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Abstract

Background: In the ice-free area of maritime Antarctica, fungi are the essential functioning group in terrestrial and
marine ecosystems. Until now, no study has been conducted to comprehensively assess fungal communities in vari-
ous habitats in Antarctica. We aimed to characterize fungal communities in the eleven habitats (i.e., soil, seawater,
vascular plant, dung, moss, marine alga, lichen, green alga, freshwater, feather) in the Fildes Region (maritime Antarc-
tica) using next-generation sequencing.

Results: A total of 12 known phyla, 37 known classes, 85 known orders, 164 known families, 313 known genera, and
320 known species were detected. Habitat specificity rather than habitat overlap determined the composition of fun-
gal communities, suggesting that, although fungal communities were connected by dispersal at the local scale, the
environmental filter is a key factor driving fungal assemblages in the ice-free Antarctica. Furthermore, 20 fungal guilds
and 6 growth forms were detected. Many significant differences in the functional guild (e.g., lichenized, algal parasite,
litter saprotroph) and growth form (e.g., yeast, filamentous mycelium, thallus photosynthetic) existed among different
habitat types.

Conclusion: The present study reveals the high diversity of fungal communities in the eleven ice-free Antarctic habi-
tats and elucidates the ecological traits of fungal communities in this unique ice-free area of maritime Antarctica. The
findings will help advance our understanding of fungal diversity and their ecological roles with respect to habitats on
a neighbourhood scale in the ice-free area of maritime Antarctica.

Background

As a result of climate change, water availability, CO,,
temperature, and UV levels have been changing in Ant-
arctica [1]. Notably, ice-free areas currently cover less
than one percent of Antarctica [2] and could expand
by close to 25 percent by 2100 [3]. Many ice-free areas
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have emerged from the retreating ice in marine Antarc-
tica, and glacial erosion is the dominant land-forming
factor. As ice-free areas are home to Antarctic biodi-
versity (e.g., microbes, vascular plants, lichens, mosses,
algae), the increase in ice-free areas could drastically
change the availability and connectivity of biodiversity
habitats (e.g., uncover potential new habitats for species
[3]). Some non-native species have been introduced to
Antarctic ice-free environments by natural dispersal
or human activities (e.g., marine invertebrates, inserts,
and plants) [4]. In addition, climate warming could
influence the composition of microbial communities in
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Antarctica. Previous studies have shown that warming
leads to significant changes in soil fungal abundance in
Antarctica [5, 6].

To date, over 1000 non-lichenized fungal species
[7] and 500 lichenized fungal species [8] have been
recorded by collection or isolation from Antarctica.
In recent years, many studies have used the next-gen-
eration sequencing (NGS) technique to reveal fungal
diversity in various habitats of Antarctica, such as soil
[6, 9-14], sediment [15], vegetation [14, 16], air [17],
and freshwater [14, 18]. These molecular surveys sug-
gest that the true fungal diversity may be far greater
than that has been recorded. Besides, there are no
studies that consider various habitats (e.g., soil, lichen,
vascular plant, moss, freshwater, seawater, dung, air,
feather, green alga, and marine alga) as a whole. In
terms of microbes, it was believed that "everything is
everywhere, but the environment selects” (the Baas-
Becking’s hypothesis [19]). This hypothesis states
the joint effect of dispersal capabilities (i.e., spores that
aid in dispersal and propagation) and environmental
selection. It is still unclear to what extent habitat speci-
ficity and habitat overlap determine fungal assemblages
in a local ice-free area.

In both terrestrial and marine ecosystems, fungi typi-
cally live in highly diverse communities and serve a vari-
ety of ecological functions, such as saprotrophs (living on
dung, leaf, plant, soil, wood), symbiotrophs (participating
in mutualistic symbioses: ectomycorrhizal, ericoid myc-
orrhizal, endophyte, lichenized), and pathogens of plants
and animals [20]. However, there is only fragmentary
information on fungal ecological traits in the soil habi-
tat of maritime Antarctica [13, 21-23]. Until now, the
knowledge gap between fungal diversity and their ecolog-
ical roles is still significant in other habitats of maritime
Antarctica.

The present study aims to use the next-generation
sequencing (NGS) approach to reveal: (1) the taxonomic
diversity of fungal communities in an ice-free area of
maritime Antarctica; (2) the extent of habitat specificity
and habitat overlap in determining fungal assemblages
in various habitat types, including soil, lichen, vascular
plant, moss, freshwater, seawater, dung, air, feather, green
alga, and marine alga; (3) the ecological traits of fungal
communities in various habitats of maritime Antarctica.
We hypothesized that environmental selection deter-
mined the taxonomic and functional compositions of
fungal communities in various habitats from an ice-free
area of maritime Antarctica. The findings will improve
our understanding of the fungal diversity with respect to
environments on a neighbourhood scale, and aid further
analysis of fungal ecological roles in this unique ice-free
area of maritime Antarctica.
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Materials and methods

Sample collection

The sampling site is the Fildes Region (King George
Island, maritime Antarctica), which is consisted of Fildes
Peninsula, Ardley Island, and the northern part of Nelson
Island. It is one of the largest ice-free areas in maritime
Antarctica and has a relatively high level of biodiversity.
The mean annual temperature in this region is —2.2 °C
[24] and has increased on average by 0.7 °C between 1969
and 2013 [25]. In January 2017, a total of 213 samples
were collected during the 33rd Chinese National Antarc-
tic Research Expedition (CHINARE-Antarctic) (Fig. 1,
Additional file 1: Table S1), including 136 samples in this
study (i.e., soil, lichen, vascular plant, freshwater, seawa-
ter, dung, air, feather, green alga, and marine alga) and
77 samples in the previous studies (i.e., soil, freshwater,
moss, vascular plant) [12, 14].

DNA extraction and sequencing

(1) For samples of soil and dung, DNA extraction was
conducted from about 0.25 g aliquot using MoBio Power-
Soil DNA isolation kits (MoBio Laboratories Inc., USA).
(2) For samples of freshwater and seawater, 1000 ml
water was filtered through 0.2 pm-pore-size membranes
(Pall Corporation, USA). Total DNA in membranes was
extracted using the PowerWater DNA Isolation Kit (MO
BIO Laboratories Inc., USA). (3) For samples of vascular
plant, lichen, green alga, and marine alga, before DNA
extraction, tissues were surface sterilized and crushed as
described by Zhang et al. [26]. DNA extraction was per-
formed using a PowerSoil DNA Isolation Kit (MO BIO
Laboratories Inc., USA). (4) For bird feather, the feather
was cut into small segments with sterilized scissors and
then used a SuperFastPrep-1 Instrument (MP Biomedi-
cals Co., USA) to crush segments. DNA extraction was
conducted from segments using a PowerSoil DNA Iso-
lation Kit (MO BIO Laboratories Inc., USA). (5) For air
samples, total suspended particles of air were collected
using portable ambient air samplers (Air Metrics, USA)
as described by Yan et al. [27]. DNA extraction was con-
ducted from the membranes of air samples using a Pow-
erSoil DNA Isolation Kit (MO BIO Laboratories Inc.,
USA).

The obtained DNA was used for subsequent PCR
and sequencing. The fungal nuclear ribosomal inter-
nal transcribed spacer 1 (ITS1, approximately 285 bp)
was amplified using primer sets that were added a
10-nucleotide barcode to ITS1F [28] and ITS2 [29].
PCR was performed as previously described [12]. The
PCR products of the ITS region were extracted from 2%
agarose gels and purified using an AxyPrep DNA Gel
Extraction Kit (Axygen Biosciences, USA) according
to the manufacturer’s instructions and were quantified
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Fig. 1 The location of the sampling site and views of eleven habitats (i.e,, soil, freshwater, seawater, air, lichen, vascular plant, moss, green alga,

using QuantiFluor-ST (Promega, USA). Equimolar
volumes of purified amplicons were pooled and were
paired-end sequenced (2x300 bp) on an Illumina
MiSeq platform at Majorbio Company (Shanghai,
China). Both DNA extraction and PCR were applied to

negative control samples. These negative controls did
not undergo any more analysis because no quantifiable
DNA was found in them. Sequencing was conducted
using an Illumina MiSeq platform at Majorbio Com-
pany (Shanghai, China).
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Sequencing data treatment

Paired-end reads were merged using FLASH software
[30] and assigned to each sample according to the unique
barcodes. The raw demultiplexed sequences were pro-
cessed in QIIME 2 v2022.01 [31]. Paired-end reads were
denoised, dereplicated, and filtered for chimeras using
the DADA2 plugin [32], as implemented in QIIME 2. Raw
reads were trimmed to include only bases with quality
scores >35. The first 26 and 26 nucleotides of the 5’ end
of the forward and reverse sequences, respectively, also
were trimmed. The 3’ ends of the forward and reverse
sequences were truncated at positions 230 and 220,
respectively. The number of sequences used to train the
error model was set to 100,000. De novo clustering using
a threshold of 100% of similarity was performed using
VSEARCH ([33], as implemented in QIIME 2. Taxonomic
assignments were determined for amplicon sequence
variants (ASVs) using classify-sklearn with a naive
Bayes classifer [34] against UNITE Fungi v8.3 reference
database [35] pre-trained to ITS1. ASVs with an abun-
dance of less than 5 sequences were removed. Samples
were then subsampled to 20,180 sequences per sample.
In addition, MAFFT [36] was used to align with repre-
sentative sequences of ASVs (Additional file 2: Table S2)
(FFT-NS-1 method), and a phylogenetic tree was con-
structed using Average linkage (UPGMA) method.

Statistical analyses

Statistical analysis was carried out on the Microbi-
omeAnalyst (marker data profiling, MDP) [37]. The
fungal community compositions in the samples were
ordinated using Principal Coordinates Analysis (PCoA)
with the unweighted UniFrac distance method. Den-
drogram analysis (clustering algorithm: Ward; distance
measure: unweighted UniFrac distance) of fungal com-
munities in the samples of eleven habitats was also
performed to explore their relationships. Analysis of
similarity (unweighted UniFrac distances; 999 permu-
tations) was used to validate the dissimilarity of fungal
communities among different habitat types. A Venn
diagram showing the number of fungal ASVs in eleven
habitats was constructed online (www.omicshare.com/
tools/Home/Soft/venn). A correlation network analysis
was conducted to explore interactions of fungal genera
based on Spearman’s rank correlation test (Permutation:
100, p-value threshold: 0.01, correlation threshold: 0.75).
A linear discriminant analysis effect size (LEfSe) analy-
sis was used to explore the significantly different fungal
taxonomic groups (i.e., phylum, class, order, family, and
genus) among the eleven habitat types based on the fac-
torial Kruskal-Wallis test. The ecological traits of fungal
communities were determined using FungalTraits [38].
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Potentially pathogenic fungal species of interest were
determined according to the Atlas of Clinical Fungi [39].

Results

Characteristics of fungal community compositions

in the eleven habitats

A total of 9,864,604 raw reads from 213 samples were
obtained. The number of raw reads ranged from 30,400
to 139,071 per sample. After being denoised, derepli-
cated, and filtered for chimeras, the number of reads
was reduced to 8,040,848 for a total number of 17,236
ASVs. The number of trimmed reads ranged from 7
to 125,173 per sample (Additional file 3: Table S3). The
read number was reduced to 8,035,065 for 15,382 ASVs
in 213 samples following the elimination of rare ASVs
(less than five reads). Each sequence library was then rar-
efied to 20,812 reads which retained 4,204,024 reads in
202 samples and 14,814 ASVs. The ASV number detected
in each sample was in the range of 2 to 502 (Additional
file 4: Table S4). The ASVs could be identified at different
taxonomic levels of precision: 9,892 ASVs were assigned
to unknown phyla, whereas 4,922 ASVs were assigned
to 12 known phyla, 37 known classes, 85 known orders,
164 known families, 313 known genera, and 320 known
species.

The stacked bar plots showed that the fungal commu-
nity compositions differed among the eleven habitats
(i.e., air, soil, seawater, vascular plant, dung, moss, marine
alga, lichen, green alga, freshwater, feather) (Fig. 2). For
example, reads assigned to unknown phylum accounted
for the largest proportion of reads in samples, especially
in seawater and air. There were more phyla in freshwa-
ter than in other habitats (Fig. 2a). At the order level,
Helotiales accounted for the largest proportion among
the orders in vascular plant, while Thelebolales predomi-
nated in dung, Kriegeriales in feather, and Lecanorales in
lichen (Fig. 2b).

Differentiation between fungal assemblages

across habitats

The PCoA diagram showed that the spatial patterns of the
fungal communities were highly related to habitat types
(Fig. 3a). ANOSIM tests also indicated the fungal com-
munity compositions were significantly different among
the eleven different habitats (R=0.5153, p<0.001). Addi-
tionally, ANOSIM tests for the pairwise comparisons
revealed the different degrees of similarity of fungal com-
munities among different habitats (Table 1). For example,
soil and air did not harbor significantly different fungal
communities (R=0.064393, p>0.05), whereas fungal
communities in air were significantly different from those
in green alga (R=0.91608, p<0.001). A Venn diagram
indicated none of ASVs were shared by all eleven habitats
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Fig. 3 a Principal Coordinates Analysis (PCoA) ordination plot showing spatial pattern of fungal communities in the 202 samples from the eleven
habitats; b Venn diagram showing the number of ASVs in the eleven habitats.

(Fig. 3b). In addition, Dendrogram analysis revealed the
relationships of fungal communities among 202 samples
collected from the eleven habitats, indicating that the
samples clustered by habitat types (Additional file 1: Fig.
S1). For example, with regard to fungal community com-
position, seawater samples clustered together and were
separated from the samples in other habitats.

The co-occurrence patterns showed that the corre-
lations between the fungal genera were highly related
to habitats (Fig. 4). For example, five fungal genera
(i.e., Tremella, Trichothecium, Wickerhamomyces,
Podospora, and Flavocetraria) were in one module
with more connections and occurred in the soil habi-
tat (Fig. 4a), whereas two fungal genera (i.e., Humicola
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and Debaryomyces) were in another module and
occurred in the marine alga habitat (Fig. 4b).

Many taxonomic groups showed habitat specific-
ity in LEfse analysis (Fig. 5, Additional file 1: Figs. S2,
S3, and S4). For example, phylum Ascomycota domi-
nated in the vascular plant and lichen habitats, phylum
Basidiomycota in the feather and dung habitats, and
phylum Chytridiomycota in the air and freshwater hab-
itats (Additional file 1: Fig. S2). Order Lecanorales was
dominated in the lichen and green alga habitats, and
order Helotiales in the vascular plant habitat. Moreo-
ver, order Wallemiales dominated in the dung habitat,
and order Kriegeriales in the feather habitat (Fig. 5a).
Genus Phenoliferia and Goffeauzyma dominated in the
feather habitat, and genus Simplicillium in the seawa-
ter habitat; genera Mastodia and Piskurozyma were
more abundant in the green alga habitat; genus Him-
antormia was more abundant in the lichen habitat;
genus Antarctomyces was more abundant in the dung
habitat (Fig. 5b).

Ecological traits of fungal communities in various habitats
In terms of fungal ecological trait, 20 functional guilds
and 6 growth forms were detected in this study. Using
Fungaltratis, 2481 fungal ASVs identified at generic
level were given guild assignments. A majority were
assigned as saprophytic fungi (1899 ASVs), followed by
plant pathogens (231 ASVs) and lichenized fungi (138
ASVs) (Additional file 4: Table S4).

By using LEfse analysis, many ecological traits were
significantly distinguished among different habitats.
With regards to growth form, yeast predominated in
the feather and dung habitats, but had low contribu-
tions in the moss and vascular plant habitats; thallus
photosynthetic predominated in the lichen and green
alga habitats (Fig. 6a). With regard to functional guild,
lichenized fungi dominated in the lichen habitat, while
had low contributions in the marine alga and feather
habitats; algal parasite fungi dominated in the green
alga and marine alga habitats (Fig. 6b).

A total of 43 fungal species were detected as poten-
tial human pathogens (Additional file 1: Table S5). The
common species were Pseudogymnoascus destructans
(68 samples), Malassezia restricta (61 samples), Alter-
naria tenuissima (33 samples), Cladosporium clad-
osporioides (30 samples), Parengyodontium album (21
samples), Aspergillus sydowii (18 samples), Aspergillus
penicillioides (16 samples), and Fusarium solani (11
samples). In contrast, several fungal species (e.g., Acre-
monium spinosum, Wickerhamomyces anomalus) were
infrequently detected.
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Discussion

Antarctic ice-free areas are a unique laboratory for
understanding cold adaptation, the spread, and the col-
onization of microbes in extreme habitats. To date, the
majority of studies on fungal communities have been
conducted based on single habitat in the Antarctic ice-
free areas and a comprehensive study involving various
habitats remains scarce.

In this study, a total of 14,814 fungal ASVs, 313 known
genera, and 320 known species were detected from the
eleven habitats in the Fildes Region (maritime Ant-
arctica). In previous studies that used next-generation
sequencing, 87 genera and 123 species were detectable
in the Antarctic soils [10]; Rosa et al. [17] identified 186
fungal amplicon sequence variants (ASVs) from air col-
lected from King George Island (marine Antarctica);
Rosa et al. [11] identified 346 fungal ASVs from soil sam-
ples in Deception Island (marine Antarctica). A total of
12 known phyla, including Ascomycota, Basidiomycota,
Chytridiomycota,  Mortierellomycota, Rozellomycota,
Monoblepharomycota, Glomeromycota, Kickxellomy-
cota, Zoopagomycota, Aphelidiomycota, Olpidiomycota,
and Basidiobolomycota, were detected in this study. In
a previous study, the phyla Ascomycota, Mortierellomy-
cota, Basidiomycota, Chytridiomycota, Rozellomycota,
Mucoromycota, Calcarisporiellomycota, and Zoopagomy-
cota were detected in the soils from maritime Antarctica
using DNA metabarcoding [13]. The phylum Ascomycota
was dominant in Antarctic glacial ice fragments, followed
by Basidiomycota and Mortierellomycota as revealed by
amplicon-metagenome analysis [40]. de Souza et al. [18]
found phyla Ascomycota, Basidiomycota, Mortierellomy-
cota, Chytridiomycota, and Rozellomycota in two Antarc-
tic lakes using amplicon-metagenome analysis. Overall,
our data provided a considerably more comprehensive
exploration of the fungal diversity in the Antarctic ice-
free area.

Antarctica has a number of important environmen-
tal pressures (i.e., temperature, solar radiation, salinity,
soil parameters, pH), which may be an important factor
affecting fungal community composition. In this study,
we found that fungal communities were significantly dif-
ferent among the eleven habitats. At a local scale, high
habitat specificity in fungal communities may be attrib-
utable to the differences in current habitat factors (e.g.,
physicochemical factors, nutrient contents, antagonistic
factors) or historical factors (e.g., availability for fungal
colonization). For example, vegetation micro-niche avail-
ability (e.g., green alga in the moist niches and lichens in
the dry niches) and physiological attributes (i.e., chemical
defenses, or nutrient contents) may directly affect fungal
communities in different hosts (i.e., lichen, moss, vas-
cular plant, green alga, and marine alga) [41, 42]. Solar
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Fig. 5 LEfSe analysis showing (a) the fungal orders and (b) genera that differ significantly among the eleven habitat types in the Fildes Region.
Significant orders or genera are ranked by their LDA scores (x-axis). The right heatmap shows whether the relative abundances of orders or genera
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radiation is an important environmental factor affecting
the composition of Antarctic fungal communities [43]
and different habitats in the Fildes Region (e.g., soil, air,
lichen thallus, or plant tissue), have different levels of
solar radiation. The environmental conditions of marine
habitats (e.g., salinity) are very different from those of
terrestrial habitats and thereby fungal communities in
freshwater and seawater were significantly different.

In this study, many fungal guilds were significantly dif-
ferent among various habitats. The most prevalent fun-
gal guild identified in this study was saprotroph (e.g., soil
saprotroph, litter saprotroph, wood saprotroph) (Addi-
tional file 4: Table S4). In soils, saprotroph fungi play
an important ecological role in organic matter decom-
position and nutrient cycling through their secretion of
extracellular enzyme activities [44]. In seawater, fungi
as saprotrophs, interact with marine phytoplankton and
can have a significant impact on primary production

dynamics and carbon flux in the marine food chain [45].
We found lichenized (functional guild), thallus photosyn-
thetic (growth form), and Lecanorales (fungal order con-
sisting mainly of lichenized taxa) dominated in the lichen
habitat (Figs. 5a and 6). In this ice-free area of maritime
Antarctica, lichenized fungi, as dominant vegetation, are
the main supports for primary production (capable of
supporting photosynthesis) [46]. In addition, Kriegeriales
(order consisting mainly of yeast taxa) and yeast (growth
form) predominated in the feather habitat (Figs. 5a and
6a). In our unpublished data, the colonization rate of
cultured yeasts was also higher in feather samples than
in other sample types.

Temperature changes caused by global climate change
are an important factor affecting the composition of
fungal communities. Previous studies have shown that
warming leads to significant changes in fungal abundance
[5, 6]. In the soils of maritime Antarctica, the richness,
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relative abundance, and composition of fungal guilds
and growth forms are influenced by air temperature and
edaphic factors [21]. In addition, new ice-free areas and
new climatically suitable habitats may facilitate the estab-
lishment of fungal species, either naturally (e.g., lichen-,
plant-, moss-, green alga-, air-, and seawater-associated
fungi) or by the accidental introduction from animals
(e.g., penguin-, bird-, and human-associated fungi). It
is estimated that climate warming in marine Antarctica
may lead to changes of habitats in ice-free areas, and then
affects whole fungal communities in the ice-free area.

Climate warming in the Antarctic regions may also
increase the risk of fungal diseases. Schiitte et al. [47]
noted an increase in the relative abundance of potential
fungal pathogens after the thawing of the permafrost in
Alaska. According to the Atlas of Clinical Fungi [39], this
study revealed the broad spectrum of potential fungal
pathogens of humans (43 species) in an Antarctic ice-
free area. Previous studies have revealed the occurrence
of potential fungal pathogens in the Antarctic environ-
ments, including Aspergillus fumigatus, Byssochlamys
spectabilis, Chrysosporium keratinophilum, Cryptococ-
cus laurentii, Penicillium chrysogenum, Rhizopus oryzae,
and Rhodotorula mucilaginosa, which were isolated from
ornithogenic soils and displayed virulence capabilities
[48]. Our results based on next-generation sequencing
provide an indicator of the potential health risk and fur-
ther analyses of fungal isolates are needed to assess their
virulences which are crucial for pathogenicity.

Conclusion

The present study reveals the high diversity of fungal
communities in the eleven different habitats and eluci-
dates the ecological traits of fungal communities in an
Antarctica ice-free area. We thereby conclude that habi-
tat specificity rather than habitat overlap determined
the distribution of fungal communities, suggesting that
although fungal communities were connected by disper-
sal at the local scale, the environmental filter is a key fac-
tor driving fungal assemblages in this Antarctic ice-free
area.
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