisture content, and elevation, affected 
the dynamics of generalists. Common taxa were mainly 
affected by generalists and partly by vegetation coverage 
and moisture content. Specialists were mainly affected 

Fig. 6 Subnetwork constructed using environmental factors and their directly linked microbes. Triangle, generalists; circle, common taxa; rectangle, 
specialists; diamond, environmental factors. Module hubs from generalists, common taxa, and specialists are colored red, brown, and cyan, 
respectively, whereas environmental factors are colored green
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Fig. 7 Heatmap representing the abundance (Z‑scores) of gene categories detected using Geochip 5.0 M at both DNA and RNA levels

Fig. 8 Structural equation model (SEM) representing the relationships among environmental factors, plant coverage, generalists, common taxa, 
and specialists. The solid and dotted arrows indicate positive and negative effects, respectively. The width of the arrows indicates the strength of the 
effect. ***: p < 0.001; **: p < 0.01; *: p < 0.05
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by common taxa and partly by generalists, pH, tempera-
ture, elevation, and moisture content, although they were 
not directly affected by vegetation coverage. Overall, the 
hypothesized models explained 46%, 70%, 96%, and 99% 
of the variance in vegetation coverage, generalists, com-
mon taxa, and specialists, respectively (Fig. 8).

Discussion
The presence of higher trees and their diversity and rich-
ness play pivotal roles in maintaining a stable soil micro-
biome in natural ecosystems [69, 74, 77]. However, in 
contrast to temperate regions, the tundra ecosystem is 
characterized by harsher environmental conditions due 
to the absence or scarcity of higher trees, resulting in 
lower biotic diversity and simple vegetation structures. 
Vascular plants and cryptogams, which survive under 
the snow during the cold season, are the most commonly 
observed plant types in the tundra ecosystem [52]. As a 
result, the distribution patterns of vegetation and their 
interactions with microbes are deterministic factors that 
influence soil biodiversity in the tundra ecosystem [81]. 
For example, the coverage level of cryptogams has been 
shown to affect the structure of bacterial and fungal com-
munities and play a crucial role in the establishment of 
vascular vegetation in Arctic soils [35]. Furthermore, 
vegetation patches increase microbial activity by pro-
viding bioavailable substances [61]. Our results revealed 
that in the tundra, vascular plants were dominant in 
low-elevation areas, whereas cryptograms, particularly 
bryophytes and lichens, were dominant in high-elevation 
areas (Fig. 1B). These vegetation distribution patterns in 
low-elevation areas could be attributed to lower environ-
mental stresses, higher species competition, and higher 
resource availability compared with those at higher eleva-
tions [36].

Microbial distribution patterns and their functions 
also varied in relation to environmental factors and veg-
etation dynamics. The distribution of habitat general-
ists was relatively uniform, whereas the distribution of 
habitat specialists varied more significantly compared 
with that of common taxa and generalists (Fig.  3), sug-
gesting that macroenvironment and microenvironment 
filtering play important roles in controlling the distribu-
tion of microbes in specific ecological niches. Network 
analysis showed that Rhizobiales, Ktedonobacterales, and 
Chthoniobacterales served as keystone microbes (either 
as module hubs or connectors) in the total network, indi-
cating their essential roles in the tundra ecosystem. SEM 
revealed that vegetation coverage directly regulated the 
microbial structure of generalists and indirectly affected 
the microbial structures of common taxa and specialists 
(Fig. 8). Furthermore, microbial regulation acting on spe-
cialists was found to be greater than regulation by abiotic 

factors, suggesting that microbial niche construction (or 
microenvironment filtering) is essential for the survival 
of specialists in the tundra ecosystem. In summary, the 
vegetation level in tundra ecosystems exerts top–down 
control on habitat generalists, which in turn affects the 
overall microbial community composition and microbial 
modular structure formation. Thus, species-engineered 
microbial niche construction, rather than environmental 
fluctuations or macroenvironmental filtering, appears to 
be the fundamental factor controlling the communities of 
habitat specialists.

Our results revealed that niche breadth was associ-
ated with elevation-dependent unique microbial com-
munities, with higher variation observed in specialists 
(Fig.  3). Specialists, with restricted niche breadth and 
highest fitness in their optimal habitat, are more suscep-
tible to subtle changes in the environment than gener-
alists [37]. Given that we removed rare ASVs observed 
in < 25 samples, which were mostly assigned to special-
ists, this would theoretically make the specialists’ net-
work more complex. Consistent with previous results in 
marine [50] and terrestrial soil [3] ecosystems, the spe-
cialists in the present study showed a higher modularity 
value and formed more modules than the common taxa 
and generalists in the niche breadth network, with vari-
ation patterns exhibiting elevation-dependency (Fig. 4C). 
It has been reported that microbial module formation is 
driven by both macroenvironment filtering and species-
engineered microenvironment filtering [12]. Therefore, 
high interspecies interactions among specialists could 
be a key mechanism underlying adaptation to specific 
conditions and survival under the influence of fluctuat-
ing environment conditions. Collectively, these findings 
suggest that specialists formed an independent micro-
bial cluster to produce a specific microenvironment, i.e., 
niche construction, which could help them persist and 
avoid extinction in the harsh tundra ecosystem.

Environmental disturbances and habitat heterogene-
ity are known to be advantageous for the succession of 
generalists rather than specialists [24, 49]. Therefore, 
determining the mechanisms driving the coexistence 
of generalists and specialists in ecosystems remains a 
central challenge in ecology [71, 80]. However, the sen-
sitivity of generalists and specialists to environmental 
fluctuations and their mutual influence have not been 
thoroughly explored [53]. Several studies have reported 
that biodiversity is primarily driven by common taxa 
that are sensitive to environmental changes [31, 34, 71]. 
Consistent with previous studies, the overall structure 
of the total network was similar to that of the common 
taxa network. As expected, the common taxa occupied 
approximately 60% of the total nodes, were the main 
component in module hubs (36 ASVs), and comprised 
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half of the connectors (3 ASVs) in the total network. 
Therefore, we assumed that the common taxa played a 
major role in the ecological network in the tundra eco-
system. In contrast, the generalists occupied only 7% and 
50% of the total module hubs and connectors, respec-
tively. Considering that the generalists accounted for only 
approximately one-tenth of the nodes of the common 
taxa, approximately 7% of the generalists acted either as 
module hubs or connectors, proportionally exceeding 
those in the common taxa (5%). Furthermore, the overall 
values of nodes assigned to the generalists showed high 
among-module connectivity and betweenness centrality 
as well as high within-module degree and node degree. 
These results suggest that the generalists, despite having 
small number of ASVs, can act as bridges that connect 
and tie the microbial communities together and function 
as hub species that assist other microbes with their essen-
tial substances [12, 18, 26]. In contrast, the specialists 
showed the lowest values for the aforementioned indi-
ces, indicating that they interacted actively within their 
own group and with common taxa but less with general-
ists. Based on these findings and the results observed in 
the niche breadth-based distribution network discussed 
earlier, we assume that specialists, which have restricted 
niche breadth and high fitness under local conditions 
relative to generalists [37], preferably make selective con-
nections with others within the same niche to form spe-
cies-engineered microenvironments that allow them to 
persist and thrive in harsh tundra environments.

In ecological networks, module hubs play crucial roles 
as keystone taxa, assisting other microbes and maintain-
ing the structure and function of the network [22]. The 
loss of connectors and module hubs can lead to the col-
lapse and deterioration of the entire ecological network 
[26]. Our study revealed that Rhizobiales and Ktedono-
bacterales acted as module hubs and/or connectors, 
comprising 36% of the total module hubs and 50% of the 
connectors in the total network. These two groups, apart 
from being keystone microbes, were found to be the 
most dominant groups in both generalists (Rhizobiales) 

and specialists (Ktedonobacterales), highlighting their 
essential roles in the study sites. Previous studies have 
reported that Rhizobiales and Acidobacteriales are domi-
nant bacterial groups in the Arctic region [45, 46]. The 
average relative abundance of Rhizobiales in our study 
was 12.2% ± 2.3%, which is approximately five-fold higher 
than that in unplanted soil environments and similar to 
that in plant microbiota (5–17%) [25]. The presence of 
Rhizobiales as a keystone species indicates that plant root 
activities influence microbial co-occurrence relation-
ships in the soil. As the predominant module hub group, 
Rhizobiales was connected to a wide variety of microbial 
groups, such as Microtrichales and Cytophagales, in the 
tundra microbial network (Table  2, Fig.  5). These three 
groups have been reported to be involved in the degrada-
tion process of plant residues and can affect soil organic 
carbon content [40, 72]. Vascular plant coverage and 
moisture content, two important environmental factors, 
were directly correlated with module hub of Rhizobiales 
in generalists. Given that Rhizobiales is one of the most 
abundant bacterial groups across various environments 
and a core member of plant microbiota, including plant 
symbionts with nitrogen-fixing abilities [25], it is likely 
that Rhizobiales interact symbiotically with plants and 
support other microbes through molecular and genetic 
information transfer [7]. Therefore, Rhizobiales and their 
ecologically associated microbial neighbors are essential 
for the growth of tundra plants, and in turn, local plants 
may help generalists survive and thrive in the tundra 
ecosystem.

Ktedonobacterales was identified as one of the domi-
nant specialist groups in samples collected from high-ele-
vation areas. The predominant ASV in Ktedonobacterales 
(ASV0005) showed high 16S rRNA gene similarities 
(> 98%) with uncultured bacterium clones obtained from 
the alpine tundra, Mount Mila in the Tibetan Plateau, 
and Mount Grand Galibier in the Cottian Alps [59, 83]. 
This finding suggests that this group is well-adapted to 
Arctic and alpine tundra ecosystems and is commonly 
found in global tundra soil ecosystems. Ktedonobacteria 

Table 2 Number of edges among the modules

Group I Group II

Module I Module III Module IV Module II Module V Module VI

Module I (n = 283) 4194 (10.5%) 305 (0.4%) 336 (0.6%) – – 1 (0%)

Module III (n = 257) 305 (0.4%) 1073 (3.3%) 19 (0%) 2 (0%) 38 (0.1%) 4 (0%)

Module IV (n = 203) 336 (0.6%) 19 (0%) 644 (3.1%) 2 (0%) 1 (0%) 24 (0.1%)

Module II (n = 268) – 2 (0%) 2 (0%) 4200 (11.7%) 365 (0.7%) 449 (0.9%)

Module V (n = 196) – 38 (0.1%) 1 (0%) 365 (0.7%) 794 (4.2%) 5 (0%)

Module VI (n = 181) 1 (0%) 4 (0%) 24 (0.1%) 449 (0.9%) 5 (0%) 846 (5.2%)
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is characterized by large genome size and a high ratio of 
hypothetical proteins with unknown functions, although 
functions related to plant biomass degradation through 
strong cellulolytic activity have been reported [82]. 
Despite the low level of primary productivity, the active 
soil layer in permafrost contains significant amounts of 
organic matter [60], providing a favorable environment 
for multifunctional microbial groups, such as Ktedono-
bacteria, to adapt and thrive in this area. Approximately 
75% of ASVs assigned to Ktedonobacteria were observed 
in T_Module II, T_Module V, and T_Module VI, and the 
distribution patterns showed positive correlations with 
altitude. No correlations were observed between ASVs 
assigned to Ktedonobacterales and vascular plant cover-
age or moisture content, but Ktedonobacterales showed 
correlations with soil dry/wet weight ratio and soil tem-
perature, either as module hubs or high-degree nodes. 
As mentioned earlier, Ktedonobacterales contained 
the second most abundant module hubs in the present 
study, which could be attributed to their multifunctional 
genomic features [82]. Being a module hub, this micro-
bial group requires the ability to undertake multiple bio-
geochemical processes to provide other microbes with 
indispensable substances [26]. The large genome size and 
high ratio of functionally unknown hypothetical proteins 
[82] may give Ktedonobacteria a genetic advantage that 
allows them to perform multiple functions in complex 
biogeochemical processes.

Environment filtering is a critical factor that influ-
ences shifts in microbial communities [38, 55]. Numer-
ous studies have shown that environmental factors are 
the primary drivers of microbial community structures in 
diverse habitats. Both the niche breadth-based distribu-
tion networks and total network were divided into several 
major modules, some of which reflected the distribution 
patterns of specific environmental factors, including 
vascular plant coverage, moisture content, and soil dry/
wet weight ratio (Additional file  1: Fig. S4). This find-
ing is consistent with that of previous studies in aquatic 
and terrestrial ecosystems [12, 13, 18, 47, 48]. Our model 
revealed that vegetation coverage, along with other abi-
otic environmental factors, was the major driver of gen-
eralists, and to some extent, directly influenced common 
taxa. In contrast, specialists were not directly influenced 
by these biotic and abiotic factors (Fig.  8). In the total 
network, almost all ASVs that correlated with vascular 
plant coverage and moisture content were from gener-
alists or common taxa, with an average of 18% of gen-
eralists being correlated with these two environmental 
factors. Notably, one-third of module hubs derived from 
generalists were directly correlated with the two envi-
ronmental factors mentioned above. Given that general-
ists and common taxa constituted an average of > 60% of 

the total microbial communities, we assumed that these 
microbial communities were affected by vegetation cov-
erage. Therefore, macroenvironment filtering could play 
a crucial role in shaping the variation in overall micro-
bial community structures, particularly in the case of 
habitat generalists. Compared with generalists, special-
ists appeared to be less affected by vegetation coverage, 
as species-engineered microbial niche construction (or 
microenvironment filtering) was the key factor in shap-
ing the variation of habitat specialists in the tundra eco-
system. In summary, tundra vegetation coverage, which 
is influenced by abiotic environment factors, controls 
overall microbial community structure and module for-
mation by directly regulating habitat generalists.

Conclusion
The present study highlights the relationships between 
microbial niche breadth and vegetation patterns in the 
tundra ecosystem. Different niche breadths were associ-
ated with different microbial communities, with habitat 
generalists being largely influenced by macroenviron-
ment filtering effects and habitat specialists being pri-
marily affected by microenvironment filtering. Notably, 
Rhizobiales and Ktedonobacterales served as keystone 
microbes, playing critical roles in supporting other 
microbes in the tundra ecosystem through key metabolic 
functions. Furthermore, vegetation coverage directly reg-
ulated the distribution of the microbial communities of 
generalists, which in turn affected the distribution of the 
other microbial communities within the ecosystem. In 
summary, tundra vegetation coverage exerted top–down 
control on habitat generalists, which in turn influenced 
the composition of the remaining microbial communi-
ties and the formation of microbial modular structures. 
Importantly, species-engineered microbial niche con-
struction, rather than the environmental fluctuations, 
emerged as the fundamental factor affecting the commu-
nities of habitat specialists.
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