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Beyond the snapshot: identification 
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Abstract 

Background:  Microorganisms are known to be important drivers of biogeochemical cycling in soil and hence could 
act as a proxy informing on soil conditions in ecosystems. Identifying microbiomes indicative for soil fertility and crop 
production is important for the development of the next generation of sustainable agriculture. Earlier researches 
based on one-time sampling have revealed various indicator microbiomes for distinct agroecosystems and agricul-
tural practices as well as their importance in supporting sustainable productivity. However, these microbiomes were 
based on a mere snapshot of a dynamic microbial community which is subject to significant changes over time. Cur-
rently true indicator microbiomes based on long-term, multi-annual monitoring are not available.

Results:  Here, using samples from a continuous 20-year field study encompassing seven fertilization strategies, we 
identified the indicator microbiomes ecophysiologically informing on soil fertility and crop production in the main 
agricultural production base in China. Among a total of 29,184 phylotypes in 588 samples, we retrieved a streamlined 
consortium including 2% of phylotypes that were ubiquitously present in alkaline soils while contributing up to 
half of the whole community; many of them were associated with carbon and nutrient cycling. Furthermore, these 
phylotypes formed two opposite microbiomes. One indicator microbiome dominated by Bacillus asahii, characterized 
by specific functional traits related to organic matter decomposition, was mainly observed in organic farming and 
closely associated with higher soil fertility and crop production. The counter microbiome, characterized by known 
nitrifiers (e.g., Nitrosospira multiformis) as well as plant pathogens (e.g., Bacillus anthracis) was observed in nutrient-
deficit chemical fertilizations. Both microbiomes are expected to be valuable indictors in informing crop yield and soil 
fertility, regulated by agricultural management.

Conclusions:  Our findings based on this more than 2-decade long field study demonstrate the exciting potential 
of employing microorganisms and maximizing their functions in future agroecosystems. Our results report a “most-
wanted” or “most-unwanted” list of microbial phylotypes that are ready candidates to guide the development of 
sustainable agriculture in alkaline soils.
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Background
Soil microorganisms with their incredible genetic and 
ecophysiological diversity play essential roles in regu-
lating multiple ecosystem services, including nutri-
ent cycling, organic matter decomposition, plant 
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productivity, and pathogen control [1–3]. However, the 
immense diversity of soil bacterial communities has sty-
mied efforts to characterize functional taxa and/or con-
sortia [4]. Recent research suggests alternative strategies 
to focus on a relatively small subset of phylotypes instead 
of exhaustively screening that overwhelming diversity 
[5–7]. These refined phylotypes are indispensably pre-
sent in communities with a high frequency and they self-
assemble into consortia that could characterize divergent 
environmental conditions (hereafter termed indicator 
microbiomes) [4, 8]. Such streamlined but ubiquitous 
microbiomes will be fruitful targets for genomic and cul-
tivation-based efforts to improve our understanding of 
soil microbes and their contributions to ecosystem func-
tioning [4, 6–8].

Agroecosystems are shaped by entangled webs of 
interactions among diversified microorganisms. Species 
composition and interactions in microbial communi-
ties determine the ecological functions and services they 
provide and hence they play a pivotal role in maintain-
ing ecosystem sustainability [9]. Harnessing microorgan-
isms and maximizing their functions in agroecosystems 
offers one of the most promising long-term solutions to 
meet the integral demand for simultaneously promoting 
crop production and environmental sustainability [6, 10]. 
Phylogenetically distinct soil microbes inherently exhibit 
divergent niche preferences, which in turn mirror differ-
ent environmental conditions [4, 8], e.g., a high fertility 
soil with high crop production, and vice versa.

Fertilization is one of the most impactful human 
manipulations of agroecosystems [11], where diver-
gent farming systems supported distinct microbiomes 
depending on and indicative of the conditions in the 
agroecosystem concerned [12, 13]. Divergent fertilization 
practices provide us with the opportunity to unravel the 
indicator microbiome associated with nutrient cycling, 
for example, nitrogen addition management shifting the 
microbiome related to N cycling [12] and organic matter 
amendment linking the microbiome associated with the 
decomposition of external organic matter [13, 14]. In this 
context, a systematic long-term field experiment includ-
ing the frequent application of multiple fertilization types 
could give us a general indicator microbiome associated 
with soil nutrient cycling and hence crop production 
[15–17].

Without strong external perturbation, soil microbial 
community composition can vary on scales from days to 
years due to stochastic drift and speciation in combina-
tion with ongoing dispersal processes [18–20]. Given this 
situation, microbial temporal patterns cannot necessar-
ily be generalized even if soils are exposed to the same 
climatic conditions [21], which questions the existence 
of consistent indicator microbiomes that could resist 

temporal variability [18, 21]. On the other hand, the situ-
ation is different when deterministic influences from 
strong external perturbations exceed the inherent sto-
chastic temporal variability in the microbial community 
[21, 22]. For example, fertilization is a strong environ-
mental filter that significantly shapes the environment, 
and hence shifts the microbial community therein [6, 23, 
24]. In this respect, we hypothesized that specific indica-
tor microbiomes consistently emerge during long-term 
distinct fertilization strategies, which can be indicative of 
soil fertility and crop yield. Indeed, such a comprehensive 
temporal analysis of indicator microbiomes would tran-
scend noisy information from typical snapshot studies 
[7, 21] and is essential for refinement of the identification 
and application of indicator microbiomes that are critical 
for crop yield and soil fertility.

Here, we performed a retrospective analysis of a 
20-year long fertilization experiment encompassing 588 
samples from seven contrasting fertilizer treatments, 
representing trajectories of farming systems from con-
ventional to organic and from nutrient-deficiency to 
nutrient-balance. These unique samples enable us to 
investigate the existence, composition and structure of 
indicator microbiomes across a decadal scale that are 
closely related to soil fertility and crop production under 
various management practices. This long-term field 
experiment was conducted on the Northern China Plain, 
where winter wheat-summer maize rotation is the domi-
nant cropping system and crop production is primarily 
constrained by low indigenous fertility of the alkaline soil 
[14]. Approximately 30% of arable land in the world suf-
fers from alkaline stress limiting crop production [25], 
and this challenge is compounded by global aridification 
[26, 27]. Wheat and maize are among the most widely 
grown commodity crops around the world, account-
ing for a considerable amount of cropland arable area, 
yielding non-meat calories and animal feed [28]. In this 
respect, the identified indicator microbiome for soil fer-
tility and crop yield from this study, although generated 
from a specific sampling site, could provide critical infor-
mation for dryland ecosystems on a global scale that suf-
fer from soil alkalinity.

Material and methods
Study sites and sample collection
Soil samples were collected from a long-term nutrient 
fertilization experiment at the Fengqiu Ecological Experi-
mental Station affiliated to Institute of Soil Science, 
Chinese Academy of Sciences (Kaifeng City, Henan Prov-
ince, 35° 00′ N, 114° 24′ E). The soil is classified as Aquic 
Inceptisol (a calcareous fluvoaquic soil), a typical alka-
line soil in the North China Plain derived from alluvial 



Page 3 of 13Zhang et al. Environmental Microbiome           (2022) 17:25 	

sediments of the Yellow River. The soil pH is approxi-
mately 8.65, with total organic matter at 5.83 g/kg, total 
N at 0.45 g/kg, total P at 0.5 g/kg, and total K at 18.5 g/
kg at the beginning of the experiment [14]. The crop suc-
cession was winter wheat (Triticum aestivum L.) and 
summer maize (Zea mays L.). This experiment was estab-
lished in 1989 and consisted of seven fertilization regimes 
with four replicates in randomized plots as follows [14]: 
(1) OM: organic manure (supplemented with P and K as 
chemical fertilizers for the same amount of nutrients as 
in the other treatments); (2) NPKM: half organic manure 
plus chemical fertilizer NPK; (3) NPK: balanced chemi-
cal fertilizer NPK; (4) NP: chemical fertilizer NP; (5) PK: 
chemical fertilizer PK; (6) NK: chemical fertilizer NK; 
and (7) Control: no fertilization. The detailed experi-
mental design and fertilization regimes have been docu-
mented in previous work [29, 30], and could be referred 
in Additional file 2: Table S1. Briefly, each plot measured 
9.5 * 5  m2. All phosphorus (calcium superphosphate), 
potassium (potassium sulfate) and organic manure ferti-
lizers (mixture of wheat straw, oil rapeseed cake, and cot-
tonseed cake in a ratio of 100:40:45) were applied as basal 
fertilizers, whereas N (urea) was added in two appli-
cations as both the basal (60  kg  ha−1  N for maize and 
90 kg ha−1 N for wheat, respectively) and supplementary 
fertilizer (90  kg  ha−1  N for maize and 60  kg  ha−1  N for 
wheat, respectively). Crop yields were recorded annually 
and were generally increased under fertilizations except 
for those under N- and P-deficient fertilizers (PK and 
NK, respectively) and unfertilized Control (Additional 
file 1: Fig. S1). Soil samples were collected annually after 
the harvest of summer maize (typically in October), air-
dried and archived in stoppered glass bottles. In 2019, we 
retrieved archived soil samples from 1989 to 2009, yield-
ing 588 samples (21  years × 7 fertilization regimes × 4 
replicates) in total. Soil C and N were measured with 
a LECO analyzer, and soil P and K were measured by 
colorimetry.

DNA sequencing and bacterial diversity analysis
Genomic DNA was extracted from archived soils using 
the FastDNA Spin Kit for Soil (MP Biochemicals, Solon, 
OH, USA), with some modifications to the manufacturer 
protocol. Briefly, soils of around 500 mg (as dry weight) 
were weighed into prepared centrifuge tubes (prechilled 
to 4  °C) containing buffer and extraction glass beads. 
The samples were incubated for 30 min for rehydration, 
and then cells were lysed in a FastPrep-24 Homogenizer 
(6.0 setting, 40  s; MP Biochemicals, USA). The samples 
were then incubated at 70 °C for 10 min to aid the lysis of 
Gram-positive bacteria, and briefly (~ 10 s) re-shaken in 
the homogenizer. The extracted soil DNA was dissolved 
in 50 μl of TE buffer, quantified by a spectrophotometer 

and stored at − 20  °C (long-term storage in − 80  °C). 
Despite air-drying and long-term storage, high-quality 
DNA was recovered from the soils archived for decades 
(260/280 ~ 1.8 ([31]). We have been previously pub-
lished based on DGGE analyses of these samples [14], 
which confirmed the systematic difference between 
samples from divergent farming systems and reported 
that Bacillus asahii bloomed from 2 to 4  years onward 
under organic fertilization. In this study, Illumina high-
throughput sequencing platform was used to dissect 
more sophisticated information on the bacterial com-
munity composition. For each soil sample, the primer 
set 519F/907R [32] was used to amplify approximately 
400 bp of V4–V5 region of bacterial 16S rRNA gene frag-
ments. The 5-bp length oligonucleotide sequences were 
fused to the forward primer to distinguish individual 
samples. PCR was carried out in 50 μl mixtures with the 
following components (final concentrations): 200  µM 
dNTPs; 0.6 μM forward and reverse primers; 2 units/50 
ul Taq DNA polymerase (TaKaRa, Japan); around 1  ng/
μl template DNA; add sterile water to 50 ul. Twenty-five 
cycles (95 °C for 45 s, 56 °C for 45 s, and 72 °C for 60 s) 
were performed with a final extension at 72 °C for 7 min 
on a Bio-Rad C1000 thermal cycler. Triplicate PCR were 
performed per sample and then were pooled, purified 
using the QIAquick PCR Purification kit (QIAGEN), and 
quantified using a NanoDrop ND-1000 (Thermo Scien-
tific, USA). The bar-coded PCR products from all sam-
ples were normalized in equimolar amounts to construct 
the library using a MiSeq Regent kit v3 (PE 2 × 300), and 
then were sequenced on an Illumina MiSeq platform in 
our institute (Illumina Inc., CA, USA).

Bacterial 16S rRNA gene sequence data were pro-
cessed using the USEARCH pipeline. Raw paired-end 
(forward and reverse) sequences were merged with the 
“fastq_mergepairs” function and low-quality sequences 
(length < 200 or quality score < 20) were filtered with 
the “fastq_filter” function in USEARCH software [33]. 
We used the “fastx_uniques” function to perform the 
dereplication which could greatly reduce the computa-
tional memory demand. The functions “cluster_otus” and 
“unoise3” were then used to cluster unique sequences 
into operational taxonomic units (OTUs), and to per-
form error-correction on sequences (denoising into 
zero-radius OTUs, zOTUs), respectively. Singletons 
were discarded as they potentially result from errone-
ous sequencing or prediction. Phylotype identification 
was achieved using RDP classifier with a ≥ 80% prob-
ability threshold [34]. OTU table was constructed using 
the “otutab” function, and then combined with phylotype 
identification in R. We removed phylotypes that were not 
assigned as Bacteria and detected in less than 10 times 
across the data set. Finally, validated data were rarefied 
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to 8200 (for 97% clustering) and 9500 sequences (for 
denoising) per sample to balance the sampling efforts, 
respectively. Beta diversity plots were generated with the 
rarefied data using the QIIME beta_diversity_through_
plots.py script based on Bray Curtis metrics [35]. The two 
approaches produced considerably overlapping commu-
nities (21,112 phylotypes for 97% clustering and 29,184 
phylotypes for denoising, respectively), with alpha and 
beta diversity metrics being highly positively correlated 
(r > 0.73 for observed richness, and r > 0.98 for Bray–Cur-
tis dissimilarity, Additional file 1: Fig. S2). The denoising 
approach only increased (by 1.4 times) the resolution of 
bacterial diversity, in line with recent systematic investi-
gations that demonstrated the limited effect of the OTU 
approach on the resulting microbial community struc-
ture [8]. Although the 97% similarity threshold is widely 
accepted to define molecular OTUs from the bacterial 
16S rRNA region [4], the use of the denoised zOTUs 
has the important advantage at a much higher resolu-
tion of allowing for more precise identification down to 
the species level and even potentially beyond [8]. There-
fore, given the substantial overlap between the two 
approaches, we decided to use the denoised zOTUs for 
all the downstream analyses. The datasets generated and 
analyzed during the current study are available in the 
National Center for Biotechnology Information (NCBI) 
repository under the accession number PRJNA726588.

Validation for retrospective microbial analysis based 
on archived soil samples
We first estimated the fidelity of the archived soil samples 
for retrospect analysis according to their soil chemical 
characteristics (i.e., SOC, TN, TP, TK) and bacterial com-
munity composition via the Random Forest algorithm. 
This method has previously been shown to outperform 
other modeling approaches when used for environmental 
bacterial datasets [13, 36]. In these classification models 
(number of trees = 500, permutations = 999), fertiliza-
tion strategy (a vector including seven factors that corre-
spond to the seven fertilization treatments used) was set 
as response variable while soil chemical characteristics or 
community composition was set as predictor variable, in 
which fertilization time (in years from 0 to 20) were set as 
strata (i.e. a factor variable that is used for stratified sam-
pling) to take into consideration the temporal dynamics 
in field conditions. The results showed that our archived 
soil samples were well stored to the extent that we could 
use the soil chemical properties (accuracy of 91.5% esti-
mated via the out of bag error rate in Random Forest 
models) and bacterial community (accuracy of 86.73%) 
to accurately identify the fertilizer treatment the sam-
ple originated from (Additional file 1: Fig. S3). This high 
match accuracy could be comparable to those based on 

fresh samples [37], and provides high confidence in our 
results. Random Forest analysis was performed using the 
R package rfPermute (with default parameters, v2.1.81 
[38]).

Identifying the indicator microbiome and co‑occurrence 
network construction
We first selected dominant taxa by retaining ubiquitous 
zOTUs that were present in more than 80% of all soil 
samples (n = 544), which yielded a subset community 
consisting of 604 phylotypes. We did not apply abun-
dance criteria in this analysis because microbial keystone 
taxa might exert their influence (either individually or as 
a guild) on ecosystem functioning irrespective of their 
abundance across space and time (such as those involved 
in nitrogen fixation or ammonia oxidation) [5]. Ecologi-
cal co-occurrence networks provide critical information 
on the potential associations among soil microorganisms 
and can be used to identify soil indicator phylotypes and/
or consortia associated with the high levels of soil func-
tioning and crop production [5, 23]. All possible Spear-
man rank correlations between OTUs across samples and 
corresponding P values were calculated. We corrected 
the false discovery rate according to Benjamini–Hoch-
berg [39]. We considered a valid co-occurrence event to 
be robust if the Spearman correlation coefficient |ρ|> 0.6 
and statistically significant at P < 0.01 [40, 41]. Pairwise 
Spearman correlation was calculated using the function 
‘rcorr’ in the R package Hmisc (v4.4–0) [42], and the co-
occurrence network was constructed using the function 
‘graph.adjacency’ in the R package picante (v1.8.1). We 
also detected potential clusters/modules within cooccur-
rence network using the function ‘fastgreedy.community’ 
in the R picante package, as ecological clusters represent 
important ecological units that provide the opportunity 
to identify highly connected and indicator taxa [43]. An 
interactive platform “Gephi” (default parameters set, 
v0.9.1 [44]) was used to visualize the cooccurrence net-
work. In the network graph, the nodes represent the indi-
vidual phylotypes, with the colors denoting the ecological 
modules to which they belong, and the sizes of the nodes 
are proportional to their relative abundances in the com-
munity. Edges represent significant pairwise correlations 
with their width proportional to the coefficient. We cal-
culated the relative abundance of each cluster by summa-
rizing the relative abundances of all phylotypes therein. 
We are aware of the compositional nature of microbiome 
data [45] and of the fact that Spearman correlation is not 
a compositionally aware correlation metric [46]. When 
we tested with compositionally aware correlation metric, 
that is SparCC [47], despite the difference in network lay-
out and scales, the outcomes and conclusions were essen-
tially the same (Additional file  1: Fig. S4). In addition, 
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Spearman approach generated a bigger-scale network 
whereby providing more potential candidates taxa that 
are fruitful target in management practices [4, 41]. There-
fore, we decided to choose Spearman approach in down-
stream analysis.

Identification of accurate taxonomy and microbial 
functional traits
Given that the denoised zOTUs allow for precise identifi-
cation down to the species level [8], we further validated 
taxonomy information by blasting our phylotypes against 
the 16S rRNA database in NCBI. Result showed that, 
163 out of the 604 selected phylotypes had 16S rRNA 
sequences that could be assigned with > 98.5% iden-
tity (similarity threshold for differentiating two species 
based on 16S rRNA gene sequence [48]) to a type speci-
men with a sequenced genome in the NCBI database. 
Then, the corresponding type specimen annotations were 
taken as the taxonomy of these phylotypes. Accounting 
for duplicate matches, these 163 phylotypes accounted 
for 140 separate type organisms. We matched those phy-
lotypes at the species level with publicly available func-
tional microorganisms related to nitrogen (nitrogen 
fixation/M00175, nitrification/M00528, denitrification/
M00529, dissimilatory nitrate reduction/M00530, assimi-
latory nitrate reduction/M00531, complete nitrification/
comammox/M00804), phosphorus (phosphonate and 
phosphinate metabolism/ko00440, alkaline phosphatase/
M00126), and sulfur (assimilatory sulfate reduction/
M00176, dissimilatory sulfate reduction/M00596, thio-
sulfate oxidation by SOX complex/M00595) metabo-
lism from the KEGG database (last accessed on April 25, 
2021). We calculated the module functional proportion 
by summarizing the proportion of successfully matched 
phylotypes within each module.

Statistical analysis
The importance of these dominant taxa was estimated 
by calculating their count ratio as well as their relative 
abundance ratio. Pearson correlation between phylo-
type/module proportion and soil chemical characteristics 
was calculated using the function “rcorr” in the R pack-
age Hmisc (v4.4–0) [42]. Ordinary least square method 
was used to estimate the relationship between com-
munity (alpha and beta) diversities generated by 97% 
clustering and denoising approaches as well as the dis-
similarity between the whole community and the subset 
community consisting of selected dominant phylotypes. 
ANOVA was used to test the significant difference in 
the proportion of each module among fertilizer treat-
ments. We used the “aov” function in the R package 
Stats (v3.6.3) to conduct this analysis with the formula 

aov(module% ~ fertilizer + Error (duration/fertilizer)), 
in which fertilizer is the fixed variable, but experiment 
duration (years) is random and fertilizer is nested within 
duration to take into account of temporal variation in 
field conditions. The circular phylogenetic tree was visu-
alized using the online tool iTOL [49]. All statistical anal-
yses in this study were based on R version v3.6.3 [42].

Results
Fidelity of the archived soil samples for the retrospective 
analysis
We first checked the chemical fidelity of the archived 
soil samples. Based on their chemical signature we could 
accurately assign a certain sample to a certain treatment 
with > 91% confidence (Additional file  1: Fig. S3a). Then 
we performed the same approach based on the microbial 
community signatures of the samples, and the result was 
again very positive: we could identify with 86.73% cer-
tainty from what treatment series the (stored) sample was 
derived (Additional file 1: Fig. S3b).

Principal coordinate analysis (PCoA) based on Bray–
Curtis distances showed that soil bacterial community 
exhibited distinct patterning according to the fertilization 
type (Fig.  1a), and to fertilization duration within each 
type (Fig. 1b). Strikingly, the samples formed four clusters 
based on fertilization types: two types of organic fertiliza-
tion (OM and NPKM) were distinct from the chemical 
fertilizers and formed two independent clusters, whereas 
the three types of element-deficit fertilization (NP, NK, 
and PK) clustered together, while balanced chemical fer-
tilizer (NPK) was more closely related to the no fertilized 
Control (Fig. 1a).

Identification of the indicator phylotypes
As microbes that are consistently present with high fre-
quency are likely to provide critical ecological func-
tions, we searched for microbial taxa that are detected 
in more than 80% of samples. This streamlined micro-
bial consortium consisted of 604 OTUs from a small set 
of bacterial phyla (i.e., phyla Proteobacteria, Firmicutes, 
Actinobacteria, Chloroflexi and Acidobacteria), which 
only represented ~ 2.1% of all the 29,184 sampled bacte-
rial phylotypes, while contributing to nearly half of the 
total reads identified as Bacteria (Fig.  2 and Additional 
file 2: Table S2). The variation in Bray–Curtis dissimilar-
ity index of this streamlined consortium was positively 
correlated with the diversity of the whole bacterial com-
munity (r = 0.95, P < 0.001, Additional file  1: Fig. S5a). 
Individual phylotype abundance and frequency were 
positively correlated, with relatively few phylotypes being 
both highly frequent and abundant, and the majority of 



Page 6 of 13Zhang et al. Environmental Microbiome           (2022) 17:25 

the retrieved bacterial taxa restricted in their abundance 
(Additional file 1: Fig. S5b).

When compared against the GenBank database, 163 
out of the 604 phylotypes had > 98.5% sequence identity 
with sequences obtained from publicly available bacte-
rial type strains (Fig.  2 and Additional file  2: Table  S2). 
The most abundant taxa included Bacillus asahii (2.05%), 
Methylobacterium radiotolerans (1.99%), Priestia fila-
mentosa (0.94%) and Blastococcus colisei (0.93%). Impor-
tantly, majority members with their abundance were 
closely associated with multiple soil nutrient conditions 
as well as maize yield (Fig. 2), suggesting that this refined 
microbial consortium could well act as the indicator 
microbiome of soil fertility and crop production. Specifi-
cally, 40% of phylotypes affiliated with the phylum Fir-
micutes were negatively (P < 0.05) correlated with crop 
production, while more than one quarter (27%) of phy-
lotypes in the phylum Proteobacteria (especially those 
in Alphaproteobacteria and in Gammaproteobacteria) 
were positively (P < 0.05) correlated with higher produc-
tion (Additional file  2: Table  S2). Nevertheless, several 
abundant phylotypes in the class Bacilli of phylum Fir-
micutes, such as B. asahii (r = 0.3), Lysinibacillus sphaeri-
cus (r = 0.31) were also positively correlated with higher 
production.

Identification of the indicator microbiome
We used co-occurrence network analysis to identify phy-
lotypes in the indicator microbiome that were highly con-
nected with each other, and therefore, potentially shared 
environmental preferences and functional potentials (i.e., 
the effect on maize production in this study), which could 

go beyond predictions based on their taxonomic affilia-
tions alone. This approach was feasible because the con-
trasting fertilization types supported different levels of 
maize production (Additional file 1: Fig. S1) and tended 
to give rise to distinct microbial communities (Fig. 1a).

We detected and identified several ecological clusters 
from the refined microbiome in the co-occurrence net-
work. Many of the members (66 out of 165 phylotypes) 
of these clusters could be accurately identified at the spe-
cies level based on the similarity threshold 98.5% (Fig. 2 
and Additional file  2: Table  S2). Specifically, Cytobacil-
lus firmus (abundance = 0.88%), Neobacillus mesonae 
(0.81%) and Bacillus anthracis (0.56%) in phylum Fir-
micutes were the main members in module #1; module 
#2 was mainly comprised of Nitrospira japonica (0.27%) 
in phylum Nitrospirae and many other unclassified taxa 
in phyla Proteobacteria and Acidobacteria; module #3 
was dominated by Actinobacteria, such as Blastococ-
cus colisei (0.93%) and Micrococcus terreus (0.63%); and 
phylotypes in genus Bacillus of phylum Firmicutes domi-
nated the module #4, in which B. asahii (1.98%) and L. 
sphaericus (0.31%) were the most abundant members 
(Fig. 3a). Members within each module were consistently 
and positively correlated with each other. Modules #1 
and #2 were the main components in the network, and 
were connected through several phylotypes with negative 
correlations. Furthermore, while some members (e.g., N. 
mesonae and B. anthracis in module #1, B. colisei in mod-
ule #3 and B. asahii in module #4) are important phylo-
types that dominate the community and construct the 
module, dominant taxa are not necessarily guaranteed to 
be the keystone taxa in a community (e.g., Priestia flexa 
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PC2 (9.26%) PC2 (9.26%)

PC1 (12.05%)PC1 (12.05%)

PC3 (4.72%) PC3 (4.72%)
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Fig. 1  Fertilization type and duration strongly structure the microbial community. Projection of the data in PCoA based on Bray Curtis distance. 
Symbols represent microbiomes and are colored by fertilization type (a by the specific fertilization type of origin) by duration (b sampling year, color 
gradient). The first three PCs are plotted with the percentage of variation explained by each PC
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in module #1, N. japonica in module #2 and L. sphaericus 
in module #4) (Additional file 2: Table S2).

Network analysis revealed that the combined phylotype 
abundances of modules #2 and #4 were significantly and 
positively correlated with maize production and multiple 
soil nutrient contents (e.g., SOC and TN, TP), whereas 

those of modules #1, #3 and #5 exhibited opposite pat-
terns (Fig.  3b). Furthermore, these two contrasting 
groups of modules also showed different distributional 
patterns across divergent fertilization types. Compared 
to the unfertilized control and chemical fertilizers, 
organic fertilization (e.g., OM and NPKM) consistently 

Fig. 2  Identification of indicator microbiome in this temporal survey. The ratios of both abundance (%) and richness of the indicator microbiome 
phylotypes in the community are reported in the pie charts. The upset plot denotes the overlap of phylotypes between individual fertilizer-specific 
indicator microbiome. Phylogeny of indicator microbiome identified in this temporal survey (d). The tree shows the phylogenetic relationships 
of OTUs (n = 604) persistently present in individual fertilizer type. Ring “Phylum” indicates the most closely related bacterial type strain retrieved 
from GenBank, with sequence identity > 97% and 98.5% colored in black in adjacent ring “Identify”. Ring “Correlation” showed the spearman 
correlation coefficient between the proportion of individual phylotype and crop yield as well as multiple soil nutrient variables (TOC, TN, TP, TK). 
Ring “Abundance (%)” represent the proportion of individual phylotype in bacterial community. Blank cells in rings “Identity”, “Correlation” represent 
bacterial phylotypes that failed to match the threshold, i.e., sequence identity > 97% and 98.5% or statistical significance P < 0.05
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harbored a higher proportion of phylotypes in module 
#4 (F = 4.54, P < 0.001), while phylotypes in modules #1 
(F = 2.78, P = 0.011) and #3 (F = 5.3, P < 0.001) were per-
sistently rare in OM fertilization compared to chemical 
fertilization types (Fig. 3c).

Multifunctionality of the indicator microbiome
Bacterial phylotypes in the indicator microbiome exhib-
ited various metabolic functions related to nitrogen, 
phosphorus and sulfate cycling, with most of the mem-
bers capable of decomposing organic phosphorus via 
phosphonate and phosphonite metabolism (Fig.  4). 
Bacterial phylotypes in module #2 (N. japonica) was 

associated with assimilatory sulfate reduction, and 
those in module #4 (i.e., L. sphaericus, and B. asahii) 
were involved in phosphonate/phosphinate metabolism. 
Members in module #1 were suggested to play important 
roles in multiple functions: B. anthracis, P. filamentosa 
and N. mesonae combined play key roles in phospho-
nate and phosphinate metabolism, while Nitrosospira 
multiformis is involved in nitrification, assimilatory sul-
fate reduction and alkaline phosphatase production, 
and was enriched under chemical nitrogen fertilization, 
Rhodopseudomonas palustris is active in both nitrogen 
fixation and assimilatory nitrate reduction to ammo-
nium (Fig.  4). Nitrogen fertilizer treatment exhibited a 
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higher proportion of phylotypes in module #1 that were 
involved in nitrification (F = 47.59, P < 0.001) and alkaline 
phosphatase (F = 54.37, P < 0.001) as well as assimilatory 
sulfate reduction (F = 55.71, P < 0.001), while organic fer-
tilizer samples showed higher potential in nitrogen fixa-
tion (F = 14, P < 0.001), nitrate reduction to ammonium 
(F = 14 for ANRA and F = 11.20 for DNRA, P < 0.001) in 

module #1 and phosphonate and phosphonite metabo-
lism (F = 5.58, P < 0.001) in module #4.

Discussion
Functional traits of indicator phylotypes for soil fertility 
and crop yield
Harnessing microbiomes offers an invaluable approach 
to achieve agroecosystem sustainability with joint 
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consideration of food security and environmental stress 
[6, 10]. In this study, we addressed this issue by charac-
terizing the identity, fertilization-dependency and ecol-
ogy of indictor microbiomes identified in a long-term 
(> 20  years) fertilization experiment conducted in the 
North China Plain that encompassed seven frequently 
applied fertilization types. To confidently detect and 
characterize the indicator microbiota, we selected those 
phylotypes that appeared at high frequency over 20 years. 
This stringent criterion generated a set of streamlined 
indicator phylotypes (~ 2.1%) from a few bacterial phyla 
that accounted for almost half (~ 50%) of the community 
population (Fig. 2a). These indicator phylotypes encom-
passed both dominant taxa with considerable abundance 
affecting broad processes (e.g., organic matter decom-
position) and rare microbes exerting disproportional 
influences on specific well-defined processes (e.g., nitro-
gen fixation and ammonia oxidation) (Figs. 3a, 4). Many 
members of these indicator phylotypes are on record as 
indicator or keystone microbes in various agroecosys-
tems, such as the most abundant taxa identified in this 
study like B. asahii and M. radiotolerans (Fig.  2d and 
Additional file  2: Table  S2). As most bacteria generally 
do not take up macromolecules, Bacillus spp. naturally 
secrete a wide range of hydrolytic enzymes to decompose 
complex organic matter and to release mineral nutrients 
(such as phosphonate) into their environment, making 
them keystone taxa in the soil food-web [14, 50], and 
pioneers when exposed to organic matter amendment 
in alkaline soils [14, 51]. Indeed, B. asahii was found to 
dominate the bacterial community from 2 to 4  years 
onward under organic fertilization in our previous inves-
tigation [14]. In comparison, M. radiotolerans was more 
abundant under nutrient-deficit chemical fertilization 
types (Additional file 2: Table S2), helping the crop resist 
nutrient deficiencies by forming a symbiotic relation-
ship with the plants in which M. radiotolerans consumes 
plant waste as a carbon source and in turn generates sub-
stances promoting plant growth [52].

With respect to the indicators of rare phylotypes, for 
example, R. palustris is a soil-borne phototroph that has 
been shown to exert positive effects on plant growth by 
stimulating nitrogen uptake and elevating auxin levels in 
expanding leaves [53]. R. palustris was enriched under 
OM treatment in this study (Additional file 2: Table S2), 
suggesting that organic fertilization supported a stronger 
soil nitrogen fixation ability. N. multiformis is an impor-
tant nitrifier in upland soil and was enriched under 
chemical N fertilization (Additional file  2: Table  S2), 
which might limit N use efficiency in upland soil by accel-
erating nitrification and denitrification [54]. Evidence of 
the consistent presence of such rare taxa with a poten-
tially disproportional influence raises the possibility that 

members of the rare biosphere are nevertheless indis-
pensable in agroecosystem functioning [5]. Overall, the 
close association between limited indicator phylotypes 
and specific fertilization-induced nutrient cycling across 
the two-decadal duration suggests the possibility and/or 
feasibility of employing microbes to achieve the desired 
results by altering farming practices.

Multifunctionality of the indicator microbiome for soil 
fertility and crop yield
Ecological co-occurrence networks have been widely 
used to identify co-occurring microorganisms in the 
community and could potentially provide critical infor-
mation on the multifunctionality of microbiomes [5, 
23]. In this study, we identified several ecological mod-
ules comprised of the identified indicator phylotypes, in 
which members in each module positively correlated with 
each other (Fig.  3a). Importantly, these modules exhib-
ited distinct ecosystem functions related to soil nutrients 
and carbon cycling (Fig.  4) and hence presented multi-
functionality with soil fertility and crop yield (Fig. 3b, c). 
For example, module #1 was closely involved in biogeo-
chemical processes such as nitrogen fixation, nitrification 
and organic phosphate decomposition (Fig.  4). N and P 
are the most limiting nutrients in terrestrial ecosystems; 
however, their availability for plants and soil biota largely 
depends on the depolymerization of soil organic mat-
ter and net mineralization by soil microorganisms [55]. 
Specifically, we found that OM treatment was associ-
ated with a higher abundance of phylotypes involved in 
nitrogen fixation (e.g., R. palustris) and nitrate reduction 
to ammonium, while chemical nitrogen fertilizer types 
enriched phylotypes active in nitrification (e.g., N. mul-
tiformis) and alkaline phosphatase (Fig.  4), suggesting 
competition of soil nutrients between soil microbes and 
plants under conventional chemical fertilization types 
[13]. B. anthracis in module #1 is a widely distributed 
soil-borne plant pathogen [56], and was found to be more 
enriched under nutrient-deficit fertilization (Additional 
file 2: Table S2), which might also account for the lower 
crop production in those farming systems. Accordingly, 
the microorganisms in module #1 were distributed in 
soils based on fertilization types, with their combined 
abundance negatively associated with soil fertility and 
crop yield (Fig. 3b).

In contrast, module #4 in the network exhibited solely 
and powerful functions in solubilizing phosphate by 
decomposing external organic matter (especially B. asa-
hii), making it the most distinctive microbial signature 
for the sampling site in the North China Plain, where 
agricultural production is hindered by lower P availability 
[14]. In this context, amendment with external organic 
matter is necessary for promoting native microorganisms 
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to increase the soil P availability, termed the coupled soil 
C and P cycling [51]. In addition, the external C-induced 
higher soil P availability paved the way for some ben-
eficial phylotypes (i.e., L. sphaericus [57]) that could 
promote plant growth or control insects and pests. As 
a result, we found that microorganisms in module #4 
were most abundant in OM treatments (Fig.  3c), and 
were closely associated with higher soil fertility and crop 
yield (Fig.  3b). Similarly, it has been reported that OM 
farming systems are characterized by specific micro-
bial guilds known to be involved in the degradation of 
complex organic compounds, whereas systems receiv-
ing chemical fertilizer presumably harbor oligotrophic 
organisms adapted to nutrient-limited environments 
[13]. Importantly, long-term chemical fertilization could 
potentially suppress inherent soil nitrogen fixation by 
inhabiting nitrogen fixers [58]. Deploying microorgan-
isms to increase plant nutrient uptake and resistance to 
biotic and abiotic stress has been postulated as one of 
the most promising long-term solutions to the integral 
challenges of achieving food security while supporting 
a healthy environment [6, 10]. Our results revealed that 
OM farming systems were more likely to accomplish this 
goal compared to conventional systems receiving chemi-
cal fertilizers in alkaline soils.

Fidelity of the archived soil samples for the retrospective 
analysis
This study was based on archived soil samples collected 
from a long-term field experiment. We are aware that 
retrospective analysis of a microbial community based 
on archived soil samples poses a series of methodologi-
cal and technical challenges. While archived samples 
are widely accepted for retrospective analysis of their 
chemical properties [59, 60], their application in retro-
spective microbiological studies remains controversial 
[61, 62]. In this study, we showed that the soil micro-
bial communities were very well preserved to the extent 
that we could accurately assign, with high confidence 
(accuracy of 86.7%, Additional file 1: Fig. S3b) compara-
ble to the confidence associated with fresh samples [37], 
a certain sample to a certain treatment based on their 
microbial signature. The microbial community showed 
a strong patterning of samples by fertilization type, with 
an obvious configuration according to the duration for 
each fertilization type (Fig.  1). Interestingly, across the 
duration of the field experiment, microbial communi-
ties under OM treatment were consistently separated 
from those that had developed under chemical fertiliza-
tion and unfertilized control, confirming the frequently 
recorded distinct microbial diversity under conven-
tional and OM farming systems at the time-series 
scale [13, 31, 63]. Strikingly, three types of unbalanced 

chemical fertilization with different element deficiencies 
harbored a similar microbial community composition, 
which was distinct from their balanced counterparts. 
The results based on soil chemical properties were even 
better (accuracy of 91.5%, Additional file  1: Fig. S3a). 
This high fidelity gives confidence that the microbial 
community in archived samples reflects the original 
community—while possibly not a 100% accurate reflec-
tion—to the extent that they can be used to identify 
indicator microbiome for soil fertility and crop yield in 
the sampling site on the Northern China Plain.

Conclusions
In this study, we leveraged a retrospective analysis to 
investigate indicator microbiomes for soil fertility and 
crop yield in fields exposed to contrasting fertilization 
management practices. Using a stringent criterion, 
we identified an indicator microbiome consisting of 
limited but ubiquitous and abundant phylotypes, the 
majority of which were strongly associated with soil 
fertility and crop production. Furthermore, we iden-
tified two small subsets of coexisting members that 
exhibited opposite relationships with soil fertility and 
crop production in alkaline soils. One group consisted 
of members enriched under organic fertilization, which 
showed specific metabolic functions related to organic 
matter decomposition and was strongly associated with 
higher soil fertility and crop production at this type of 
sampling site. The other group encompassed microbial 
phylotypes that potentially limiting plant health and 
nutrient uptake and was found to be enriched under 
nutrient-deficit chemical fertilization practices. In 
summary, this study reports a “most-wanted” or “most-
unwanted” list of microbial phylotypes that are feasible 
candidates for human manipulation in supporting crop 
production with explicit consideration of environmen-
tal sustainability.
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