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Abstract 

Background Microorganisms such as coliform-forming bacteria are commonly used to assess freshwater quality 
for drinking and recreational use. However, such organisms do not exist in isolation; they exist within the context of 
dynamic, interactive microbial communities which vary through space and time. Elucidating spatiotemporal micro-
bial dynamics is imperative for discriminating robust community changes from ephemeral ecological trends, and 
for improving our overall understanding of the relationship between microbial communities and ecosystem health. 
We conducted a seven-year (2013–2019) microbial time-series investigation in the Chicago Area Waterways (CAWS): 
an urban river system which, in 2016, experienced substantial upgrades to disinfection processes at two wastewater 
reclamation plants (WRPs) that discharge into the CAWS and improved stormwater capture, to improve river water 
quality and reduce flooding. Using culture-independent and culture-dependent approaches, we compared CAWS 
microbial ecology before and after the intervention.

Results Examinations of time-resolved beta distances between WRP-adjacent sites showed that community simi-
larity measures were often consistent with the spatial orientation of site locations to one another and to the WRP 
outfalls. Fecal coliform results suggested that upgrades reduced coliform-associated bacteria in the effluent and the 
downstream river community. However, examinations of whole community changes through time suggest that the 
upgrades did little to affect overall riverine community dynamics, which instead were overwhelmingly driven by 
yearly patterns consistent with seasonality.

Conclusions This study presents a systematic effort to combine 16S rRNA gene amplicon sequencing with tra-
ditional culture-based methods to evaluate the influence of treatment innovations and systems upgrades on the 
microbiome of the Chicago Area Waterway System, representing the longest and most comprehensive characteriza-
tion of the microbiome of an urban waterway yet attempted. We found that the systems upgrades were successful in 
improving specific water quality measures immediately downstream of wastewater outflows. Additionally, we found 
that the implementation of the water quality improvement measures to the river system did not disrupt the overall 
dynamics of the downstream microbial community, which remained heavily influenced by seasonal trends. Such 
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results emphasize the dynamic nature of microbiomes in open environmental systems such as the CAWS, but also 
suggest that the seasonal oscillations remain consistent even when perturbed.

Keywords Wastewater, Microbiome, Dynamics, 16S rRNA gene sequencing, Fecal coliform

Introduction
High quality fresh water is a critical natural asset that 
is under increasing risk of overuse and contamination 
by anthropogenic influences [57]. With over half of the 
world’s total population living in urban areas, urban 
waterways are particularly influenced by human activ-
ity and act as a liaison between humans and the natural 
environment [15]. Historically, cultured microorganisms 
have been utilized as metrics of water quality due to their 
traceability to potential sources of contamination. Con-
centrations of Escherichia coli or, more broadly, coliform-
forming bacteria, have typically been used as indicators 
for fecal contamination in recreational, agricultural, and 
drinking water [34]. Although valuable, such approaches 
can vary in both reliability and accurate representation 
of human pathogen levels [6, 8, 33, 40]. Furthermore, 
culture-based methods do not capture changes in the 
ecological structure of the community as a whole, which 
can provide valuable insights into ecosystem health [10, 
46, 47]. Bacterial pathogens and fecal indicator taxa do 
not exist in isolation, rather, they exist within expansive, 
interactive communities of diverse and abundant micro-
bial members [12, 24]. Therefore, improving our under-
standing of the relationship between microbiology and 
water quality may require a more holistic examination of 
the microbial community.

Microbial communities in aquatic systems are known to 
be highly responsive to environmental variables that vary 
across space and time (e.g. temperature, nutrient avail-
ability, hydrology, metal contamination, and contrasting 
land-use; [49, 50, 53, 56, 59, 60]. Therefore, management 
efforts of water resources must take into account such 
spatio-temporal dependencies, particularly in fluctuating 
environments such as riverine systems. Moreover, river-
ine systems are recipients of diverse microbial inputs that 
influence their ecology. As an example, the Chicago Area 
Waterway System (CAWS) is an extensive, highly engi-
neered urban river system that consists of over 76 miles 
of man-made canals and modified natural streams (Addi-
tional file  1: Fig. S1). Like many urban waterways, the 
CAWS receives treated wastewater from multiple recla-
mation plants. In 2016, advanced disinfection systems at 
two of these wastewater reclamation plants (WRPs) were 
implemented to significantly improve the treatment of 
wastewater before discharge into the CAWS. A seven-
channel UV chamber system was installed at O’Brien 
WRP, while a chlorination-dechlorination system was 

installed at Calumet WRP. Simultaneously, the segment 
of the Tunnel And Reservoir Plan (TARP) associated with 
the Calumet WRP was implemented. The TARP is a tun-
nel system that captures combined untreated sewage and 
stormwater from the surrounding area, preventing Com-
bined Sewer Overflow (CSO) directly discharges into the 
CAWS during rainy weather and high flow conditions.

In collaboration with Chicago’s Metropolitan Water 
Reclamation District (MWRD) we conducted a 7-year 
investigation (2013–2019) of the CAWS microbiome, 
collecting monthly samples of water and sediment across 
12 sites as well as untreated sewage and treated efflu-
ent samples from two wastewater reclamation plants 
(WRPs). We analyzed these samples with 16S rRNA 
amplicon sequencing and fecal coliform enumeration, 
and continually monitored relevant physicochemi-
cal characteristics at each site. Notably, the sampling 
period of our study coincided with the implementation 
of the two major water quality improvement efforts at 
the CAWS. The implementation of these initiatives dur-
ing our longitudinal study provided a unique opportu-
nity to examine how microbial community dynamics in a 
wastewater-impacted water system may be affected when 
presented with substantial wastewater management 
upgrades.

The primary goals of this study were to a) characterize 
the microbial communities of the CAWS and its spatio-
temporal dynamics across 12 riverine sites and 2 waste-
water treatment plants for 63 timepoints over 7  years, b) 
compare such characterizations to the trends found in 
a traditional, culture-dependent approach to measuring 
water quality, and c) examine the impact of water quality 
improvement interventions on the microbial ecology of the 
CAWS. The combination of sequencing data, fecal coliform 
data, and physicochemical data thus enabled us to param-
eterize the microbial ecology of the CAWS to gain nuanced 
insights into how environmental disturbance impacts the 
ecology of this already dynamic microbial system.

Materials and methods
Overall, water and sediment samples were collected from 
12 sites along the CAWS, while raw sewage influent and 
treated effluent samples were collected from the O’Brien 
and Calumet WRPs (Additional file 1: Fig. S1, Table S1). 
Water and effluent samples were collected monthly 
from May 2013—September 2019, sewage samples were 
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collected monthly from June 2014—September 2019, 
and sediment samples were collected from May 2013—
November 2018. Samples were not collected during 
the months of December, January, and February due to 
weather conditions as well as due to sampling not being 
covered by the WRPs’ National Pollution Discharge Elim-
ination System (NPDES) Permit during these months. 
We collected a total of 2,306 samples: 260 effluent sam-
ples, 558 sediment samples, 928 water column samples, 
88 sewage samples, and 472 technical controls (bottle, 
filter, equipment blanks). We utilized 16S rRNA gene 
amplicon sequencing on these samples along with fecal 
coliform counts and in-situ physicochemical measure-
ments to characterize the microbial ecology of the CAWS 
from 2013 to 2019.

Sample collection
All CAWS locations were sampled by MWRD person-
nel for water and sediment. Sewage and effluent samples 
were also collected by MWRD personnel at the WRPs. 
River water samples used for microbiome analysis were 
collected at the surface, while river water samples used 
for fecal coliform counts were collected at a depth of 
three feet due to sampling device differences. Sediment 
samples were collected using either a ponar sampling 
device or a hand scoop. Raw sewage grab samples were 
collected after the fine-screening stage, but before pri-
mary settling. Final effluent grab samples were collected 
after the final stage of treatment, before discharge into 
the receiving water body. For each sampling effort, either 
500 mL of liquid (water, sewage, and effluent) or 100 g of 
sediment were collected in sterile containers for microbi-
ome analysis.

Temperature, pH, conductivity, and turbidity of water 
samples were measured using a handheld YSI multipa-
rameter digital water quality meter.  NO2

−/NO3
− ratios, 

 NH3, and  PO4
3− values were measured using a Lachat 

Quickchem 8500 Series 2.0 instrument, using EPA 353.2 
Rev 2.0, EPA 350.1 Rev 2.0, and EPA 365.4 reference 
methods, respectively. Chlorophyll measurement pro-
tocols were adapted from standard methods used in the 
Examination of Water and Wastewater method 10,200 
H, with measurements between 2013 and 207 being 
made using a Beckman DU-640 spectrophotometer and 
measurements in 2017–2019 being made using a Ther-
moscientific Genesys 10  s UV–VIS spectrophotometer. 
Dissolved oxygen was initially measured using the Win-
kler method between 2013 and 2018, while after 2018 
the measurement protocol was transitioned to using 
a HACH HQd portable meter with a luminescent DO 
probe. Sediment samples were stored in polypropylene 
containers at 4  °C. Water samples (200  mL for CAWS 
and effluent samples and 25 mL for raw sewage samples) 

were filtered in duplicate using 0.22 Micron Mixed Cel-
lulose Ester filters, and filters were aseptically transferred 
to labeled sterile 50 mL tubes and stored at – 80 °C. All 
water and sediment sample aliquots were removed from 
– 80 °C, transferred to the lab on ice, and then stored at 
– 80 °C until thawing for processing for sequencing. Sam-
ples aliquoted for fecal coliform analysis were analyzed 
on the same day as collection without freezing.

Fecal coliform methods
Standard Methods 9222D Thermotolerant Fecal Coli-
form Membrane Filtration Procedure (18th edition) was 
used for fecal coliform testing of the water, sewage, and 
effluent samples. Volumes of samples used ranged from 
10 mL (disinfected final effluent) to 0.001 mL (the lowest 
dilution of raw sewage). Petri dishes with mFC agar and 
filters were incubated for 24 ± 2 h at 44.5 ± 0.2 °C before 
counting colony forming units.

16S rRNA amplicon sequencing and bioinformatic 
processing
DNA was extracted using the protocol described by 
Marotz et  al. [31] and the V4 region of the 16S rRNA 
gene was amplified using the protocol described by 
Caporaso et al. [7]. Briefly, we used region-specific prim-
ers (515F-806R) that included the Illumina flow cell 
adapter sequences and a 12-base barcode sequence for 
amplification of each 25 μl PCR reaction containing the 
following mixture: 12  μl of MoBio PCR Water (Certi-
fied DNA-Free,MoBio, Carlsbad, USA), 10 μl of 5-Prime 
HotMasterMix (1 ×), 1 μl of forward primer (5 μM con-
centration, 200 pM final), 1 μl of Golay Barcode Tagged 
Reverse Primer (5 μM concentration, 200 pM final), and 
1  μl of template DNA. The conditions for PCR were as 
follows: 94  °C for 3  min to denature the DNA, with 35 
cycles at 94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s, 
with a final extension of 10 min at 72 °C to ensure com-
plete amplification. Amplicons were quantified using 
PicoGreen (Invitrogen) assays on a plate reader, followed 
by clean up using the UltraClean® PCR Clean-Up Kit 
(MoBio, Carlsbad, USA) and quantification using Qubit 
readings (Invitrogen, Grand Island, USA). Amplicons 
were sequenced on an Illumina HiSeq2500 platform with 
paired-end sequencing at the Argonne National Labo-
ratory Core Sequencing Facility according to protocols 
from the Earth Microbiome Project [54].

The raw sequence data was demultiplexed, trimmed, 
and processed using the open-source microbial study 
management platform Qiita [17]. Parameters for qual-
ity filtering included 75% consecutive high-quality base 
calls, a maximum of three low-quality consecutive base 
calls, zero ambiguous bases, and minimum Phred qual-
ity score of 3 as suggested previously [3]. Demultiplexed 
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sequences were trimmed to 150 base pairs, and then 
selected for ASV (Amplicon Sequence Variant) picking 
using the Deblur pipeline v. 1.1.0 [1]. In the pipeline, de 
novo chimeras were identified and removed, artifacts (i.e. 
PhiX) were removed, and ASVs in less than 10 samples 
were removed for further analyses due to low represen-
tation. Blank samples were used as negative controls to 
determine the read count threshold for rarefaction. ASV 
tables were then rarefied to a sequencing depth of 1285 
reads for downstream analyses (with the exception of dif-
ferential abundance analyses described below), leading 
to the removal of 15 of 1834 non-blank samples which 
contained fewer reads than the set depth. Analysis was 
repeated at 2 higher rarefaction cutoffs, 3,000 and 10,000 
reads per sample, confirming that the selected sampling 
depth produced comparable results while retaining more 
samples. Analysis was completed using both QIIME 2 
2021.2 [4] and in R 3.4.2 via the phyloseq package [35].

Alpha and beta diversity analysis
Alpha and beta diversity were calculated between differ-
ent sample types as well as by year. Alpha diversity for 
all sample types was measured using Shannon’s index. 
Beta diversity was determined using both unweighted 
and weighted UniFrac distances [26, 27], which were 
ordinated using Principal Coordinate Analysis (PCoA). 
Statistical significance of the differences in microbial 
alpha diversity and beta diversity were assessed using 
paired t-tests with Benjamini–Hochberg corrections and 
permutational multivariate analysis of variance (PER-
MANOVA), respectively [2]. To examine the variability 
in community composition within sample types, beta dis-
persion values for each sample type were calculated using 
the mean value of unweighted UniFrac distances between 
all coordinates of individual samples to the coordinate 
of its respective sample type centroid. Statistical signifi-
cance was assessed using paired t-tests with Benjamini–
Hochberg corrections. Figures were generated using 
ggplot2() (https:// github. com/ tidyv erse/ ggplo t2) in the R 
language (https:// www.r- proje ct. org/).

Time series analyses
For each unique combination of sample type and site, 
the microbial community of a sample in early spring 
was designated as the “baseline” community for the 
sample type/site grouping (for effluent, water, and 
sediment, the baseline communities were set in March 
2014; for sewage, the baseline communities were set in 
March 2015, as collection began after March 2014.). 
Next, the communities of all samples belonging to the 
same sample type/site grouping were compared to the 
baseline community through time using unweighted 

and weighted UniFrac distances. Distances to the base-
line community (henceforth referred to as beta dis-
tances) were plotted through time to generate time 
series visualizations. Because no collections were con-
ducted in the months of December, January, and Febru-
ary, missing time points were interpolated using linear 
spline interpolation [37]. Each time series was then 
decomposed into three components (trend, seasonality, 
and error) using STL (Seasonal-Trend decomposition 
procedure based on Loess,[9]. Next, analyses involving 
the identification of seasonal dynamics within sample 
types were then detrended according to the STL out-
puts (to remove any confounding effects of year-on-
year changes in community dynamics). To test for the 
presence and strength of seasonality in each sample 
type, the detrended time series of a given sample type 
were combined across all sites and years, and were sta-
tistically tested for seasonality using Friedman’s tests 
(two-way analysis of variance by ranks) with Benja-
mini–Hochberg corrections. Analyses and visualiza-
tions were performed using the tsutils (https:// github. 
com/ trnni ck/ tsuti ls) and forecast [19] packages in R.

Differential abundance analysis
To identify specific microbial ASVs driving the 
observed patterns of seasonality in water and effluent 
samples while accounting for the compositionality and 
uneven sampling depth inherent in 16S data, we con-
ducted differential abundance analyses on the non-rar-
efied dataset using Songbird v. 1.0.4 through QIIME2 
v. 2021.2 [38]. The differential abundance models were 
trained with the water and effluent samples using only 
the data from August and March time points, as we 
found in our time series analyses that the extremes of 
our seasonal patterns typically occurred at those two 
months for both water and effluent samples. Songbird 
differential rankings were visualized in Qurro [13] to 
identify the 10 most differentially abundant ASVs in 
March relative to August, and the 10 most differentially 
abundant ASVs in August relative to March, separately 
with both water and effluent samples. Once March-
associated and August-associated ASVs were identi-
fied, we examined changes in their log-ratios across 
the entire dataset of water and effluent samples to test 
whether the identified ASVs follow a predictable sea-
sonal gradient through time. We used the following 
formula:

ln(
10

n=1
March− associatedASVabundance

10

n=1
August − associatedASVabundance

)

https://github.com/tidyverse/ggplot2
https://www.r-project.org/
https://github.com/trnnick/tsutils
https://github.com/trnnick/tsutils
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with a pseudo count of one applied to the table before 
taking the ratio to avoid undefined values.

Time‑resolved spatial analyses
To examine the impact of the WRP outflow and WRP 
upgrades on downstream microbial dynamics, we exam-
ined the time-resolved microbial dynamics of WRP-adja-
cent sites. Specifically, we examined spatial changes in 
microbiomes of water and sediment samples from sites 
immediately upstream, sites immediately downstream, 
and sites further downstream from both WRPs, as well as 
the WRP effluent samples. First, we used traditional ordi-
nation analyses with PCoA via weighted and unweighted 
UniFrac distances to visualize the targeted communities 
at pre- and post- intervention time points. We again used 
PERMANOVA to test for significant differences between 
site groupings, with additional pairwise post-hoc com-
parisons using BH corrections.

Additionally, we examined the time-resolved Uni-
Frac distances between our selected samples to pro-
vide an additional spatial analysis which accounts for 
the temporal covariation within the data. For each time 
point, we examined the weighted and unweighted Uni-
Frac distances between sample pairs (effluent to imme-
diate downstream, effluent to upstream, effluent to 
further downstream, upstream to immediate down-
stream, upstream to further downstream, immediate 
downstream to further downstream). We then tested 
whether the combined distribution of time-resolved 
UniFrac distances between a given sample pair was sig-
nificantly different between pre-intervention and post-
intervention time points using a permutation test (999 
permutations) [41, 45]. This test was repeated for all sam-
ple pairs, and the resultant p-values were adjusted using 
BH corrections. This entire process was repeated for sed-
iment samples as well.

Statistical analysis of fecal coliform data
Due to the skewed sampling distributions and the pres-
ence of substantial outliers in the measured fecal coli-
form data, we employed a non-parametric, median-based 
bootstrap hypothesis test [11, 29] to examine whether 
fecal coliform concentrations at sites downstream of 
WRPs significantly changed post-intervention. At each 
site, the median fecal concentration value from time 
points post-intervention were contrasted with the 
median fecal concentration value from time points pre-
intervention to generate a test statistic. Next, the fecal 
coliform data were randomly resampled with replace-
ment among all the time points to generate a simulated 
test statistic given the null hypothesis that fecal concen-
trations are non-associated with the implementation 
of the intervention in 2016. This process was repeated 

10,000 times to generate a null distribution of test statis-
tics, which could then be compared against the true test 
statistic in a two-tailed test for significance. This analy-
sis was performed with effluent samples at both WRPs, 
water samples at sites immediately downstream from 
WRPs (Site 56 and 76), and water samples further down-
stream from the WRPs (Site 57 and 96).

Statistical analysis of physicochemical data
We examined the effects of the wastewater disinfection 
treatments on the abiotic water characteristics of sites 
immediately downstream of the treatment plants. This 
was accomplished by testing for significant differences 
in key physicochemical variables (temperature, pH, Dis-
solved oxygen,  NO2

−/NO3
−,  NH3,  PO43−, volatile sus-

pended solids, conductivity, and turbidity) between 
pre-intervention time points (2013–2015) and post-
intervention time points (2016–2019). This analysis was 
conducted using site 76 (immediately downstream of 
Calumet), site 56 (immediately upstream of Calumet), 
site 36 (immediately downstream of O’Brien), and site 
112 (immediately upstream of O’Brien) (Additional file 1: 
Fig. S5).

Like the fecal coliform data, most of the measured 
physicochemical variables contained skewed sampling 
distributions and substantial outliers. Moreover, the 
physicochemical variables were subject to seasonality, 
resulting in temporally autocorrelated data. Therefore, 
we employed another median-based bootstrapping sim-
ulation while also using the physicochemical measure-
ments of upstream sites (Site 56 and 112) to account for 
seasonal variation. For each measured physicochemi-
cal variable of interest, differences in the measurements 
of upstream and downstream sites were calculated for 
each time point. Then, the median values of such meas-
urements in post-intervention time points (2016–2019) 
were compared against the median values of such meas-
urements in pre-intervention time points (2013–2016) 
to form a test statistic. These metrics were compared to 
a bootstrapped null distribution in which upstream and 
downstream measurements were drawn from the same 
sampling pool and the process was repeated to create 
simulated test statistics under null conditions. The true 
test statistic was compared against the null distribution 
in a two-tailed test for significance, and the total p-val-
ues were adjusted for multiple comparisons using Benja-
mini–Hochberg corrections.

Results
Microbial community compositions are well defined 
by sample type.
Microbial communities from each sampled medium 
(water, sediment, sewage, effluent) significantly differed 
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in both alpha and beta diversity indices. Sample types 
displayed significantly different alpha diversity values 
from one another as measured by Shannon’s diver-
sity index (Kruskal Wallis test, p < 0.001, Fig.  1A). As 
expected [14, 20, 43, 51, 58], sediment samples had the 

greatest alpha diversity, followed by effluent samples, 
then followed by water and sewage samples (pairwise 
Wilcoxon tests with BH corrections,See Fig. 1A for sta-
tistical groupings.) Notably, there were no significant 
differences in alpha diversity values between the effluent 

Fig. 1 A Alpha diversity of CAWS samples by sample type. The distribution of Shannon diversity indices for each sample type is consolidated 
for all seven sampling years (2013–2019). This box and whisker plots demonstrate the quartile range and outliers for each distribution. Statistical 
groupings are designated by the letters above the boxplots. Significance was assessed using paired Wilcoxon tests with Benjamini–Hochberg 
multiple testing corrections. B Beta diversity analysis of CAWS samples by sample type. PCoA plot based on the unweighted UniFrac distance matrix 
showing clustering patterns of different sample types. C Aggregated seasonal plots of beta distances as a function of month, for each sample type. 
The dots connected by solid black lines represent the mean beta distance between each sample community and a fixed baseline community of the 
same sample type and site. The blue density bands describe the distribution of beta distances to a baseline community, for each particular month. 
The dashed line signifies the mean beta distance value of all samples relative to its baseline community for a given sample type, and represents the 
null expectations given that seasonality plays no role in the community. As no collections were conducted in December, January, and February (axis 
labeled in red), the values of these months were interpolated using spline regression
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samples at O’Brien and Calumet, or between the sewage 
samples at O’Brien and Calumet, although alpha diversity 
differences between the sewage and effluent types were 
highly significant (p < 0.001).

Beta diversity analyses using both weighted and 
unweighted UniFrac distance metrics indicated signifi-
cant differences in community composition across sam-
ple types (weighted UniFrac PERMANOVA p < 0.001, 
unweighted UniFrac PERMANOVA p < 0.001, Fig.  1B). 
This was supported further by pairwise post-hoc com-
parisons with Benjamini–Hochberg corrections, which 
showed significant differences in community composi-
tion between all pairwise combinations of sample types 
(Additional file  1: Table  S2). Beta dispersion analy-
ses across sample type (calculated as the mean value of 
unweighted UniFrac distances between all coordinates 
of individual samples to the coordinate of its respec-
tive sample type centroid) indicated that water samples 
contained the highest levels of spatio-temporal com-
munity variability (mean distance to centroid = 0.5759), 
followed by sediment (mean distance = 0.5499), Calu-
met sewage (mean distance = 0.5401), Calumet effluent 
(mean distance = 0.5309), O’Brien effluent (mean dis-
tance = 0.5198), and finally O’Brien sewage (mean dis-
tance = 0.5123) (Additional file 1: Fig. S2).

Seasonal trends play a dominant role in shaping the CAWS 
effluent and river community, but not in the sewage 
and sediment community
The temporal dimension of microbial community 
dynamics varied across sites and sample media. Tradi-
tional ordination-based methods for community distance 
metrics (e.g., PCoA) do not account for the inherent 
temporal autocorrelation within the data [32], there-
fore, we directly examined the UniFrac distances of each 
sampled community to a site-specific baseline commu-
nity over time. We found that several of the site- and 
sample type-specific time series plots showed a yearly 
cyclical component (Unweighted Unifrac—Additional 
file  1: Fig. S2, Weighted UniFrac—Additional file  1: Fig. 
S3). When aggregating distance results across sites, we 
found evidence for seasonality in effluent and water but 
not sewage and sediment (Fig. 1C). This effect remained 
clear regardless of the use of unweighted UniFrac dis-
tance (effluent samples: Friedman test statistic = 61.00, 
p-value < 0.001; water samples: Friedman test statis-
tic = 57.13, p-value < 0.001) or weighted UniFrac dis-
tance metrics (effluent samples: Friedman test = 57.13, 
p-value < 0.001; water samples: Friedman test = 47.62, 
p-value < 0.001). In comparison, we found no evidence 
for seasonality with sewage (unweighted UniFrac: Fried-
man test statistic = 6.44, p-value = 0.828; weighted Uni-
Frac: Freidman test statistic = 10.64, p-value = 0.474) 

or sediment samples (unweighted UniFrac: Friedman 
test statistic = 15.67, p-value = 0.154; weighted UniFrac: 
Friedman test statistic = 13.38, p-value = 0.269).

Water and effluent samples contained strong seasonal 
signals in community composition, therefore we per-
formed compositionally-aware differential abundance 
analyses [38] with both sample types and character-
ized the specific taxonomic groups driving our observed 
changes in the community composition across sea-
sons. Differential abundances in ASVs between March 
and August time points were calculated using Songbird 
models trained with subsetted data of only water and 
effluent samples collected at either month (effluent sam-
ples n = 63, water samples n = 197). The goodness-of-
fit values of resultant models (effluent model pseudo-Q 
square = 0.161, water model pseudo-Q square = 0.103) 
indicated a strong effect size of month in contributing 
to model fit for both sample types (relative to null mod-
els). After identifying the top ten ASVs that increased 
most significantly in March relative to August (hence-
forth referred to as March-associated ASVs), and top 
ten ASVs that were differentially abundant in August 
relative to March (henceforth referred to as August-
associated ASVs) (Fig.  2A), we examined the log-ratios 
of March-associated to August-associated ASVs across 
the entire time series (Fig. 2B). We found that such log-
ratios indeed followed a gradual and predictable seasonal 
gradient through time when extrapolated onto the entire 
time series, providing validation that our identified ASVs 
follow strong seasonal shifts in relative abundance within 
their respective sample type.

Spatially unique microbial communities experience 
a continuum of compositional shifts along the river
Time-resolved spatial dynamics of the CAWS micro-
biome were characterized to examine the impacts of 
the WRP system upgrade interventions on downstream 
community dynamics. This targeted analysis was con-
strained to only include water and sediment samples of 
sites immediately upstream (1.0 miles away), immediately 
downstream (1.3 miles away), and further downstream 
(3.0 miles away) of Calumet WRP, sites immediately 
upstream (1.4 miles away), immediately downstream (0.7 
miles away), and further downstream (3.4 miles away) of 
O’Brien WRP, and the effluent samples from both WRPs 
(Fig.  3A). Significant differences in microbial commu-
nity structure were quantified between all pairs of sites 
for both water and sediment samples. (Fig. 3B, see Addi-
tional file 1: Table S3 for PERMANOVA results).

Examinations of time-resolved UniFrac distances 
between WRP-adjacent sites showed that commu-
nity similarity measures were often consistent with 
the spatial orientation of site locations to one another 
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and to the WRP outfalls, particularly with water sam-
ples (Fig.  3C). In the O’Brien region, water communi-
ties collected from the site immediately downstream of 
the WRP were significantly more similar to the efflu-
ent communities than to water samples upstream or 
further downstream. Further downstream from the 
O’Brien WRP, water communities became less similar 
to effluent samples and increased in resemblance to 
the upstream river community prior to WRP effluent 

outflow. We found similar trends in the Calumet region 
as well, with water communities immediately down-
stream of the WRP being the most compositionally 
similar to effluent compared to the other river sites. 
However, unlike the case in the O’Brien region, UniFrac 
distances of the immediate downstream site to efflu-
ent were significantly larger compared to its distances 
to the other river sites, likely owing to the fact that the 
immediate downstream site at the Calumet region is 

Fig. 2 A, B Differential abundance plots of water and effluent samples, comparing samples collected in March to samples collected in August. 
Positive differential values indicate the top ten ASVs that were differentially abundant in March samples compared to August, and negative values 
indicate the top ten ASVs that were differentially abundant in August samples relative to March. C, D Log ratios of March-associated ASVs to 
August-associated ASVs as a function of month in water and effluent samples. Red points indicate the mean value of each month. Blue lines are 
best-fit curves of the data using a local polynomial regression fitting method (loess) with 95% confidence intervals
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twice as far from the WRP outfall than at the O’Brien 
region.

Within sediment communities, we found that each site 
also contained compositionally distinct microbial com-
munities whose differences remained robust through 
time (Fig.  3C). Additionally, we note that unlike in the 
water communities, sediment community similarities did 
not follow a spatial orientation consistent with site loca-
tion; microbial communities from all sites had similar 
UniFrac distances to the effluent, for both the Calumet 
and O’Brien regions (Fig. 3C). Similar results were found 
when measuring distances with weighted UniFrac (Addi-
tional file 1: Fig. S5).

Despite the clear impact of wastewater effluent on 
immediate downstream water, we found minimal evi-
dence that the WRP upgrades caused any significant 
changes in site-specific community compositions in 
either water or sediment. Comparisons of time-resolved 
beta distances between pre and post-intervention time 
points found a statistically significant change in dis-
tance for only one site pair: effluent to upstream river 
communities at the Calumet region (Fig.  3C). Re-anal-
ysis with weighted UniFrac distances also did not iden-
tify meaningful community changes as a result of the 
intervention (Additional file  1: Fig. S6). Unsurprisingly, 

differential abundance models attempting to identify 
key microbial ASVs that significantly changed in abun-
dance between pre-intervention to post-intervention 
time points resulted in poor model fits (pseudo Q square 
scores < 0.05), indicating low effect sizes.

The WRP upgrades are effective in reducing specific 
populations of coliform‑forming bacteria in the river, 
yet observable effects quickly diminish downstream
The spatio-temporal trends of fecal coliform counts cul-
tured from water samples were analyzed. These counts 
are used as indicators of potential fecal contamination 
and as metrics for overall water quality for recreational 
and drinking use [34]. Throughout the study period 
fecal coliform concentrations (measured as the num-
ber of colony forming units per 100  mL of sample, or 
CFU/100  mL) were quantified from effluent and water 
samples. In the effluent samples, bootstrap hypothesis 
tests showed that median values of fecal coliform con-
centrations were significantly and substantially reduced 
following water treatment upgrades at both O’Brien 
(absolute effect size = 10,940  CFU/100  mL, p < 0.001) 
and Calumet (absolute effect size = 8280  CFU/100  mL, 
p < 0.001) sites. All pre-upgrade effluent sam-
ples contained fecal coliform concentrations that 

Fig. 3 A Simplified map of the Calumet and O’Brien regions of the CAWS. Subsetted sites used in the following analyses are described in this 
map. B Unweighted UniFrac PCoA plots of effluent sample, and water and sediment samples from upstream, immediate downstream, and further 
downstream relative to WRPs. Plots are separated by region and by intervention period. C Unweighted UniFrac distances between pairs of sites, 
matched by time point. Statistical comparisons between pre- and post- intervention distances within each pair are denoted using brackets, with 
n.s. indicating non-significance (p > 0.05). Statistical groupings of comparisons across pairs are designated by the letters above the boxplots. 
Significance was assessed using t-tests with Benjamini–Hochberg multiple-testing corrections
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considerably exceeded the recreational water quality 
standard of 400 CFU/100 mL [55] while all post-upgrade 
effluent samples contained concentrations below this 
value. When examining coliform concentrations of river 
sites immediately downstream of Calumet and O’Brien 
WRPs, bootstrapping tests also found a significant reduc-
tion in coliform concentrations post upgrade,however, 
the effect size was weaker relative to the effluent sam-
ples and the signal contained higher noise (Calumet 
effect size = 1940 CFU/100 mL, p < 0.001, O’Brien effect 
size = 5690  CFU/100  mL, p = 0.004). Finally, examina-
tions of coliform concentrations in sites further down 
the river contained no significant differences in concen-
trations between pre- and post- upgrade time points 
(p > 0.05), with levels fluctuating continually between 
below to above the EPA standard (Fig. 4).

WRP upgrades did not significantly alter 
the physio‑chemical environment of the downstream 
CAWS
Microbial community composition and dynamics are 
influenced by physicochemical parameters such as tem-
perature, oxygen, nutrients, and pH. We tested whether 
WRP upgrades caused significant changes in key phys-
icochemical water measurements in the downstream 
river sites by calculating the differences in physicochemi-
cal conditions at upstream and downstream sites relative 
to WRPs at each time point. We then tested for signifi-
cant changes in such upstream–downstream differences 
between pre-intervention time points and post-inter-
vention time points, using a median-based bootstrap 
hypothesis test (Table 1). Overall, we found no statistical 

support that the WRP upgrades caused significant shifts 
in physicochemical differences between upstream and 
downstream sites. In both the Calumet and O’Brien 
regions, we found no significant evidence that the inter-
vention influenced upstream–downstream differences 
in any of the measured physicochemical variables. These 
comparisons of physicochemical parameters suggest the 
WRP upgrades played a relatively minimal role in affect-
ing the physical and chemical conditions of downstream 
sites, particularly when compared to the natural seasonal 
variability captured at upstream sites (Additional file  1: 
Fig. S3).

Discussion
This study, which spanned 7  years from 2013 to 2019, 
aimed to characterize the spatio-temporal dynamics 
of microbial communities associated with the CAWS 
using 16S rRNA gene amplicon sequencing of samples 
collected from sediment, water, treated effluent, and 
raw sewage, along with fecal coliform counts and phys-
icochemical measurements. Additionally, we investigated 
the impact of MWRD water quality improvement efforts 
(i.e. the WRP disinfection system upgrades and the 
implementation of the TARP system to capture CSOs) on 
the community dynamics of the CAWS microbiome.

As expected, compositional analysis of microbial com-
munities demonstrated distinct distribution patterns 
across environmental media (river water, sediment, efflu-
ent, sewage), with significant differences between sample 
types for both alpha and beta diversity. As a noteworthy 
example, the microbial communities found in water sam-
ples contained relatively low alpha diversity values but 

Fig. 4 Log-transformed fecal coliform concentrations as a function of time in effluent and downstream river samples of Calumet and O’Brien WRPs. 
Plots on the left represent effluent samples directly from WRPs, plots in the center represent samples of river sites immediately downstream from 
WRPs, and plots on the right represent samples of river sites further downstream of the WRPs. The dotted line represents 400 CFUs per 100 mL, a 
concentration set as the EPA standard for recreational waters. The p-values represent results of bootstrapping simulations testing for differences in 
median values of coliform concentrations between pre-intervention time points (before 2016) and post-intervention time points (after 2016)
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the highest levels of spatio-temporal variability in com-
munity composition, consistent with expectations of high 
community turnover and shifting selection pressures 
typically found in aquatic environments [43, 48]. Sedi-
ment microbiomes were found to be most different from 
the other sample types (Fig. 1; as river water, sewage, and 
effluent all share the similarity of being aquatic environ-
mental media, this reinforces the role of substrate type as 
a primary driver for community differences [28, 54].

Effluent samples and sewage samples significantly dif-
fered in both diversity-related and composition-related 
characteristics at both WRP sites, demonstrating the 
sizable impact of wastewater processing in affecting the 
microbial communities present in wastewater. This is 
consistent with findings that each step of the wastewa-
ter treatment process (primary, secondary, and final dis-
infection) often cause significant shifts in the resultant 
bacterial community that is eventually discharged into 
the river [23, 39]. Interestingly, we also note that sam-
ples from the two WRP sites were very similar to one 
another when examining both effluent and sewage sam-
ple types. Alpha diversity metrics were statistically indis-
tinguishable between the two sites (Fig. 1) and pairwise 
PERMANOVAs found significant differences yet rela-
tively low effect sizes when comparing site pairs of the 
same sample type (Additional file 1: Table S2); this indi-
cates that both WRP regions receive similar microbial 
communities as sewage input, and that both treatment 
procedures tend to produce microbially similar effluent 
outputs despite using different disinfection strategies.

Spatiotemporal examinations of the CAWS commu-
nity revealed that the wastewater treatment and CSO 
capture upgrades did not have dramatic effects on the 
overall community of the downstream river; rather, the 

effects were nuanced and population-specific. Proxim-
ity of water sampling location to effluent outfall exerted 
a clear influence on microbial community structure; for 
both Calumet and O’Brien, microbial communities in 
water immediately downstream of the outfall were con-
sistently and significantly more similar to effluent than 
communities from other water samples. This effect 
was most pronounced for O’Brien, where the “immedi-
ate downstream” site was only 0.7 miles downstream of 
the outfall, compared to the closest downstream site to 
the Calumet outfall which was 1.3 miles. Indeed, for the 
O’Brien system, the immediate downstream water sam-
ples contained microbial communities that resembled 
effluent more than they resembled upstream or down-
stream water from the river, while the site immediately 
downstream of the Calumet outfall was influenced by 
effluent to a lesser degree and most closely resembled 
the site upstream. At sites further downstream, com-
munities were found to display decreased community 
resemblances to effluent and instead began to return in 
similarity to the original upstream communities. Similar 
results were found by Pascual-Benito et al. [42], suggest-
ing that freshwater bacterial communities may be able to 
re-establish relatively quickly following the impact of an 
effluent discharge. We also note that despite the waste-
water treatment system upgrades at both WRPs in 2016, 
UniFrac distances between downstream water and efflu-
ent microbial communities remained consistent before 
and after the upgrades, suggesting that these upgrades 
did not exert a strong influence on changing the relative 
compositions of downstream microbial communities.

Measurements of fecal coliform concentration, a tradi-
tional standard of freshwater quality [18, 36, 55], demon-
strated the clear success of the intervention in reducing 

Table 1 Results of median-based bootstrap hypothesis tests measuring for significant changes in physicochemical parameters 
between pre- and post- intervention time points, at Calumet and O’Brien WRP sites

Calument region O’Brien Region

Bootstrap test 
statistic

p‑value Adjusted p‑value Bootstrap test 
statistic

p‑value Adjusted p‑value

Chlorophyll (ug/L) 1.6 0.433 1.000  − 0.6 0.807 1.000

Dissolved oxygen (mg/L) 0.25 0.514 1.000 0.215 0.623 1.000

NO2/NO3 (mg/L) 0.1745 0.486 1.000 0.52 0.585 1.000

NH3 (mg/L)  − 0.165 0.009 0.101  − 0.19 0.614 1.000

Total phosphorus (mg/L)  − 0.21 0.514 1.000 0.573 0.057 0.672

Volatile suspended solids (mg/L) 0 1.000 1.000 0 1.000 1.000

Total organic carbon (mg/L) –0.2 0.284 1.000 0.05 0.762 1.000

Conductivity (ms) 0.0195 0.484 1.000  − 0.0355 0.560 1.000

Turbidity (NTU) 3.475 0.022 0.246  − 3.075 0.255 1.000

pH 0.145 0.051 0.557  − 0.075 0.479 1.000

Temperature (°C) 0.65 0.132 1.000 0.4 0.502 1.000
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the absolute abundance of fecal-associated bacterial taxa 
from effluent samples. This was also found to be the case 
with downstream river sites,yet, similarly to the beta 
distance analysis, effectiveness tended to diminish with 
respect to the samples’ distance from the WRP sites. In 
fact, sites greater than 3 miles away from either WRP no 
longer had any detectable differences in fecal coliform 
concentrations between pre- and post-intervention time 
points, remaining at a level comparable to pre-interven-
tion timepoints and frequently exceeding the EPA rec-
reational water threshold. Such results may indicate the 
presence of other sources of fecal coliform-associated 
bacteria to the waterway besides the WRP effluent and 
pre-TARP CSO events. We additionally note that this 
described spatio-temporal pattern was nearly identical 
between the Calumet and O’Brien regions, suggesting 
that the impacts of disinfection strategy (chlorination 
or UV disinfection) at these sites tended to become 
equally negligible once discharge traveled several miles 
downstream.

In contrast to fecal coliform results, we found that 
the overall dynamics of CAWS microbial communities 
appeared robust and consistent over the course of the 
study. Neither PERMANOVA nor time-resolved beta 
distance analyses using site- and sample-specific com-
parisons revealed any significant impact of the system 
upgrades in the compositional community dynamics of 
downstream river sites. Instead, the predominant driver 
of microbial community composition was a consistent 
yearly cyclical trend, a trend which we attribute to sea-
sonal effects driving the ecology of the CAWS micro-
biome. This was particularly the case with effluent and 
water samples, while sediment and sewage communities 
remained consistent throughout each year. Evidence for 
seasonal effects have been observed in various aquatic-
based microbiomes, most prominently in marine systems 
[5, 16] but additionally in freshwater river systems [52, 
62] and in the activated sludge of wastewater systems [21, 
22, 44]. In our study we found that such seasonal effects 
overpowered any potential effect of the intervention in 
shifting community dynamics of downstream river sites. 
Similar examples have been noted in aquaculture systems 
[30, 61], indicating the pervasiveness of seasonality as a 
major contributor to microbial community structure. 
We also found that there was relatively minimal overlap 
in the specific ASVs most affected by seasonality when 
comparing between effluent and water communities, 
suggesting that microbial populations can be differen-
tially affected by seasonal trends based on community- 
and environment-specific factors.

Notably, we found that sewage and sediment did not 
appear to be affected by seasonal trends in our study 
(although there were a few exceptions of site-specific 

sediment communities that tested significantly for sea-
sonality). Of particular note is our finding that the sew-
age communities in both O’Brien and Calumet WRPs 
did not appear to contain a discernible relationship to 
time of year, despite the highly consistent seasonal sig-
nal found in the effluent. As the microbial communities 
within activated sludge of engineered bioreactors have 
demonstrated seasonal qualities [21, 22, 44], we specu-
late that exposure to the wastewater treatment process in 
our system may introduce a seasonal component to the 
microbial communities as they transition from untreated 
sewage to treated effluent, although confirmation would 
require a more nuanced study. We also note that such 
results contrast with other work examining the sew-
age microbiome through time in Milwaukee, WI [25], 
which found a seasonal signal that was well correlated 
with variations in wastewater temperature. We expect 
that differences in various factors such as treatment plant 
size, sewage volume, sewer interceptor design, and par-
ticularly sewer line depth may have reduced our sewage 
samples’ exposure to seasonality-inducing factors such 
as temperature variability, allowing for an increased 
exposure to factors that are more randomly distributed 
through time. As for the sediment, communities were 
found to be relatively stable through time and instead 
were most definable by site, suggesting that despite their 
close proximity to water, their dynamics are distinct from 
those of water.

Conclusions
River systems are unique environments for examin-
ing microbial community dynamics, in that they offer 
spatial complexity that is integrated with temporal 
patterns. In this seven-year study, we characterized 
the microbial community of the CAWS across a broad 
spatio-temporal gradient and described its response to 
a prominent environmental change. Our results from 
this seven-year long microbiome study are nuanced; on 
one hand, we provide evidence that wastewater man-
agement improvement efforts such as implementation 
of large scale disinfection technologies and combined 
sewer overflow capture systems can lead to significant 
improvement in water quality, as indexed by reduc-
tions in population sizes of known indicators of fecal 
contamination. On the other hand, our analyses indi-
cate that such water quality improvement measures 
do not appear to greatly shift the structure of existing 
microbial community dynamics in the waterway over-
all, or the physicochemical environment in which the 
microbial communities exist. Our results demonstrate 
the robustness of community dynamics in the system 
despite an interventional disturbance that significantly 
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reduced the prevalence of fecal coliform-associated 
bacteria immediately downstream of the WRPs.

Glossary
CAWS   The Chicago Area Waterway System.
WRP   Wastewater reclamation plant. There are two WRPs in 

the system, named O’Brien and Calumet.
Sewage   Incoming untreated wastewater entering WRPs.
Effluent   Outgoing treated discharge leaving WRPs.
CSO   Combined Sewer Overflow event, leading to dis-

charges of untreated sewage directly into the CAWS.
TARP   Tunnel and Reservoir Plan, aimed to reduce the num-

ber of CSO events.
Intervention  The implementation of disinfection upgrades at WRPs 

as well as TARP upgrades to the CAWS system in 2016.
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