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Vegetation as a key driver of the distribution e
of microbial generalists that in turn shapes

the overall microbial community structure
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Abstract

Understanding the variability of microbial niches and their interaction with abiotic and biotic factors in the Arc-

tic can provide valuable insights into microbial adaptations to extreme environments. This study investigates the
structure and diversity of soil bacterial communities obtained from sites with varying vegetation coverage and soil
biogeochemical properties in the low Arctic tundra and explores how bacteria interact under different environ-
mental parameters. Our findings reveal differences in bacterial composition and abundance among three bacterial
niche breadths (specialists, common taxa, and generalists). Co-occurrence network analysis revealed Rhizobiales and
Ktedonobacterales as keystone taxa that connect and support other microbes in the habitat. Low-elevation indica-
tors, such as vascular plants and moisture content, were correlated with two out of three generalist modular hubs
and were linked to a large proportion of generalists'distribution (18%). Structural equation modeling revealed that
generalists'distribution, which influenced the remaining microbial communities, was mainly regulated by vegetation
coverage as well as other abiotic and biotic factors. These results suggest that elevation-dependent environmental
factors directly influence microbial community structure and module formation through the regulation of generalists’
distribution. Furthermore, the distribution of generalists was mainly affected by macroenvironment filtering, whereas
the distribution of specialists was mainly affected by microenvironment filtering (species-engineered microbial niche
construction). In summary, our findings highlight the strong top—down control exerted by vegetation on generalists’
distribution, which in turn shapes the overall microbial community structure in the low Arctic tundra.
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Introduction

The Arctic region is classified as an extreme environment
due to prolonged periods of wide temperature varia-
tion, freezing and thawing cycles [65], high UV radiation
exposure [54], and nutrient limitations [63]. Moreover,
the Arctic region is currently undergoing unprecedented
disturbances as a result of global warming [33]. One such
disturbance is the observed greening of the tundra eco-
system, characterized by increased plant productivity
and expansion of shrubs and trees northwards and into
previously treeless areas [23, 30]. Soil microorganisms,
which play a crucial role in maintaining ecosystem func-
tion and soil fertility in the Arctic, are highly sensitive to
climate changes and are likely to be affected by the ongo-
ing warming of the Arctic region.

A previous study has revealed that microbial species
can be categorized into different ecological groups based
on their ability to adapt to various ecological niches [58].
Understanding the dimensions of these niches and the
distribution of organisms can provide insights into the
tolerance and responses of organisms to environmental
changes [4]. Generalists, for example, are more adapt-
able to different environmental conditions than special-
ists and have a wider distribution range [76]. In contrast,
specialists have narrower tolerances than generalists and
restricted distributions, making them more vulnerable to
extinction when environmental conditions change [70].

The distribution of microbial generalists and special-
ists is regulated by a combination of stochastic (neutral
theory-based) and deterministic (niche theory-based)
processes [43, 51]. Correlation-based microbial co-
occurrence network analysis has revealed that micro-
bial assemblages exhibit nonrandom patterns and are
predominantly influenced by deterministic processes
through environmental filtering [2, 27]. For example,
macroenvironmental filtering focuses on the relationship
between species and the macroenvironment, where spe-
cies with similar traits tend to coexist and survive in the
same habitat [12, 20, 38, 39, 41].

In the Arctic, the distribution of soil microorganisms
is highly dependent on soil characteristics [8], vegeta-
tion types [11], and geographical distance [67]. Vegeta-
tion types influence soil biogeochemical properties [10],
which in turn affect local microbiological communities in
tundra soils [11, 78]. In the low Arctic, dominant bacte-
rial communities, particularly Acidobacteria, tend to be
similar regardless of vegetation type but differ in terms
of relative abundance and the presence of other minor
phyla [11]. In contrast, microenvironmental filtering or
niche construction emphasizes on the capacity of spe-
cies to modify their microenvironments through bio-
logical metabolism and individual activities and choices
[12, 55]. Niche construction (microenvironment) can
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alter environmental filtering (macroenvironment); there-
fore, the use of the concept of modified environmental
filtering, which includes both biotic microenvironmen-
tal filtering and abiotic macroenvironmental filtering, is
recommended for more accurately predicting different
interactions [29, 75].

Development of biological association networks is cru-
cial in determining complex microbial interactions in
diverse ecosystems, as they can extract new information
on ecological interactions, organizational patterns, and
keystone organisms and their responses to environmen-
tal variables that may not be revealed using conventional
techniques [12-15, 18, 19, 22]. For instance, co-occur-
rence network analysis of tundra soils has revealed that
a node correlated to pH is linked to the members of Alp-
haproteobacteria and Acidobacteria [21].

Although several studies on direct interactions
between microorganisms and various environmental
parameters in the Arctic have been conducted, there is
still a lack of in-depth studies exploring both direct and
indirect interactions and association patterns between
different microbial groups that coexist in this environ-
ment. In the present study, we used network analysis and
structural equation modeling to investigate the associa-
tions between different soil bacterial groups from three
different elevations with distinct vegetation coverage pat-
terns in the low Arctic tundra of Salluit. Our study aims
to address the following questions: (i) which taxa belong
to different niche-based ecological categories, namely,
microbial generalist (broadly distributed) and specialist
(restricted distribution) groups; (ii) how do these ecologi-
cal categories shape the overall microbial network struc-
ture and which are the keystone species in the low Arctic;
and (iii) how sensitively do microbes from different eco-
logical categories respond to abiotic and biotic factors.

Materials and methods

Study area and field surveys

Field surveys were conducted during the summer of
2017 at Salluit, Quebec, Canada (62.1° N 75.4° W).
The mean annual air temperature in Salluit is approxi-
mately—8.5 °C, with a mean annual precipitation of
300 mm [32]. Soil sampling was conducted at three sites
(S1, S2, and S3) by establishing three line transects at
low-, mid-, and high-elevation areas that represented dif-
ferent vegetation and environmental conditions at each
site (Fig. 1A. Transect A, referred to as the high-elevation
area, was established on the crest of hills with limited
vegetation cover; transect B, referred to as the mid-eleva-
tion area, was established in a mid-slope area with inter-
mediate vegetation coverage; and transect C, referred to
as the low-elevation area, was established in lower slopes
with high vegetation coverage (Fig. 1B). Twenty-five
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Fig. 1 A Map of the study area and the nine sampling sites in Salluit, Nunavik. In total, 225 samples were collected (between the points in each

sampling site). B Land and vegetation coverage at each sampling site

1 mXx1 m quadrats were set at 6 m intervals along each
150 m transect, and soil samples were randomly collected
from each quadrat. In total, 225 top soil samples were
collected using a sterile scoop and placed into 5-mL ster-
ile sampling tubes containing RNA Stabilization Solution
(Ambion, Austin, Texas). Samples were frozen at—20 °C
upon sampling and stored in this condition until DNA
extraction.

Soil biogeochemical analyses and vegetation cover

Soil biogeochemical analyses were conducted following
previously described methods [36]. Total soil carbon (C)
and nitrogen (N) concentrations were determined using
an NC analyzer (Sumigraph NCH-22F, Sumika Chemical

Analysis Service, Osaka, Japan). The depth of plant litter
and mineral soil was measured using a 150-mm rod at
three different points within each sampling quadrat. Soil
samples at depths of 0.5-2.0 cm were collected after the
removal of plant materials and living roots for characteri-
zation of water content (soil moisture), soil pH, electrical
conductivity (EC), and C and N concentrations. EC and
pH were measured using EC and pH meters, respectively
(Twin EC and Twin pH, respectively; Horiba Ltd., Kyoto,
Japan). Soil moisture was measured using a soil mois-
ture sensor (HH2; DeltaT Devices Ltd., Burwell, UK),
and final results were represented as the average of three
readings at each sampling point. In addition, the ratio
of wet and dry soil weight was estimated as a proxy for
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the water content of soil. Approximately 15 g of wet soil
was weighed and remeasured after oven-drying at 60 °C
for 48 h. The cover of vascular plant species, rock, and
cryptogams (bryophytes and lichens) was recorded using
a1 mx1 m quadrat at each sampling point. Soil tempera-
ture was measured using digital stick thermometers that
were inserted into the soil to a depth of 1 cm. Measure-
ments were performed from 10:00 to 18:00 on sunny days
between July 24 and 31, 2017 to ensure consistent meas-
urement conditions.

Bacterial community composition analysis

DNA was extracted from approximately 0.5 g soil sam-
ples using a Fast DNA Spin Kit for Soil (MP Biomedical,
Santa Ana, CA) according to the manufacturer’s instruc-
tions. The bacterial 16S rRNA gene was amplified using a
universal bacterial primer set, 341F/805R (341F: 5/-CCT
ACGGGNGGCWGCAG-3'; 805R: 5'-GACTACHVGGG
TATCTAATCC-3), targeting the V3-V4 region of the
16S rRNA gene (Herlemann et al., 2011). PCR amplifi-
cation, purification, and quantification were performed
according to the Illumina 16S metagenomic sequencing
library protocol. Paired-end sequencing was performed
using a MiSeq Reagent Kit v3 (600 — cycle) (Illumina)
according to the manufacturer’s instructions.

To investigate sequence variants of a single nucleotide
in the gene, amplicon sequence variants (ASVs) of the
16S rRNA gene were calculated using DADA2 (version
1.8) following the pipeline tutorial 1.8 (date of access:
March 2021; https://benjjneb.github.io/dada2/tutorial _1_
8.html) in R [9]. Singletons, doubletons, and tripletons
were removed from the dataset of the 16S rRNA gene to
further reduce any sequencing errors produced by the
MiSeq Illumina sequencing platform. The latest Silva
database (release 138) was used to align and classify the
sequences of the 16S rRNA gene [62]. After sequence
classification, the chloroplast, mitochondria, archaea,
and eukaryote sequences were removed.

To measure habitat specialization, we used the niche
breadth (B) index described by Levins [42] based on the
following formula:

1
B‘ = —
] N 2’
Zi:lpij

where B; and P; indicate niche breadth and relative
abundance of species, respectively. Generalists distrib-
uted across a wider environmental range exhibit higher
B-values than specialists. Given that extremely rare ASVs
could erroneously indicate specialists, ASVs with aver-
aged relative abundances of<2x10™> were excluded
from network analysis and structural equation modeling
(SEM) [44, 58]. Furthermore, ASVs observed in at least
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25 samples (approximately 10% of the total samples) were
selected for network analysis and SEM. In this study, a
B-value of >78 was chosen as a cutoff criterion for gen-
eralists, as this value lies within the outlier area of the
B-value distribution [44, 45], whereas ASVs with B-values
of <22 were regarded as specialists (lower quartile) (Fig.
S1), and the remaining ASVs were regarded as common
taxa. The Shannon diversity index was calculated using
functions in Vegan. To normalize the data for diversity
indices, the reads were normalized to the lowest number
of reads using the “rrarefy” function of Vegan.

Microbial association network and topological features

To investigate the relationships among generalists, com-
mon taxa, specialists, and environmental variables, we
constructed microbial networks based on microbial niche
breadth, specifically the niche breadth network. This net-
work included separate networks for generalists, com-
mon taxa, and specialists. We also constructed a total
network that included generalists, common taxa, and
specialists to explore the relationships between microbes
and environmental variables. Spearman’s rank correla-
tion coefficient (p) was used to construct microbial asso-
ciation networks, and calculations were performed using
the Hmisc package [28] in R. To reduce the impact of rare
ASVs in the dataset, we applied the following thresholds
for each dataset: (i) at least 25 observed samples and (ii)
a relative proportion of>0.05% in at least one sample.
P-values were approximated using t or F distributions,
and Q-values (adjusted P-values; false discovery rate)
were calculated using the Benjamini and Hochberg false
discovery rate procedure [5] to account for multiple test-
ing. For further analyses, only positive correlations with
|p|>0.5 and both P- and Q-values of <0.001 were selected.
The resulting networks were visualized using Cytoscape
3.8.2 [66], and the yFiles organic layout algorithm in
Cytoscape was employed for network layout. To com-
pare network topological features, randomly distributed
Erd8s—Rényi networks (with the same number of nodes
and links) were used as a null model, and calculations
were performed using the Network Randomizer plugin
in Cytoscape. Network topological features were calcu-
lated using the “Networkanalyzer” plugin in Cytoscape
and the R package igraph [1, 17]. For the purpose of com-
parison, Erdés—Rényi random networks were employed
as null models using the Network Randomizer plugin in
Cytoscape [17]. The small-world coefficient (SW) was
defined as follows: SW =clustering coefficient (C/Cy)/
characteristic path length (L/Lg), where ; represents
parameters from a random network (Table 1). To iden-
tify the topological features of each node in the microbial
network, we calculated the within-module degree (Z))
and among-module connectivity (P,) [26]. Based on their
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Table 1 Microbial association network topological features and statistics
Topological features Generalist network Common taxa network Specialist network Total
(Fig. 2A) (Fig. 2B) (Fig. 2C) network
(Fig. 4A)
Nodes 94 794 460 1,461
Edges 368 7112 1243 13,470
Diameter 10 12 28 13
Average number of neighbours 80 18.7 59 19.2
Network density 0.09 0.03 0.01 0.01
Network heterogeneity 0.93 1.12 0.91 1.26
Network heterogeneity, random 0.32 0.23 042 0.24
Centralization 0.19 0.15 0.07 0.10
Centralization, random 0.09 0.02 0.02 0.01
Modularity 0.46 0.60 0.77 0.62
Modularity, random 0.31 0.21 043 0.21
Average clustering coefficient (C) 0.45 0.46 0.33 0.40
Clustering coefficient, random (C,) 0.09 0.02 0.01 0.01
Characteristic path length (L) 430 497 943 5.03
Characteristic path length, random (L,) 241 264 3.82 2.80
c/C 5.29 20.00 27.50 30.77
/L, 1.78 1.89 247 1.80
Small-world coefficient (SW) 297 10.62 11.14 17.13

Z; and P; scores, nodes were classified into four roles:
peripheral nodes with limited links to other nodes within
their module (Zi<2.5 and Pi<0.62), connectors that are
highly connected to nodes from other modules (Zi<2.5
and Pi>0.62), module hubs that are highly linked to other
nodes within their module (Zi>2.5 and Pi<0.62), and
network hubs that bridge both module hubs and connec-
tors (Zi>2.5 and Pi>0.62) [57]. The modules were identi-
fied using the Louvain algorithm in the igraph package of
R [6]. To calculate the distribution patterns of the major
modules, the relative abundances of ASVs (except for
environmental parameters) in each module were normal-
ized using feature scaling [X'=(X—X i)/ Xinax — Xininl-
After normalization, the normalized ASVs in each mod-
ule were averaged to obtain the distribution patterns of
each module [13]. Finally, a dendrogram was constructed
based on the distribution patterns of the major modules
using Ward’s method, as implemented via the “hclust”
function in R (version 3.4.0) (Team, 2013).

GeoChip analysis

Total DNA and RNA for GeoChip analysis were extracted
from 0.5 g soil samples using a ZymoBIOMICS DNA &
RNA Kit (Zymo Research, Irvine, CA, USA). The total
RNA extracted was subjected to DNAse I treatment, and
the success of the DNAse treatment was confirmed by
the absence of PCR amplification of the V1-V3 bacterial
16S rRNA gene. cDNA was synthesized from the RNA

template using the SuperScript IV First-Strand Synthesis
System for RT-PCR (Invitrogen, Carlsbad, CA, USA) fol-
lowing the manufacturer’s instructions. GeoChip 5.0 M, a
comprehensive functional microarray, was used to reveal
the functional diversity of the soil samples. For each soil
sample, both DNA and paired cDNA samples were sent
to Glomics Inc. (Oklahoma, USA) for functional gene
sequencing using the GeoChip 5.0 M Microarray (Agilent
Technologies Inc., Santa Clara, USA) and the method
described by Shi et al. [68]. In brief, 500 ng of DNA was
labeled with the fluorescent dye Cy-3 (GE Healthcare,
CA, USA) using random priming with Klenow frag-
ments, purified using a QIAquick Purification Kit (Qia-
gen), and then dried. The labeled DNA was suspended
in hybridization solution containing 10% formamide,
Hi-RPM Hybridization Buffer, aCGH blocking agent,
Cot-1 DNA, and common oligonucleotide reference
standards. The solution was denatured at 95 °C for 3 min,
incubated at 37 °C for 30 min, loaded onto the micro-
array slide well, and hybridized at 67 °C for 24 h. After
hybridization, the slides were rinsed and imaged with a
NimbleGen MS200 microarray scanner (Roche Nimble-
Gen, Madison, W1, USA). Functional gene names listed
in this study were assigned based on the original func-
tional gene annotations in GeoChip 5.0 M (http://ieg.ou.
edu/ges/gesmm.cgi?version=gc50_180k). For normaliza-
tion, the total abundance and expression of each category
or gene were divided by those of the housekeeping gene
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gyrB [16]. Heatmaps were constructed using the function
“heatmap.2” with row z-score normalization in the gplots
package of R [79].

SEM

The relationships among environmental factors, veg-
etation (vascular plants and cryptogams), and bacterial
communities were estimated using SEM. Spearman’s
rank correlation coefficient (p) was calculated to elimi-
nate multicollinear environmental variables prior to SEM
analysis. SEM was performed using the “sem” function
in the Lavvan package [64]. The conceptual model of the
hypothetical relationships proposed that (i) plant cover-
age was influenced by environmental factors, (ii) both
plant coverage and environmental factors influenced
bacterial communities (generalists, common taxa, and
specialists), and (iii) generalists drove the dynamics of
common taxa and specialists, with common taxa further
influencing specialists. Plant coverage was considered
a latent variable indicated by vascular plant and crypto-
gam coverage. The first detrended correspondence analy-
sis (DCA) axis scores were used in the subsequent SEM
analysis for generalists, common taxa, and specialists.

Statistical analyses

All statistical analyses were performed using the R pack-
age (version 3.4.0) [73]. To compare the differences in the
compositions of generalists, common taxa, and special-
ists among elevations, we used DCA with the “decorana”
function in Vegan [56]. Differences in taxonomic compo-
sition among elevations were tested using PERMANOVA
with 999 permutations, employing the “adonis” func-
tion in Vegan. The relationships between environmental
parameters and bacterial community composition were
examined by fitting vectors onto the ordination space
using the “envfit” function in Vegan. The significance of
the fitted vectors was assessed using a permutation pro-
cedure with 999 permutations. One-way analysis of vari-
ance followed by Tukey’s honest significant difference
test were used to determine significant differences in
environmental parameters among the three elevations.

Results

Environmental parameters

In total, 225 soil samples were categorized into three
groups based on sampling elevation and vegetation cov-
erage: high (crest, low vegetation coverage), middle (mid-
slopes, intermediate vegetation coverage), and low (lower
slopes, high vegetation coverage) at 302+39, 251+21,
and 162+43 m, respectively (Fig. 1A). Environmental
parameters and vegetation coverage varied significantly
among the elevations (Additional file 1: Table S1; Fig. 1B).
For example, vascular plant coverage in low-elevation
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samples was approximately four times higher (70%) than
that in high-elevation samples, whereas cryptogam cov-
erage was significantly higher in high-elevation samples
(Table 1; Fig. 1B). Top soil temperature increased signifi-
cantly with elevation, ranging from 10.2 to 17.1 °C. Mois-
ture content ranged from 18 to 59%, with the highest and
lowest values observed at lower and higher elevations,
respectively (Additional file 1: Table S1). The average
C/N ratio was 13.1+2.6, with significantly higher values
at low elevations (Additional file 1: Table S1). The mean
pH value across the sampling areas was 5.1+0.3, and no
significant differences in pH values were observed among
the three elevations (Additional file 1: Table S1).

Bacterial community composition and habitat
specialization

In total, 19,979 ASVs were identified from 7,699,439
high-quality reads in 225 soil samples, with an aver-
age of 835+503 ASVs in each sample. Among all sam-
pling sites, the phylum Proteobacteria (27.9%) was the
most abundant microbial group, followed by Acidobac-
teria (19.5%), Verrucomicrobiota (12.9%), Chloroflexi
(11.1%), and Actinobacteriota (9.7%). After removing
rare ASVs (refer to the Materials and Methods for the
exclusion criteria), 2,141 ASVs remained for further anal-
ysis based on the niche breadth index (Fig. 2A). Among
these, 112 (22.2% +6.4%), 1190 (41.0% +6.3%), and 839
(10.0% +3.2%) ASVs were identified in generalists, com-
mon taxa, and specialists, respectively (Fig. 2B).

To explore the prevailing patterns of generalist, com-
mon taxa, and specialist compositions and identify
environmental parameters serving as potential drivers,
we performed DCA. Microbial variation was more sig-
nificant among specialists than among common taxa or
generalists (Fig. 3A—C) and was segregated according to
low-, mid-, and high-elevation levels (PERMANOVA;
generalists, common taxa, and specialists pseudo-
F=521, 393, and 2.46, respectively; p<0.001). The
microbial variation for the three niche-based groups was
significantly influenced by elevation level, vascular plant
coverage, soil temperature, and C/N ratio (Additional
file 1: Table S2). However, no significant difference was
observed in the bacterial diversity index among the sam-
pling sites (Additional file 1: Fig. S2).

At the class level, major microbes among generalists,
common taxa, and specialists displayed significant differ-
ences in their abundances (Fig. 3D-F). For instance, the
proportions of Alphaproteobacteria and Acidobacteriae
were two- to three-fold higher among generalists than
among specialists (t-test, p<0.001), whereas Ktedono-
bacteria and Vicinamibacteria were absent among gener-
alists. In contrast, the proportions of Verrucomicrobiae,
Planctomycetes, Phycisphaerae, and Bacteroidia were
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composition

two- to three-fold higher among specialists than among
generalists (t-test, p<0.001). As expected, the microbial
components were relatively evenly distributed in the gen-
eralists’ group compared with the specialists’ group.

Niche breadth-based distribution networks and modules
Niche breadth-based distribution networks were con-
structed using the ASVs assigned to the generalists,
common taxa, and specialists along with 15 different
environmental parameters. These networks were des-
ignated as generalist, common taxa, and specialist net-
works (Fig. 4A-C), and their topological features are
summarized in Table 1. The characteristic path length,
representing the average shortest path between all pairs
of species, was approximately two-fold higher in the spe-
cialist network than in the common taxa and generalist
networks. Network centralization was lower in the spe-
cialist network (0.07) than in the common taxa (0.15)
and generalist (0.19) networks. However, the special-
ist network exhibited the highest modularity (0.77), and
the modularity of each niche breadth-based distribution
network was higher than that of its Erdés—Rényi ran-
dom network. In addition, all SW values, with higher
values indicating higher small-worldliness of the net-
work, were>1, suggesting that all niche breadth-based
distribution networks in this study exhibited small-world
properties.

Each niche breadth-based distribution network com-
prised 4-10 major modules, which occupied 87%-—
95% of the total nodes in each association network.

Dendrograms constructed using the major module distri-
bution patterns allowed separation of the major modules
into several different groups related to the elevation types
of samples (Fig. 4D). As expected, the modules of gen-
eralists (G_Modules) were clustered into a single group,
displaying relatively less variation among elevations.
However, the module patterns of common taxa (C_Mod-
ules) and specialists (S_Modules) were elevation-depend-
ent. For instance, C_Modules I and V and S_Modules II,
VI, and VIII were clustered together, and their propor-
tions were higher at low elevations, whereas the propor-
tions of C_Modules II and IV and S_Modules III, IV, V,
VII, and IX were higher at high elevations. The major
bacterial components of the modules varied significantly
for each of the individual modules but were generally
similar across closely clustered modules in the dendro-
gram (Fig. 4E). For instance, Rhizobiales was the major
group in the G_Modules, whereas Ktedonobacterales and
Chitinophagales were abundant in the C_Modules and
S_Modules.

Total network and modules

The total network (T_Module) comprised six major mod-
ules, which occupied 96% of the nodes in the network
(Fig. 5A). In contrast to the niche breadth networks, the
structure of the total network was topologically similar to
that of the common taxa network (Fig. 4B). For instance,
approximately 98% of the common taxa ASVs in T_Mod-
ules I, II, III, and V were derived from C_Modules I, II,
III, and IV, respectively (Additional file 1: Fig S3). The
topological parameters of the total network were also
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Fig. 3 Detrended component analysis (DCA) plots based on the similarity of ASV composition in A generalists, B common taxa, and C specialists.
The relative abundance of D generalists, E common taxa, and (F) specialists at the class level

similar to those of the common taxa network (Table 1).
T_Modules I and II were located at the center of Group
I and Group II and were connected to other modules
on both sides. Specifically, the ASVs of generalists and
common taxa were located at the center of the network
and the center of each module, respectively, whereas
those of specialists were located on the sides of the net-
work (Fig. 5B). The topological characteristics of the
ASVs of generalists, common taxa, and specialists in the
total network also supported these results (Fig. 5C). The
among-module connectivity, betweenness centrality, and
closeness centrality values were significantly higher in the
generalist group than in the common taxa and special-
ist groups. In contrast, compared with the generalist and
common taxa groups, the specialist group showed a high
average shortest path length value as well as low within-
module degree and neighborhood connectivity values.

The relative abundance of generalists in T_modules
I and II was approximately two-fold higher than that in
other modules (Additional file 1: Fig. S3B). However, the
relative abundance of common taxa was two-fold higher
in T_modules III and V than in other modules (Addi-
tional file 1: Fig. S3B). The bacterial community structure
of the total network also differed among modules (Addi-
tional file 1: Fig. S3B). For instance, Rhizobiales, the most
abundant group of generalists, appeared to be dominant
in most modules; however, Ktedonobacterales, the most
abundant group of specialists, was also dominant as a
specialist group in T_module II. The distribution pat-
terns of each T_module were calculated and linked to dif-
ferent environmental variables (Additional file 1: Fig. S4).
Altitude, respiration, moisture, dry/wet ratio, and vas-
cular plant coverage were the main environmental vari-
ables that correlated with the distribution patterns of
individual modules. T_Modules I and II showed opposite



Wong et al. Environmental Microbiome (2023) 18:41 Page 9 of 18

A Generalist B  Common taxa C  Specialist
Lt R ool , LA = "CMogule 111 5 Modale TV .80

> -

o'.‘:.x +° a3 S Module II ..

S Modale VII
S MogduleIX

G_Module IV .
¢ o .8
® . :

v ad v
ob* € Module IV
..

L

9 3 R
S° Module l:l ®
S_Module VI

O Modulelll, T *

-,

G Module | -
* S foduleX « L. !

G_Module II

» &
> ¢ o
Dis: = = R S SRS o FFELSTTsE
G 3 e B & High Middle Low SN Sl E @iy & s“«
Sl W 1 A | S1 S2 S3 S1 8283 S1S283 g am T EEEEEEEEEE s Y S

—G_Module IV (M>H>L)
L——G_Module | (H>M>L)
Module Il (M>L>H)
_Module Il (L>M=>H)
S_Module X (M>H=>L)

—_—
| IS
C_Module VI (M>H>L)
S Module T(M>L>H)
C Module [II (M>L>H) .
S Module IX (H>M>L)
S Module V (H>M>L)
C Module IV (H>M>L)
S Module IV (H>M>L)
C_Module II (H>M>L)
S Module VII (H>M>L)
S Module Il (H>M>L)

T — - B ETTE

G
G

S Module VI (L>M>H)
C Module V (L>M=>H)
S_Module VIII (L>M>H)
S_Module II (L>M>H)

C Module I (L>M>H)

40 & 0 100

Fig. 4 Specific microbial association networks with A generalists, B common taxa, and C specialists. Node colors represent major modules. D
Dendrogram and heatmap obtained via hierarchical clustering analysis based on the distribution patterns of individual modules. E The average
relative abundance of bacterial groups in the major modules at the order level

distribution patterns, with T_Module I being positively To investigate the links between environmental factors
correlated with moisture and vascular plant coverage and  and individual microbial taxa, we constructed a subnet-
T _Module II being positively correlated with altitude, work consisting of 10 different environmental factors
respiration, and soil dry/wet weight ratio. T_Module I, and nodes containing the microbial taxa to which they
but not T_Module IV, was weakly positively correlated  were directly linked (Fig. 6). Interestingly, the major-
with temperature. In contrast, T_Module IV, but not ity of nodes that were linked to vascular plant coverage
T_Module I, was weakly positively correlated with C/N  (51%) and moisture content (28%) were from habitat gen-
ratio. Therefore, although T_Modules I and IV showed eralists. Considering the number of generalists in this
similar distribution patterns and were closely clustered, study, 21% and 14% of generalists were correlated with
their correlation patterns in relation to temperature and  vascular plant coverage and moisture content, respec-
C/N ratio were different. tively. However, temperature and soil dry/wet weight
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ratio were closely linked to common taxa; the propor-
tions of common taxa within all nodes that were linked
to temperature, soil dry weight, and soil dry/wet weight
ratio were 100%, 75%, and 84% respectively. Two corre-
lations were observed between environmental factors
and microbes: one with moisture content and the other
with soil dry/wet weight ratio. Approximately 30-40% of
microbes that were correlated with vascular plant cover-
age and moisture content were assigned to Burkholde-
riales, Chthoniobacterales, and Rhizobiales, whereas
approximately 40-50% of microbes that were correlated
with soil temperature and soil dry/wet weight ratio were
assigned to Acidobacteriales, Chthoniobacterales, and
Ktedonobacterales.

Module hubs and connectors in the total network

To assess the importance of individual nodes in the tun-
dra ecosystem, we calculated Z; and P;. The Z; score indi-
cates how well the node i is connected to other nodes
within its own module, whereas the P; score indicates
how well the node i interacts and connects with nodes

from other modules, forming a more coherent network.

In short, P,=0 if the node is only linked to nodes within
its own module, whereas P,— 1 if the node is evenly
linked to other nodes from other modules within the
network.

Out of 1,461 nodes detected in this study, we observed
42 module hubs (Z; score>2.5), which accounted for
2.9% of the total nodes, and 6 connectors (C score > 0.62),
which occupied <0.5% of the total nodes. Among the 42
modular hubs, 3, 36, and 3 were from generalists, com-
mon taxa, and specialists, respectively. Three connec-
tors each were observed in generalists and common taxa
(Additional file 1: Table S3). Approximately 20% of total
edges were related to the aforementioned module hubs.

Taxonomically, the module hubs and connectors con-
sisted of a wide variety of bacterial groups. The top four
most observed bacterial groups at the order level were
Rhizobiales (nine module hubs and one connector), Kte-
donobacterales (six module hubs and two connectors),
Chthoniobacterales (three module hubs), and Tepidis-
phaerales (three module hubs). Notably, vascular plant
coverage and moisture content (indicators of low-eleva-
tion areas) were correlated with six and seven module
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respectively, whereas environmental factors are colored green

hubs, respectively, of which two belonged to generalists
(Fig. 6). Considering that only three module hubs in the
network were from generalists, these two environmen-
tal factors were correlated with two-thirds of the module
hubs of generalists. In addition, the soil dry/wet weight
ratio was correlated with five module hubs, including
four and one from common taxa and specialists, respec-
tively. Only three module hubs in the network were from
specialists; therefore, the soil dry/wet weight ratio was
related to one-third of the module hubs of specialists.

Comparison of vegetation-related ecological functional
structures

In total, 1185 genes belonging to 16 functional cat-
egories, including virulence (389), carbon cycling (132),
metal homeostasis (115), stress (102), virus (101), organic
contaminant degradation (100), microbial defense (63),
and nitrogen cycling (26), were detected using Geo-
Chip 5.0 M. With the exception of functions related
to the categories plant growth promotion, protist, and
virus, most functions exhibited higher values in vascular
plant-dominant samples (§1B01 and S2B01) at the DNA
level (Fig. 7). Gene expression (RNA) related to C and N
cycling was higher in vascular plant-dominant samples
(S1BO1 and S2B01), whereas that of genes related to plant

growth promotion was higher in cryptogam-dominant
samples (S1A01 and S3A01). In contrast, gene expression
related to cellulose degradation, such as cellulase, endo-
glucanase, and exoglucanase gene expression, increased
in vascular plant-dominant samples.

SEM

A hypothetical model linking different environmental
variables; vegetation coverage; and the dynamics of gen-
eralists, common taxa, and specialists was constructed
and evaluated (Fig. 8). Several candidate models were
compared, and the model that best represented the data
was selected. The final structural equation model exhib-
ited the following values: x* test statistic=18.26 with
10 degrees of freedom; RMSEA=0.061; CFI=0.996;
TLI=0.985; SRMR =0.030 (Fig. 8). These fit indices indi-
cated that the model remained within acceptable limits
and had a good fit for its purpose. In addition, the SEM
results revealed that temperature, elevation, and moisture
content were the major abiotic environmental factors
influencing vegetation coverage. Vegetation coverage,
along with pH, moisture content, and elevation, affected
the dynamics of generalists. Common taxa were mainly
affected by generalists and partly by vegetation coverage
and moisture content. Specialists were mainly affected
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by common taxa and partly by generalists, pH, tempera-
ture, elevation, and moisture content, although they were
not directly affected by vegetation coverage. Overall, the
hypothesized models explained 46%, 70%, 96%, and 99%
of the variance in vegetation coverage, generalists, com-
mon taxa, and specialists, respectively (Fig. 8).

Discussion

The presence of higher trees and their diversity and rich-
ness play pivotal roles in maintaining a stable soil micro-
biome in natural ecosystems [69, 74, 77]. However, in
contrast to temperate regions, the tundra ecosystem is
characterized by harsher environmental conditions due
to the absence or scarcity of higher trees, resulting in
lower biotic diversity and simple vegetation structures.
Vascular plants and cryptogams, which survive under
the snow during the cold season, are the most commonly
observed plant types in the tundra ecosystem [52]. As a
result, the distribution patterns of vegetation and their
interactions with microbes are deterministic factors that
influence soil biodiversity in the tundra ecosystem [81].
For example, the coverage level of cryptogams has been
shown to affect the structure of bacterial and fungal com-
munities and play a crucial role in the establishment of
vascular vegetation in Arctic soils [35]. Furthermore,
vegetation patches increase microbial activity by pro-
viding bioavailable substances [61]. Our results revealed
that in the tundra, vascular plants were dominant in
low-elevation areas, whereas cryptograms, particularly
bryophytes and lichens, were dominant in high-elevation
areas (Fig. 1B). These vegetation distribution patterns in
low-elevation areas could be attributed to lower environ-
mental stresses, higher species competition, and higher
resource availability compared with those at higher eleva-
tions [36].

Microbial distribution patterns and their functions
also varied in relation to environmental factors and veg-
etation dynamics. The distribution of habitat general-
ists was relatively uniform, whereas the distribution of
habitat specialists varied more significantly compared
with that of common taxa and generalists (Fig. 3), sug-
gesting that macroenvironment and microenvironment
filtering play important roles in controlling the distribu-
tion of microbes in specific ecological niches. Network
analysis showed that Rhizobiales, Ktedonobacterales, and
Chthoniobacterales served as keystone microbes (either
as module hubs or connectors) in the total network, indi-
cating their essential roles in the tundra ecosystem. SEM
revealed that vegetation coverage directly regulated the
microbial structure of generalists and indirectly affected
the microbial structures of common taxa and specialists
(Fig. 8). Furthermore, microbial regulation acting on spe-
cialists was found to be greater than regulation by abiotic
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factors, suggesting that microbial niche construction (or
microenvironment filtering) is essential for the survival
of specialists in the tundra ecosystem. In summary, the
vegetation level in tundra ecosystems exerts top—down
control on habitat generalists, which in turn affects the
overall microbial community composition and microbial
modular structure formation. Thus, species-engineered
microbial niche construction, rather than environmental
fluctuations or macroenvironmental filtering, appears to
be the fundamental factor controlling the communities of
habitat specialists.

Our results revealed that niche breadth was associ-
ated with elevation-dependent unique microbial com-
munities, with higher variation observed in specialists
(Fig. 3). Specialists, with restricted niche breadth and
highest fitness in their optimal habitat, are more suscep-
tible to subtle changes in the environment than gener-
alists [37]. Given that we removed rare ASVs observed
in<25 samples, which were mostly assigned to special-
ists, this would theoretically make the specialists’ net-
work more complex. Consistent with previous results in
marine [50] and terrestrial soil [3] ecosystems, the spe-
cialists in the present study showed a higher modularity
value and formed more modules than the common taxa
and generalists in the niche breadth network, with vari-
ation patterns exhibiting elevation-dependency (Fig. 4C).
It has been reported that microbial module formation is
driven by both macroenvironment filtering and species-
engineered microenvironment filtering [12]. Therefore,
high interspecies interactions among specialists could
be a key mechanism underlying adaptation to specific
conditions and survival under the influence of fluctuat-
ing environment conditions. Collectively, these findings
suggest that specialists formed an independent micro-
bial cluster to produce a specific microenvironment, i.e.,
niche construction, which could help them persist and
avoid extinction in the harsh tundra ecosystem.

Environmental disturbances and habitat heterogene-
ity are known to be advantageous for the succession of
generalists rather than specialists [24, 49]. Therefore,
determining the mechanisms driving the coexistence
of generalists and specialists in ecosystems remains a
central challenge in ecology [71, 80]. However, the sen-
sitivity of generalists and specialists to environmental
fluctuations and their mutual influence have not been
thoroughly explored [53]. Several studies have reported
that biodiversity is primarily driven by common taxa
that are sensitive to environmental changes [31, 34, 71].
Consistent with previous studies, the overall structure
of the total network was similar to that of the common
taxa network. As expected, the common taxa occupied
approximately 60% of the total nodes, were the main
component in module hubs (36 ASVs), and comprised
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half of the connectors (3 ASVs) in the total network.
Therefore, we assumed that the common taxa played a
major role in the ecological network in the tundra eco-
system. In contrast, the generalists occupied only 7% and
50% of the total module hubs and connectors, respec-
tively. Considering that the generalists accounted for only
approximately one-tenth of the nodes of the common
taxa, approximately 7% of the generalists acted either as
module hubs or connectors, proportionally exceeding
those in the common taxa (5%). Furthermore, the overall
values of nodes assigned to the generalists showed high
among-module connectivity and betweenness centrality
as well as high within-module degree and node degree.
These results suggest that the generalists, despite having
small number of ASVs, can act as bridges that connect
and tie the microbial communities together and function
as hub species that assist other microbes with their essen-
tial substances [12, 18, 26]. In contrast, the specialists
showed the lowest values for the aforementioned indi-
ces, indicating that they interacted actively within their
own group and with common taxa but less with general-
ists. Based on these findings and the results observed in
the niche breadth-based distribution network discussed
earlier, we assume that specialists, which have restricted
niche breadth and high fitness under local conditions
relative to generalists [37], preferably make selective con-
nections with others within the same niche to form spe-
cies-engineered microenvironments that allow them to
persist and thrive in harsh tundra environments.

In ecological networks, module hubs play crucial roles
as keystone taxa, assisting other microbes and maintain-
ing the structure and function of the network [22]. The
loss of connectors and module hubs can lead to the col-
lapse and deterioration of the entire ecological network
[26]. Our study revealed that Rhizobiales and Ktedono-
bacterales acted as module hubs and/or connectors,
comprising 36% of the total module hubs and 50% of the
connectors in the total network. These two groups, apart
from being keystone microbes, were found to be the
most dominant groups in both generalists (Rhizobiales)

Table 2 Number of edges among the modules
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and specialists (Ktedonobacterales), highlighting their
essential roles in the study sites. Previous studies have
reported that Rhizobiales and Acidobacteriales are domi-
nant bacterial groups in the Arctic region [45, 46]. The
average relative abundance of Rhizobiales in our study
was 12.2% +2.3%, which is approximately five-fold higher
than that in unplanted soil environments and similar to
that in plant microbiota (5-17%) [25]. The presence of
Rhizobiales as a keystone species indicates that plant root
activities influence microbial co-occurrence relation-
ships in the soil. As the predominant module hub group,
Rhizobiales was connected to a wide variety of microbial
groups, such as Microtrichales and Cytophagales, in the
tundra microbial network (Table 2, Fig. 5). These three
groups have been reported to be involved in the degrada-
tion process of plant residues and can affect soil organic
carbon content [40, 72]. Vascular plant coverage and
moisture content, two important environmental factors,
were directly correlated with module hub of Rhizobiales
in generalists. Given that Rhizobiales is one of the most
abundant bacterial groups across various environments
and a core member of plant microbiota, including plant
symbionts with nitrogen-fixing abilities [25], it is likely
that Rhizobiales interact symbiotically with plants and
support other microbes through molecular and genetic
information transfer [7]. Therefore, Rhizobiales and their
ecologically associated microbial neighbors are essential
for the growth of tundra plants, and in turn, local plants
may help generalists survive and thrive in the tundra
ecosystem.

Ktedonobacterales was identified as one of the domi-
nant specialist groups in samples collected from high-ele-
vation areas. The predominant ASV in Ktedonobacterales
(ASV0005) showed high 16S rRNA gene similarities
(>98%) with uncultured bacterium clones obtained from
the alpine tundra, Mount Mila in the Tibetan Plateau,
and Mount Grand Galibier in the Cottian Alps [59, 83].
This finding suggests that this group is well-adapted to
Arctic and alpine tundra ecosystems and is commonly
found in global tundra soil ecosystems. Ktedonobacteria

Group | Group Il

Module | Module llI Module IV Module Il Module V Module VI
Module | (n=283) 4194 (10.5%) 305 (0.4%) 336 (0.6%) - - 1 (0%)
Module lll (n=257) 305 (0.4%) 1073 (3.3%) 19 (0%) 2 (0%) 38(0.1%) 4 (0%)
Module IV (n=203) 336 (0.6%) 19 (0%) 644 (3.1%) 2 (0%) 1 (0%) 24 (0.1%)
Module Il (n=268) - 2 (0%) 2 (0%) 4200 (11.7%) 365 (0.7%) 449 (0.9%)
Module V (n=196) - 38(0.1%) 1 (0%) 365 (0.7%) 794 (4.2%) 5 (0%)
Module VI (n=181) 1 (0%) 4 (0%) 24 (0.1%) 449 (0.9%) 5 (0%) 846 (5.2%)
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is characterized by large genome size and a high ratio of
hypothetical proteins with unknown functions, although
functions related to plant biomass degradation through
strong cellulolytic activity have been reported [82].
Despite the low level of primary productivity, the active
soil layer in permafrost contains significant amounts of
organic matter [60], providing a favorable environment
for multifunctional microbial groups, such as Ktedono-
bacteria, to adapt and thrive in this area. Approximately
75% of ASVs assigned to Ktedonobacteria were observed
in T_Module II, T_Module V, and T_Module VI, and the
distribution patterns showed positive correlations with
altitude. No correlations were observed between ASVs
assigned to Ktedonobacterales and vascular plant cover-
age or moisture content, but Ktedonobacterales showed
correlations with soil dry/wet weight ratio and soil tem-
perature, either as module hubs or high-degree nodes.
As mentioned earlier, Ktedonobacterales contained
the second most abundant module hubs in the present
study, which could be attributed to their multifunctional
genomic features [82]. Being a module hub, this micro-
bial group requires the ability to undertake multiple bio-
geochemical processes to provide other microbes with
indispensable substances [26]. The large genome size and
high ratio of functionally unknown hypothetical proteins
[82] may give Ktedonobacteria a genetic advantage that
allows them to perform multiple functions in complex
biogeochemical processes.

Environment filtering is a critical factor that influ-
ences shifts in microbial communities [38, 55]. Numer-
ous studies have shown that environmental factors are
the primary drivers of microbial community structures in
diverse habitats. Both the niche breadth-based distribu-
tion networks and total network were divided into several
major modules, some of which reflected the distribution
patterns of specific environmental factors, including
vascular plant coverage, moisture content, and soil dry/
wet weight ratio (Additional file 1: Fig. S4). This find-
ing is consistent with that of previous studies in aquatic
and terrestrial ecosystems [12, 13, 18, 47, 48]. Our model
revealed that vegetation coverage, along with other abi-
otic environmental factors, was the major driver of gen-
eralists, and to some extent, directly influenced common
taxa. In contrast, specialists were not directly influenced
by these biotic and abiotic factors (Fig. 8). In the total
network, almost all ASVs that correlated with vascular
plant coverage and moisture content were from gener-
alists or common taxa, with an average of 18% of gen-
eralists being correlated with these two environmental
factors. Notably, one-third of module hubs derived from
generalists were directly correlated with the two envi-
ronmental factors mentioned above. Given that general-
ists and common taxa constituted an average of>60% of
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the total microbial communities, we assumed that these
microbial communities were affected by vegetation cov-
erage. Therefore, macroenvironment filtering could play
a crucial role in shaping the variation in overall micro-
bial community structures, particularly in the case of
habitat generalists. Compared with generalists, special-
ists appeared to be less affected by vegetation coverage,
as species-engineered microbial niche construction (or
microenvironment filtering) was the key factor in shap-
ing the variation of habitat specialists in the tundra eco-
system. In summary, tundra vegetation coverage, which
is influenced by abiotic environment factors, controls
overall microbial community structure and module for-
mation by directly regulating habitat generalists.

Conclusion

The present study highlights the relationships between
microbial niche breadth and vegetation patterns in the
tundra ecosystem. Different niche breadths were associ-
ated with different microbial communities, with habitat
generalists being largely influenced by macroenviron-
ment filtering effects and habitat specialists being pri-
marily affected by microenvironment filtering. Notably,
Rhizobiales and Ktedonobacterales served as keystone
microbes, playing critical roles in supporting other
microbes in the tundra ecosystem through key metabolic
functions. Furthermore, vegetation coverage directly reg-
ulated the distribution of the microbial communities of
generalists, which in turn affected the distribution of the
other microbial communities within the ecosystem. In
summary, tundra vegetation coverage exerted top—down
control on habitat generalists, which in turn influenced
the composition of the remaining microbial communi-
ties and the formation of microbial modular structures.
Importantly, species-engineered microbial niche con-
struction, rather than the environmental fluctuations,
emerged as the fundamental factor affecting the commu-
nities of habitat specialists.
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