
Louisson et al. Environmental Microbiome           (2023) 18:30  
https://doi.org/10.1186/s40793-023-00485-x

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Environmental Microbiome

Land use modification causes slow, 
but predictable, change in soil microbial 
community composition and functional 
potential
Z. Louisson1*, S. M. Hermans2, H. L. Buckley2, B. S. Case2, M. Taylor3, F. Curran‑Cournane4 and G. Lear1 

Abstract 

Background Bacterial communities are critical to ecosystem functioning and sensitive to their surrounding physi‑
ochemical environment. However, the impact of land use change on microbial communities remains understudied. 
We used 16S rRNA gene amplicon sequencing and shotgun metagenomics to assess soil microbial communities’ 
taxonomic and functional responses to land use change. We compared data from long‑term grassland, exotic forest 
and horticulture reference sites to data from sites that transitioned from (i) Grassland to exotic forest or horticulture 
and from (ii) Exotic forest to grassland.

Results Community taxonomic and functional profiles of the transitional sites significantly differed from those within 
reference sites representing both their historic and current land uses (P < 0.001). The bacterial communities in sites 
that transitioned more recently were compositionally more similar to those representing their historic land uses. In 
contrast, the composition of communities from sites exposed to older conversion events had shifted towards the 
compositions at reference sites representing their current land use.

Conclusions Our study indicates that microbial communities respond in a somewhat predictable way after a land 
use conversion event by shifting from communities reflecting their former land use towards those reflecting their cur‑
rent land use. Our findings help us to better understand the legacy effects of land use change on soil microbial com‑
munities and implications for their role in soil health and ecosystem functioning. Understanding the responsiveness 
of microbial communities to environmental disturbances will aid us in incorporating biotic variables into soil health 
monitoring techniques in the future.
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Background
Land use conversion leaves enduring legacy effects on 
soil ecosystems and is considered a dominant threat to 
biodiversity [56, 57]. The impacts on abiotic conditions 
are well-researched. Soil pH levels, carbon and nitrogen 
concentrations are highly related to agricultural practices, 
but it may take decades to centuries for these to reflect 
their modern-day land use, following conversion [15, 41, 
57]. Compared to physicochemical analyses, far less focus 
has been directed towards the impact of land use change 
on microbial community composition and functioning. It 
is important to investigate this further as microbial com-
munities are an essential biological component of all soil 
ecosystems. Further, they are responsible for fundamen-
tal processes, including nutrient cycling, decomposition 
and soil formation [34, 53]. Soil physicochemical vari-
ables, which may be highly impacted by land use [14, 30], 
are increasingly considered to be dominant determinants 
of microbial community composition, with different land 
uses and management types often having distinct micro-
bial community profiles [24, 65].

Land use intensification is often associated with 
changes in microbial biodiversity [59]; however, the 
impacts of such changes on microbial community func-
tioning remain understudied [4]. Some studies indicate 
that reductions in microbial biodiversity do translate to 
reductions in ecosystem functioning [58] and that bio-
diversity is important for functional stability [55], while 
others have observed no significant effects from reduced 
biodiversity [61, 62]. These discrepancies could be due 
to the high levels of functional redundancy observed in 
soil microbial communities where taxa from different 
clades are responsible for the same or similar functional 
processes [36], potentially mitigating the effects of bio-
diversity loss. However, this phenomenon is difficult to 
confirm in microbial communities using compositional 
data, largely due to a lack of knowledge surrounding the 
functional roles of different microbial taxa [1]. Conse-
quently, when analysing the impact of land use conver-
sion on microbial communities, it is beneficial to examine 
both taxonomic and functional responses.

Most research investigating the effects of land use 
change on soil microbes focuses on taxonomic commu-
nity responses [6, 52, 66], rather than functional changes. 
These studies have supported that land use conversion 
significantly impacts microbial community composition 
and that these effects endure over time. The few studies 
examining the functional response of soil communities to 
land use change have generally sampled a limited num-
ber (between three and four) of converted sites [10, 20, 
39, 42, 45], with more of an emphasis on assessing tem-
poral replicates. Together, this research indicates that 
converted sites have distinct functional profiles, with 

reduced functional diversity generally observed in the 
converted sites relative to sites retaining the same land 
use long-term. Winkler et al. [63] estimated that 32% of 
global land had undergone some form of land use change 
since 1960, signalling it is increasingly important that 
we can quantify the long-term impact of these changes 
on the microbial functions required to sustain vital soil 
processes.

Soil chemistry, such as organic carbon, does not 
respond instantly to land use change but reaches a new 
stability over several years to decades [46]. Therefore, we 
would expect microbial communities and their functional 
roles, to respond at a similar rate, due to strong correla-
tions between soil biogeochemistry and microbial com-
munity composition [24]. However, more rapid responses 
by soil microbial communities have been observed, 
with significant changes seen five years post the conver-
sion event [25]. Additionally, certain practices (e.g. till-
age) involved in some land use conversions or land use 
intensification, can rapidly change soil properties, with 
declines in soil organic carbon observed after only two 
years following conversions of prairie grasslands to crop-
lands [51]. To gain a more in-depth understanding of the 
functional changes occurring after land use conversion, 
larger-scale studies are required that allow for multiple 
comparisons between converted sites and their former 
and current land uses, and at sufficient scale to account 
for the huge natural spatial variations in bacterial com-
munity traits.

This study quantifies the effects of land use conversions 
on soil bacterial community composition and functional 
potential. We used shotgun metagenomic and 16S rRNA 
gene amplicon sequencing to assess soil microbial com-
munity functional potential and taxonomic responses to 
land use change, respectively. We assessed 29 converted 
sites that had transitioned from grassland to either exotic 
forest or horticulture and from exotic forest to grassland, 
comparing them to 38 long-term reference sites repre-
senting each land use examined. The converted sites were 
sampled at differing years following conversion, adding a 
temporal element to the study. We expect that recently 
converted sites will harbour microbial communities that 
resemble their former land uses more closely, since soil 
physicochemical attributes may take decades to change 
to reflect their new land use. To test this, we investigated 
the following questions: (1) Does the composition of soil 
microbial communities from converted sites more closely 
reflect their former or current land uses? (2) Are sites 
converted more recently more like their former land use 
than those converted earlier? (3) Are trends in the taxo-
nomic response to land use change similarly reflected 
in changes in functional potential? (4) Are there taxa or 
functions reproducibly representative of each land use? 
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The answers to these questions are important to better 
understand the long-term impact of land use change on 
soil microbial diversity and contributions to global soil 
health and production potential.

Methods
Site description and sample collection
Soil samples were collected from 67 sites (with five rep-
licates per site, n = 335) across eight regions of New 

Zealand between 2013 and 2017 (Fig. 1). Across the sites, 
mean annual temperature ranged from 10 to 15.7 °C and 
total precipitation ranged from 567 to 1965 mm per year 
(Additional file 1: Table S2). The New Zealand Land Cover 
Database (LCBD version 5.0, January 2020) was used to 
classify the dominant land use of the sites based on their 
GPS location (recorded at the start of the sample tran-
sect line) and whether they were under their current land 
use ‘long-term’ or had undergone a land use conversion 

Fig. 1 Location of the 67 sites sampled across New Zealand. The points are coloured according to their current land use. Circles identify long‑term 
sites, while triangles represent converted sites
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in the past 20  years. We used the LCDB for classifica-
tion of the site land use for consistency of classification, 
reproducibility and potential for higher throughput use 
for future monitoring. Thirty-eight of the total sites sam-
pled were considered ‘long-term’, having not undergone 
any significant land use change for at least 20 years. These 
long-term sites were comprised of exotic forest (n = 9), 
grassland (n = 10), horticulture (n = 9) and indigenous 
forest (n = 10) dominated land uses. These sites were 
selected from a previous large-scale project (~ 500 sites), 
which confirmed that land use significantly correlates to 
variation in soil microbial community composition across 
New Zealand [23]. To select sites representative of each 
land use from this prior dataset and to exclude outlier 
sites, a non-metric multidimensional scaling (nMDS) 
ordination was produced based on a Bray–Curtis dissimi-
larity matrix. The centroid of data representing each land 
use was calculated and the sites selected in this study were 
randomly subsampled from those that fell within two 
standard deviations of the centroid for their correspond-
ing land use (Additional file 1: Fig. S1).

The remaining 29 sites were sampled between two to 
sixteen years after a land use conversion event. The con-
verted sites consist of areas that have transitioned from 
exotic forest to grassland (n = 7), grassland to exotic for-
est (n = 9) and grassland to horticulture (n = 13). The 
converted sites were classified as either historical or 
recent conversions based on the length of time since the 
conversion event and the type of conversion. Exotic for-
est to grassland sites were classified as historic conver-
sions if sampling took place more than five years after the 
conversion event, as soil pH and Olsen P levels report-
edly reach acceptable levels for pasture growth after four 
years of fertilizer inputs [21] and total carbon and nitro-
gen reportedly increase most within 1–5 years after con-
version from P. radiata forest to pasture [50]. Grassland 
to exotic forest sites were considered historic conversions 
if the sampling took place more than 11  years after the 
conversion event, according to findings of [22] which 
found no significant decline in pH until 11 years after the 
pine was planted, under various stockings. Grassland to 
horticulture sites were classified as historic conversions 
if sampling occurred ten years after the conversion event, 
following the work of Gentile et  al., [18], which sug-
gests the highest fine root turnover and therefore carbon 
inputs, occur in the first ten years of orchard establish-
ment. We acknowledge there is much variation in hor-
ticultural systems due to differences among the crops 
planted and related differences in cropping and manage-
ment strategies. However, we chose to treat these diverse 
systems as one land-use group for the practicality of 
implementing future monitoring systems for broad land 
use groups such as horticulture.

We used samples previously collected and described by 
[24, 23]. In brief, five soil cores (0–10 cm depth, 2.5 cm 
diameter) were sampled from each site every 10 m along 
a 50  m transect. A further 25 soil cores were collected 
every 2 m along each transect and were composited for 
each site to determine soil physiochemical properties, 
following national guidelines for soil quality monitoring 
[27]. For soil physical analyses, three additional stainless-
steel rings were used to collect intact soil samples (10 cm 
depth, 10  cm diameter) every 15  m to measure average 
bulk density and macroporosity (− 10 kPa).

DNA extraction, PCR and sequencing
DNA extraction and 16S ribosomal RNA gene amplifi-
cation were conducted as previously described [23]. In 
brief, the soil cores were thawed and manually homog-
enized. Genomic DNA was extracted from 250  mg of 
each sample using DNeasy PowerSoil HTP kits (Qiagen, 
Valencia, CA, USA). For the analysis of bacterial com-
munity taxonomy, data previously generated were used 
[24, 23]. The V3-V4 region of 16S rRNA genes was ampli-
fied through PCR. Purified PCR products were submitted 
to New Zealand Genomics Ltd. (Auckland, New Zea-
land), barcoded (Nextera XT dual indices), pooled and 
sequenced on an Illumina MiSeq instrument, producing 
2 × 300 bp paired-end reads.

New data were generated to analyse the functional 
potential of the microbial communities at each site. Shot-
gun metagenomic sequencing was undertaken by Otago 
Genomics Ltd., New Zealand, to analyse the functional 
potential of each of the sites. Equal amounts of extracted 
DNA from each of the site replicates were pooled to pro-
duce a composite sample for each site. Sequencing was 
conducted on an Illumina HiSeq 2500 Instrument, pro-
ducing sequence lengths of 2 × 150 bp.

Bioinformatics and statistical analysis
The processing of these sequence data and all down-
stream analyses were performed in R v 3.6.3 [48]. The 
Bioconductor pipeline [9] was used to process the demul-
tiplexed 16S rRNA gene reads. We used the DADA2 
algorithm to infer amplicon sequence variants (ASVs), 
determining exact variants at a single-nucleotide level. 
The fine resolution of DADA2 allows for higher accuracy 
in determining real biological variants and greater con-
sistency between studies relative to traditional cluster-
ing methods [8]. The reads were filtered and trimmed to 
remove low-quality reads and primers, the paired-end 
reads merged, and the chimeras were removed using 
the DADA2 package. Sequence variants were taxonomi-
cally classified using the RDP’s naïve Bayesian classifier 
method [60] and the SILVA rRNA gene database, version 
138 [47]. The ASV table, the corresponding taxonomic 
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assignments and the metadata were compiled into a 
phyloseq object [38]. The ASVs not classified as of bac-
terial origin were excluded, including sequences classi-
fied as being from chloroplasts or mitochondria. As the 
soil cores for physiochemical analyses were pooled for 
each site, the site replicate data for microbial analyses 
were averaged to provide representative bacterial diver-
sity for each of the 67 sites. For alpha-diversity analyses, 
the reads were normalized through random subsam-
pling without replacement to an even depth of 4875 
reads per site (Additional file 1: Fig. S2) using the rarefy_
even_depth function in the ‘phyloseq’ package [38]. For 
beta-diversity analyses, we performed Cumulative Sum 
Scaling (CSS) normalization on the non-rarefied data, 
after removing all samples with < 1000 reads.

For the processing of the shotgun metagenomic 
sequences, the quality of the reads was assessed using 
FastQC v0.11.7 [3], before the trimming of primers and 
discarding of reads less than 80 bp or those with an aver-
age quality score below 30 using Trimmomatic v0.38 [5]. 
The paired-end reads for each sample were then inter-
leaved into one file for further processing. We used the 
gene-predicting algorithm Prodigal v2.60 [29] to pre-
dict the open reading frames and aligned the sequences 
against a protein reference database using DIAMOND 
v0.8.38 [7]. MEGAN6 [28] was used to map the reads to 
genes with defined functional roles and then into bio-
logically curated SEED subsystems [44]. We then used 
SEED assignments to assess the general functional pro-
files of the different samples. The KEGG database (May 
2021 version; [32] maps the reads to KEGG Orthology 
(KO) groups and then to metabolic pathways. We used 
the KEGG assignments to identify pathways highly rep-
resentative of land uses. We normalised the SEED and 
KEGG assignments using CSS for beta-diversity analyses 
and normalised to the smallest given count to account for 
read depth variation for alpha-diversity analyses.

Quantitative analyses
We performed variance partitioning, using the varpart.
MEM function [35], to determine the relative variance 
explained by the categories space, soil chemistry, cli-
mate and site characteristics on a Bray–Curtis dissimi-
larity matrix (based on ASVs). The coordinates of each 
site were used to calculate Moran’s eigenvector maps 
(MEMs) and those that significantly correlated with the 
dissimilarity matrix were used as the spatial components 
in the variance partitioning model. The largest amount 
of variance explained was by soil chemistry (Additional 
file  1: Fig. S3). To explore the difference in alpha diver-
sity between microbial communities in the converted 
sites and their former/present land uses, the Chao1 index 
and the Inverse Simpson’s index were calculated using 

the estimate_richness function in phyloseq, generating 
richness and evenness estimates, respectively (based on 
ASVs or SEED subsystem level 4 assignments, offering 
the finest functional resolution). We ran a Dunn’s test 
to identify statistically significant differences among site 
types. To attain a general representation of the diversity 
of communities for each of the long-term and converted 
sites, bar plots were generated that displayed the aver-
age (mean) relative abundances of each of the abundant 
phyla (representing > 1% of relative abundance) and all 
the subsystem level 1 SEED assignments using the plot_
bar function in the ‘phyloseq’ package [38]. We applied 
the Mann–Whitney U test to identify abundant phyla 
that significantly differ in relative abundance between 
the respective long-term sites for each conversion type. 
A Mann–Whitney U test was also used to compare the 
relative abundance of KEGG level 3 groups within the 
metabolism category and the abundance of methane 
 (CH4) and nitrogen cycling genes, based on level 4 KEGG 
assignments.

Differences in community composition and functional 
potential (based on ASVs or SEED subsystem level 4 
assignments, respectively) between the communities in 
converted sites and their corresponding long-term land 
uses were tested through computing Bray–Curtis dissim-
ilarity matrices and running a permutational multivari-
ate ANOVA (PERMANOVA) [2] applied with the adonis 
function in the ‘vegan’ package [43]. We visualised the 
dissimilarity matrices using nMDS plots. Environmental 
factors that significantly correlated with the ordination 
(P < 0.05, calculated using 999 permutations) were fitted 
onto plots using the envfit function in ‘vegan’ [43]. To test 
the congruence between the shapes of the community 
composition and functional ordinations, the two ordina-
tions were maximally superimposed during a Procrustes 
analysis using the function Procrustes from the ‘vegan’ 
package, and a permutational test of significance was 
run on the Procrustes results, using the function protest 
(based on 999 permutations of these data; [43]. The first 
axis scores were extracted from both the bacterial com-
munity and functional nMDS ordinations to offer a more 
simplified version of these data to visualise compositional 
changes over time since conversion events. For each con-
version type, the nMDS axis one scores were plotted for 
the converted sites (separated on the plots as recent or 
historic conversions) and their respective long-term sites.

Indicator value (IndVal) analyses were conducted 
separately on the amplicon and KEGG functional data 
to identify taxa (ASVs) and functions (Level 4 catego-
ries, representing the most detailed classification) that 
were highly representative of the different land uses and 
each of the converted site types [12]. The function mul-
tipatt from the R package ‘indicspecies’ was used to run 
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indicator analyses separately on the long-term and the 
converted site data (with the converted sites split by 
recent and historic conversions) to identify which indi-
cators were shared [11]. The function ‘euler’ from the R 
package eulerr was used to produce euler diagrams for 
each converted site type and to identify the number of 
shared indicators between the historically and recently 
converted sites and their respective long-term sites [33]. 
The mean relative abundances of the shared indica-
tor taxa and functions were visualised using stacked bar 
plots. R scripts for the statistical and quantitative analy-
ses of the functional and taxonomic data are available as 
Additional files 2 and 3, respectively.

Results
Taxonomic and functional diversities across land uses
After quality filtering the amplicon data, we obtained 
1.38 million sequencing reads. Relative taxon richness 
did not significantly differ among the long-term land 
uses and the only converted site type to significantly dif-
fer in richness from their respective long-term land use 
was the exotic forest to grassland sites, having lower rela-
tive ASV richness than their current land use (grassland) 
(Chao1 index, Dunn’s P < 0.05, Additional file 1: Fig. S4a). 
We acknowledge that the lack of significant differences 
observed in richness could be due to unmeasured varia-
tion, such as site location and the local pedoclimatic con-
ditions. After CSS normalisation, 39,350 unique bacterial 
ASVs were identified, representing 22 phyla, 232 families 
and 512 genera. The composition of the long-term hor-
ticulture and grassland to horticulture soil communities 
were significantly more even than the soil communities 
in the other site types (Inverse Simpson’s index, Dunn’s 
P < 0.05, Additional file  1: Fig. S4b). Largely, the taxo-
nomic richness or evenness of soil microbial communi-
ties did not significantly differ between the converted 
sites and their long-term counterparts (Dunn’s P > 0.05, 
Additional file 1: Fig. S4a, b).

For the shotgun metagenome data, a total of 280 mil-
lion paired-end 150 bp reads remained after quality filter-
ing, with an average of 4.1 million sequences per sample. 
Of the reads that could be annotated in MEGAN, using 
the reference database SEED, the largest percentage of 
the reads were classified within the ‘metabolism’ cat-
egory, with an average of 31% of all reads. In contrast, 
the second-highest category was ‘stress response, defense 
and virulence’, representing 13% of all reads. Each SEED 
subsystem level 4 functional category was present in all 
samples; therefore, the richness at this functional level 
was consistent across all land use types. Among the 
long-term sites, the functional data of the horticulture 
sites were significantly more even than the exotic forest 
and indigenous sites (Dunn’s P < 0.05, Additional file  1: 

Fig. S4c), with the functional data from the other long-
term sites not significantly differing in evenness. The 
exotic forest to grassland sites were the only converted 
site type for which the diversity of their subsystem level 
4 functions significantly differed from its respective long-
term counterparts, being significantly more even, overall 
than their former land use (exotic forest; Dunn’s P < 0.05, 
Additional file 1: Fig. S4c).

Microbial taxonomic and functional potential profiles 
differ between land use types
There was more variability in the taxonomic profiles 
across the different land uses than the functional poten-
tial, where no categories significantly differed at func-
tional SEED subsystem level 1 (Mann Whitney U; P > 0.05, 
Additional file 1: Fig. S5). The abundant phyla, classified 
as making up over 1% of the total relative abundance, 
were the same phyla for each of the long-term land uses, 
except for the grassland sites where the phylum Myxo-
coccota was also present at > 1% relative abundance, on 
average. The most abundant phylum across all the long-
term land uses was Proteobacteria, excluding grassland 
sites, where Actinobacteriota was the most abundant. 
Within the Proteobacteria phylum, Alphaproteobacteria 
was the dominant class in all samples (Additional file 1: 
Fig. S5a). Six of the abundant phyla significantly differed 
in relative abundance between the long-term exotic for-
est and grassland sites, with exotic forests presenting 
greater relative abundances of Proteobacteria and Acido-
bacteriota and grassland sites presenting greater levels of 
Verrucomicrobiota, Myxococcota, Firmicutes and Actino-
bacteriota (Fig. 2a and c Mann Whitney U P < 0.05). The 
relative abundance of these phyla in the exotic forest to 
grassland and the grassland to exotic forest conversion 
sites were in between their abundances in both the long-
term sites, except for Myxococcota and Proteobacteria 
in the exotic forest to grassland converted sites, which 
was less abundant in converted site than both long-term 
sites and more abundant in the converted site than the 
long-term sites respectively. Five of the dominant phyla 
significantly differed in relative abundance between the 
long-term grassland and horticulture sites, with Ver-
rucomicrobiota, Myxococcota and Firmicutes present 
at higher relative abundance in the long-term grassland 
sites and Proteobacteria and Nitrospirota more abundant 
in the long-term horticulture sites (Fig. 2b Mann Whit-
ney U P < 0.05). The same trend of convergence towards 
their current long-term land use was also seen for the 
grassland to horticulture sites.

The taxonomic composition and functional potential 
of the soil bacterial communities clustered according to 
their land use type (Fig. 3). A Procrustes rotation analysis 
revealed the congruence of the taxonomic and functional 
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ordinations, indicating a significant correlation between 
them (r = 0.66, P < 0.001). Community composition and 
functional composition significantly differed (P < 0.001 
for all PERMANOVA pairwise comparisons) between 
each site type: the four long-term land uses and the three 

converted site types (grassland to exotic forest, grassland 
to horticulture, exotic forest to grassland). Visually, the 
taxonomic ordinations appear to display more distinct 
clustering-based on land use type than the functional 
ordination.

Microbial communities from converted sites respond 
in an expected manner
For a simplified representation of these data, we 
extracted the first axis data scores of the nMDS ordina-
tions of the taxonomic profiles and functional potential 
for each converted site type and their respective long-
term land use sites (Fig.  4). We separated sample data 
from the converted sites based on whether they were 
historic or recent conversions. Procrustes analyses indi-
cated a significant correlation between each taxonomic 
and functional single-axis ordination per conversion 
type (Procrustes, exotic to grassland (r = 0.76, P < 0.001), 
grassland to exotic (r = 0.80, P < 0.001), grassland to 
horticulture, (r = 0.37, P < 0.02). No significant differ-
ences were observed between the historic or recently 
converted samples for any of the three conversion types 
(each Dunn’s P > 0.05). For the taxonomic data, we found 
sites that were converted more recently had greater simi-
larities to their former long-term land uses. Recently 
converted samples for both the exotic-to-grassland and 
grassland-to-exotic forest converted sites significantly 
resembled their former land use (Dunn’s P < 0.05) and not 
their current long-term land use (Dunn’s P > 0.05). Soil 
communities under historic land use conversions were 
more like their current long-term land use, with data 
from historically converted grassland to horticulture sites 
and grassland to exotic sites being significantly like those 
representing their current land use (Dunn’s P < 0.05), and 
not their former (Dunn’s P > 0.05). The gradual conver-
gence of community data to their current long-term land 
use occurs for each conversion site type. A comparable 
but less pronounced trend was seen in the functional 
potential ordinations, excluding the grassland to horti-
culture samples. No significant difference was detected 
among data from each of the four land use categories 
(Dunn’s P > 0.05).

Taxa and functions are representative of land use
An indicator species analysis (IndVal), conducted sepa-
rately on the long-term and converted site data, identi-
fied taxa (ASVs) and functional categories (KEGG level 
4 categories) that were significantly associated with the 
different site types. In the taxonomic data, the recently 
converted sites only shared indicators with their for-
mer land use sites (Fig. 5 and Additional file 1: Fig. S6). 
The historic conversion sites only shared indicators with 
their current land use sites, excluding the historic exotic 

Fig. 2 Mean relative abundance of the abundant phyla 
(representing > 1% of total relative abundance) that significantly 
differed (Mann Whitney’s U P < 0.05) in relative abundance between 
the respective long‑term land use sites for A grassland to exotic 
forest, B grassland to horticulture and C exotic forest to grassland 
sites. Error bars represent the standard error
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to grassland sites which shared one indicator with the 
long-term exotic sites (Fig.  5 and Additional file  1: Fig. 
S6). The functional data displayed similar but less defined 
patterns, as was expected given the stronger distinction 
between site types in the taxonomic data. The recently 

converted sites shared most indicator functional genes 
with their former land use, excluding horticulture to 
grassland sites, which shared two indicators with the 
grassland sites representing their prior land use and four 
with the horticulture sites representing their current 

Fig. 3 Bray–Curtis dissimilarity based non‑metric multidimensional scaling (nMDS) ordinations of A bacterial community composition (based on 
ASVs) and B community functional potential (based on SEED subsystem level 4 categories). Environmental variables that significantly correlated 
(P < 0.05 based on 999 permutations) with the ordinations are represented as vectors on the plots. nMDS stress values and P‑values from 
PERMANOVA assessing site‑type effects are displayed in the top right corner
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land use. The historic conversions only shared indicators 
with their current land use, excluding the exotic forest to 
grassland sites. They shared 15 functional indicators with 
the exotic sites representing their prior land use and one 
with the grassland sites representing their current land 
use (Additional file 1: Fig. S6h).

Out of the 12 indicator taxa shared between the long-
term grassland sites and the recently converted grassland 
to exotic forest sites, only five were identified in at least 
one of the historically converted sites (Fig. 5e). Out of the 
five indicator taxa identified in both the long-term exotic 
forest sites and historically converted grassland to exotic 
forest sites, only one taxon was observed in the recently 
converted sites (Fig. 5e). Most of the indicator taxa from 
the former land use were only observed in the recently 
converted sites, and most of the taxa from the current 

land use were only identified in the historically converted 
sites. We also observed a shift in the relative abundance 
of indicator taxa in the sample data of the converted 
sites from resembling their former land use to their cur-
rent land use through time since land use conversion. 
A similar trend was observed for the other two conver-
sion types (Additional file 1: Fig. S7a and b). Each of the 
shared indicator functional categories was observed in 
the converted sites and their respective long-term land 
use sites for each conversion type. However, the relative 
abundance of the shared indicator functional categories 
from the recently converted sites generally resembled 
their former land use. In contrast, the relative abundance 
of the functional genes from historic conversion sites 
resembled their current land use (Fig. 5f and Additional 
file 1: Fig. S7c and d).

Fig. 4 Axis 1 scores of Bray–Curtis based nMDS ordinations of A–C bacterial community composition (based on relative abundances of ASVs) and 
D–F functional potential (based on SEED subsystem level 4 categories) for the three conversion types: A and D grassland to exotic forest, B and E 
grassland to horticulture and C and F exotic forest to grassland. Each plot displays the nMDS scores of the primary axis for the respective long‑term 
land use site and the converted sites, split by whether they are classified as recent or historical conversions. Boxes with different letters within each 
panel indicate significant differences from each other (Dunn’s P < 0.05)

(See figure on next page.)
Fig. 5 Euler diagrams indicating the observed number of A and B shared indicator ASVs and C and D indicator functional groups (based on Level 
4 KEGG categories) between the A and C recently converted and B and D historically converted grassland to exotic forest sites and their former 
(grassland) and current (exotic forest) long‑term land use sites. Stacked bar charts visualizing the mean relative abundance of the shared indicator 
ASVs, split by E the different phyla the taxa are assigned to and F the indicator functional groups, split by the Level 1 KEGG categories for the 
grassland to exotic forest sites and their long‑term sites. The numbers in the legends correspond to the numbers on the bars. For comparisons 
between grassland to horticulture and exotic forest to grassland conversions, see Additional file 1: Figs. S6&S7
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Fig. 5 (See legend on previous page.)



Page 11 of 16Louisson et al. Environmental Microbiome           (2023) 18:30  

The abundance of functional categories involved 
in metabolism pathways differ with land use
We focused on metabolism pathways due to the impor-
tant role the soil microbial community has in metabolic 
processes, such as nutrient cycling. Thirty-five metabo-
lism level 3 KEGG categories significantly differed in 
relative abundance between the long-term grassland and 
exotic forest sites (Fig.  6a, Mann–Whitney U P < 0.05). 
Twenty-three of the metabolism-related pathways were 
more abundant in the exotic forest sites, while twelve 
were more abundant in the grassland sites. Within the 
degradation category, genes encoding for benzoate deg-
radation via CoA ligation were significantly more abun-
dant in the grassland sites. This pathway involves the 
degradation of molecules containing aromatic rings (e.g., 
benzene, toluene). In the taxonomic data, bacterial gen-
era able to degrade aromatic compounds such as Pseu-
domonas, Rhodococcus, Streptomyces, Arthrobacter and 
Xanthomonas were more abundant in the grassland sites 
(Fig.  6d). Lysine and geraniol degradation-related genes 
were also significantly more abundant in the grassland 
soils (Fig. 6a). Taxa in the genus Pseudomonas are capa-
ble of degrading both lysine and geraniol. Additionally, 
taxa within the genus Flavobacterium can degrade geran-
iol and were significantly more abundant in the grassland 
sites (Fig. 6d).

The relative abundance of genes encoding for meth-
ane and nitrogen metabolism were significantly higher 
in mean relative abundance in the exotic forest sites, 
relative to the grassland sites (Fig.  6a). We further 
investigated the level 4 KEGG categories of nitrogen 
and methane metabolism due to the important role the 
microbial community plays in nitrogen and methane 
cycling. Five key nitrogen cycling genes significantly 
differed in relative abundance between the long-term 
grassland and exotic forest sites, with one gene (narG), 
involved in reduction of nitrate to nitrite, having higher 
relative abundance in the grassland sites and four (hao, 
NR, nosZ, nirA) in the exotic forest sites (Fig. 6b Mann 
Whitney U P < 0.05). These four genes are involved in 
the oxidation of hydroxylamine to nitrite, reduction of 
nitrate to nitrite, reduction of nitrous oxide to nitro-
gen and reduction of nitrite to ammonia respectively, 

The relative abundance of the genes in the converted 
sites were intermediate to their abundances in both the 
long-term sites for all five genes, except NR and NarG, 
which had lower relative abundance in the exotic for-
est to grassland sites. Five methanogenic genes sig-
nificantly differed in relative abundance between the 
long-term grassland and exotic forest sites, with two 
genes (hdrA2, mtaC) having higher relative abundance 
in the grassland sites and three (mtdB, mch, fwdA) 
in the exotic forest sites (Fig.  6c Mann Whitney U 
P < 0.05). These genes are all involved in methanogen-
esis and more specifically, in the reduction of coenzyme 
M to coenzyme B, methyl transfer from methanol to 
coenzyme M to form Methyl-CoM, the oxidation of 
methylene-dH4MTP to methenyl-dH4MTP, conver-
sion of methenyl-dH4MTP to formyl-dH4MTP and the 
reduction of  CO2 to N-formylmethanofuran respec-
tively. The relative abundance of the genes in the grass-
land to exotic forest and the exotic forest to grassland 
sites were intermediate to their abundances in both the 
long-term sites for all five genes, except mtdB, which 
had higher relative abundance in the exotic forest to 
grassland sites.

Discussion
It is important to understand the long-term conse-
quences of land use changes on the potential for soil 
microbes to undertake and sustain key functions of rel-
evance for soil health, production potential and global 
processes. Our results indicate that although the com-
munities within the converted sites were composition-
ally distinct from the communities in their former and 
current land uses, there was a shift from communities in 
recently converted sites more closely reflecting the com-
position of their former land use, to communities from 
sites with older conversion events being more composi-
tionally like their current land use. Importantly, we also 
saw this trend in the functional potential of the converted 
sites, indicating that the lasting impacts of historic land 
use legacy extend to the functioning of microbial com-
munities, including critical processes.

Fig. 6 A Boxplots display the relative abundance of the level 3 KEGG pathway categories, within the level 3 category metabolism, which 
significantly differed in relative abundance between the long‑term exotic forest and grassland sites (Mann–Whitney’s U P < 0.05). The categories are 
split by whether they relate to biosynthesis, degradation or metabolism. The metabolism category is split by relative abundance with categories 
with > 0.01 displayed in the box on the right. The boxes represent the interquartile range (IQR: 25–75% of the data), the horizontal line indicates 
the median, while the whiskers extend to 1.5 times the IQR. Mean relative abundance of level 4 B nitrogen and C methane cycling genes and 
D aromatic compound, lysine and geraniol degraders that significantly differed (Mann Whitney’s U P < 0.05) in relative abundance between the 
long‑term grassland sites and the long‑term exotic forest sites. Error bars represent the standard error

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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Over time, taxonomic composition in converted 
sites converges to resemble bacterial composition 
representative of current land uses
In line with various studies [31, 25, 45, 66], we observed 
that land use change results in alterations to the com-
position and functional potential of soil microbial com-
munities. Our study adds to the current knowledge 
by providing insights into the time frame that these 
changes occur, with bacterial communities within 
grassland to exotic forest and grassland to horticul-
ture-converted sites already compositionally distinct 
from their former land use and compositionally com-
parable to their ‘future’ land use within 11 and 10 years, 
respectively (Fig. 4a and b). Changes to microbial com-
munities or biomass within a similar time frame have 
been observed in sites converted from grassland to 
Eucalyptus forest [49] and over a longer time frame 
(between 19 and 160  years) in grassland to cropland 
sites across Europe [54]. However, these prior studies 
identified alterations to bacterial communities after 
land use change, rather than measuring whether direc-
tional changes in the bacterial community composi-
tion occurred. We observed directional compositional 
changes through time; dominant phyla shifted in rela-
tive abundance towards resembling their abundances in 
soils under their current land use category.

Although still compositionally like their former land 
use, sites converted from exotic forest to grassland 
began to resemble their current land use more closely 
after only five years (Fig.  4c). This was confirmed as 
the bacterial community composition in the histori-
cally converted sites was compositionally comparable 
to their ‘current’ land use, and a directional shift was 
observed in the relative abundance of dominant phyla. 
These results are supported by a previous study, where 
the taxonomic and functional compositions of sites 
converted from pine forest to pasture were more simi-
lar to pasture than to pine forest communities after five 
years and progressively similar to long-term pasture 
communities, eight years post-conversion [25]. This 
current study builds on this prior research by identify-
ing similar trends across a larger dataset with various 
land use conversion types. Such findings of a gradual 
convergence in taxonomic composition and functional 
potential from former to current land use, demonstrate 
the extent that we can predict microbial community 
taxonomic and functional change, based on the length 
of time since land conversion events. This is important 
for improving land management and conservation deci-
sions, as it indicates that bacterial communities can be 
useful in assessing soil conditions after environmental 
disturbance.

Taxonomic compositional changes of soil bacterial 
communities to land use alteration are reflected 
in functional responses
Changes in bacterial community composition associated 
with land use conversion translated to changes observed in 
the functional potential of the soil communities. The most 
marked response of the functional composition shifting to 
reflect the current land use over time was within the grass-
land to exotic forest sites, which accompanies the most 
defined taxonomic shift (Fig.  4a). However, for sites con-
verted in the opposite direction, from exotic forest to grass-
land, the overall composition of functional potential in the 
converted sites was comparable to the composition within 
both the respective long-term land uses (Fig.  4f). This 
response was slightly less defined than that observed in the 
taxonomic data. Broadly, these results emphasise land use 
change does impact the functional potential of soil environ-
ments. However, we did not observe significant differences 
in functional composition between the long-term grassland 
and horticulture sites, or those converted from grassland to 
horticulture, even though there were taxonomic differences 
between the long-term sites and a taxonomic shift in the 
grassland to horticulture sites (Fig. 4e). Therefore, we cannot 
rule out the occurrence of functional redundancy in these 
site types. As diversity is often regarded as the dominant 
factor influencing the functioning of ecosystems, increasing 
efforts are focusing towards understanding the relationship 
between microbial biodiversity and soil functioning [58], 
with various studies linking microbial diversity to maintain-
ing functional processes [39] and functional stability [19, 
55]. Additionally, it has been shown that high levels of initial 
community evenness can protect functional stability under 
stressed conditions [64]. Although the soil environments in 
the current study generally maintained their ASV richness 
after land use conversion, the taxonomic data in the long-
term horticulture and grassland to horticulture sites were 
more even than the other site types. Heightened evenness 
could potentially increase the likelihood of stress-tolerant 
species in these communities relative to a community with 
low evenness. This, in turn, may maintain functional sta-
bility, explaining why a shift in functional potential did not 
accompany the observed taxonomic shift after the land use 
change from grassland to horticulture. Soil communities in 
horticulture sites or sites that have transitioned to horticul-
ture might be more resilient to environmental disturbances 
than the other site types.

Taxa and functional genes highly representative 
of different land uses remain at elevated abundances 
in converted landscapes
We identified taxa and functional genes highly repre-
sentative of the different long-term land uses, indicating 
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strong associations of key individuals and processes to 
land use, in line with previous studies [24, 40, 45]. Exam-
ining how these representative taxa or functional genes 
respond to land use change can indicate the degree to 
which conversions can impact the abundance of eco-
logically important bacteria and functional groups. Our 
results suggest the relative abundances of these repre-
sentative taxa and functional genes are strongly influ-
enced by the process of land use change, with most taxa 
and functional genes defined as ecologically important in 
the long-term sites, not being associated with the con-
verted sites (Fig.  5 and Additional file  1: Fig. S6). This 
suggests that although we observed directional composi-
tional changes in the soil microbial communities of the 
converted sites after 5–11  years, a longer period post-
conversion may be required to establish these key groups 
as significantly abundant in the converted sites. However, 
the taxa and functional genes that remained at elevated 
abundances in the converted landscapes did change pre-
dictably, based on the length of time since land use con-
version, as we observed a shift of sharing more indicators 
with their former land use to their current, and a shift in 
the relative abundance towards resembling the current 
long-term land use. These results, supported by previous 
research [23], indicate that monitoring changes in certain 
key taxa and functional genes after land use change can 
provide biologically relevant information for soil health 
monitoring.

Long‑term consequences of land use change 
on the potential for microbes to undertake key processes 
for soil health
By examining the responses of different functional 
groups to land use change, we can establish related long-
term impacts on essential processes and, in turn, for soil 
health. Benzoate is a common active ingredient in agri-
cultural pesticides applied in New Zealand. Correspond-
ingly, the KEGG pathway for benzoate degradation via 
CoA ligation and taxa capable of degrading aromatic 
compounds such as benzene, had significantly higher 
mean relative abundance in the grassland sites than the 
exotic forest sites (Fig. 6). Aromatic compound degrada-
tion is linked with organic carbon turnover through the 
release of carbon dioxide [17]. Therefore, heightened 
degradation of aromatic compounds in the grassland 
sites could indicate lower soil carbon stability and in turn 
impact the soil’s ability to mitigate climate change [37]. 
Additionally, the relative abundance of the pathway for 
degradation of the volatile organic compound (VOC) 
geraniol was higher in the grassland sites, relative to the 
exotic forest sites. It has been reported that VOC metab-
olism may produce substrates that can be used by bacte-
ria capable of degrading biphenyl (a benzenoid aromatic 

compound), in turn enhancing the degradation of poly-
chlorinated biphenyls and polycyclic aromatic hydro-
carbons [26]. As this study demonstrates that land use 
legacy effects can last for up to a decade, it emphasises 
the urgency of swiftly implementing strategies to limit 
loses of soil carbon.

Lysine is often a limited amino acid in the diet of dairy 
cows and lysine supplemented feed is used to address this 
deficiency [13]. This may be why we observed higher rel-
ative abundances of lysine degradation genes in grassland 
sites, predominantly used for intensive grazing. Pseu-
domonas aeruginosa is capable of degrading lysine [16] 
and had higher relative abundance in the grassland sites 
(Fig. 6d). This suggests that the presence of certain genes 
and functional pathways could offer the potential to dif-
ferentiate between land uses or the legacy effects of land 
use change.

Our data indicates that land use did impact nitrogen 
and methane cycling, as both pathways were more abun-
dant in the exotic forest sites than the grassland sites, 
while the relative abundances of the key cycling genes 
in the converted sites were typically in between those in 
the long-term sites (Fig. 6b and c). This suggests that like 
the shift we observed in our taxonomic data, directional 
changes in the relative abundance of key nutrient cycling 
genes occur as they shift towards resembling their abun-
dances under their current land use category. Conse-
quently, analysis of the prevalence of microbial functional 
genes may offer a more holistic measure of soil health 
than only relying on the analysis of abiotic soil character-
istics. This would be further strengthened by measuring 
rates of processes in situ, for example, nitrogen fluxes or 
degradation of specific carbon sources. Understanding 
the intricacies of nutrient regulation in soils impacted 
by anthropogenic activity is vital to improve our under-
standing of what drives environmental changes.

Conclusion
Our study demonstrates that both bacterial community 
composition and functional potential are shaped by land 
use. When land use conversion occurs, the microbial 
communities respond in a somewhat predictable man-
ner to the associated changes in soil conditions. This 
research will better improve our understanding of the 
lasting impact of land use on soil microbial communities 
and how this translates to the functional gene expression 
of complex microbial communities. Discerning the sen-
sitivity and responsiveness of microbial communities to 
land use change will assist us in applying biotic variables 
to soil health monitoring techniques for a more well-
rounded approach to the sustainable management of our 
soil environments.
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