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Abstract 

Background:  Ocean microbes constitute ~ 70% of the marine biomass, are responsible for ~ 50% of the Earth’s 
primary production and are crucial for global biogeochemical cycles. Marine microbiotas include core taxa that are 
usually key for ecosystem function. Despite their importance, core marine microbes are relatively unknown, which 
reflects the lack of consensus on how to identify them. So far, most core microbiotas have been defined based on 
species occurrence and abundance. Yet, species interactions are also important to identify core microbes, as commu-
nities include interacting species. Here, we investigate interconnected bacteria and small protists of the core pelagic 
microbiota populating a long-term marine-coastal observatory in the Mediterranean Sea over a decade.

Results:  Core microbes were defined as those present in > 30% of the monthly samples over 10 years, with the 
strongest associations. The core microbiota included 259 Operational Taxonomic Units (OTUs) including 182 bacteria, 
77 protists, and 1411 strong and mostly positive (~ 95%) associations. Core bacteria tended to be associated with 
other bacteria, while core protists tended to be associated with bacteria. The richness and abundance of core OTUs 
varied annually, decreasing in stratified warmers waters and increasing in colder mixed waters. Most core OTUs had a 
preference for one season, mostly winter, which featured subnetworks with the highest connectivity. Groups of highly 
associated taxa tended to include protists and bacteria with predominance in the same season, particularly winter. A 
group of 13 highly-connected hub-OTUs, with potentially important ecological roles dominated in winter and spring. 
Similarly, 18 connector OTUs with a low degree but high centrality were mostly associated with summer or autumn 
and may represent transitions between seasonal communities.

Conclusions:  We found a relatively small and dynamic interconnected core microbiota in a model temperate 
marine-coastal site, with potential interactions being more deterministic in winter than in other seasons. These core 
microbes would be essential for the functioning of this ecosystem over the year. Other non-core taxa may also carry 
out important functions but would be redundant and non-essential. Our work contributes to the understanding of 
the dynamics and potential interactions of core microbes possibly sustaining ocean ecosystem function.
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Background
Ecosystems are composed of interacting units embed-
ded in and influenced by their physicochemical envi-
ronment. Ecosystem function can be broadly defined 
as the biological, geochemical, and physical processes 
that occur within it. These processes will likely change 
or halt if specific organisms or gene-functions are 
removed, driving the ecosystem towards a new state or 
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its collapse. It is hypothesized that ecological redun-
dancy guarantees continuous ecosystem function, 
as multiple species could carry out the same or simi-
lar function [1]. And while the amount of functional 
redundancy in microbial ecosystems is a matter of 
debate [2, 3] it has also been observed that microbio-
tas in comparable habitats tend to share “core” species 
that are hypothesized to be fundamental for ecosystem 
function [4]. These core organisms and the functions 
they carry out might not be easily replaced.

Identifying the core microbiota is not straightforward 
as there are different ways of defining a core depending 
on the habitats and the questions being addressed [4]. 
One often-used approach is to identify species that tend 
to be recurrently present across spatiotemporal scales. 
This definition might not be sufficient, however, since 
communities are made up of interacting species [5]. A 
more appropriate definition of a core, therefore, needs 
to incorporate ecological interactions fundamental for 
the community in the location under study [4, 5]. This is 
particularly important in studies using DNA to investi-
gate microbial communities, as a fraction of the detected 
taxa could be dormant, dead, or transient [6–8]. In the 
interaction-based definition taxa that do not appear to be 
interacting are excluded from the core [4].

Core microbiotas based on common presence have 
been widely studied in terrestrial animals, in particular 
humans [9] or cattle [10], as well as in marine animals, 
in particular corals [11, 12] and sponges [13, 14]. Core 
microbiotas in non-host-associated systems, such as soils 
or the ocean, have been investigated to a lesser extent. In 
soils, for example, a global analysis identified a core group 
of 241 ubiquitous and dominant bacterial taxa with more 
or less invariant abundances and unclear habitat prefer-
ences [15]. In the tropical and subtropical global-ocean, 
a total of 68 bacteria and 57 picoeukaryotic operational 
taxonomic units (OTUs) have been identified that could 
be part of the core surface microbiota, as they were pre-
sent in > 80% of the globally-distributed samples [16].

Analyses of ocean time-series have also pointed to 
the existence of core microbiotas. For example, Gil-
bert et  al. [17] investigated the microbiota of the Eng-
lish Channel for 6  years and found 12 abundant OTUs 
that were detected throughout the entire dataset (72 
time-points), totaling ~ 35% of the sequence abundance. 
Potentially core bacterial OTUs were detected in the 
San Pedro Ocean Time-series (SPOT; southern Califor-
nia), in a study covering 10 years of monthly samples in 
the euphotic zone [18]. These potentially-core bacte-
rial OTUs were present in > 75% of the months, repre-
sented ~ 7% (25–28 OTUs depending on depth) of the 
total richness, and had a high (> 10%) relative abundance 
[18].

These studies have provided substantial insights on 
core marine microbiotas, although they typically define 
them in terms of species occurrence or abundance over 
spatiotemporal scales, rather than on potential interac-
tions. As in other ecosystems, microbial interactions 
are essential for the functioning of the ocean ecosystem, 
where they guarantee the transfer of carbon and energy 
to upper trophic levels, as well as the recycling of car-
bon and nutrients [19]. Despite their importance, most 
microbial interactions in the ocean remain unknown [20]. 
A recent literature survey spanning the last 150  years 
indicated that we have documented a minor fraction of 
protist interactions in the ocean [21] and most likely, the 
same is true if not worse for bacteria.

During the last decade, association networks have 
been used to bridge this knowledge gap. Association net-
works are based on correlations between species’ abun-
dances and they may reflect microbial interactions [22]. 
Contemporaneous positive correlations may point to 
interactions such as symbiosis, or similar niche prefer-
ences, while negative correlations may suggest predation, 
competition, or opposite niche preferences [23]. So far, 
network analyses have produced hypotheses on micro-
bial interactions at the level of individual species across 
diverse ecosystems [22, 24, 25], a few of which have been 
experimentally validated [26]. In addition, networks can 
help detect species that have relatively more associations 
to other species (“hubs”), or species that connect differ-
ent subgroups within a network, and which therefore 
may have important roles in the ecosystem. Groups of 
highly associated species in the network (“modules”) may 
represent niches [27, 28], and the amount of these mod-
ules may increase with increasing environmental selec-
tion [22]. Networks can also produce ecological insight at 
the community level, since their architecture can reflect 
community processes, such as selection [27].

Network analyses have been particularly useful for the 
investigation of potential microbial interactions in the 
ocean [20, 25]. A surface global-ocean network analy-
sis of prokaryotes and single-celled eukaryotes indi-
cated that ~ 72% of the associations between microbes 
were positive and that most associations were between 
single-celled eukaryotes belonging to different organ-
ismal size-fractions [26]. Other studies using networks 
have indicated a limited number of associations between 
marine microbes and abiotic environmental variables [17, 
18, 23, 26, 29–31], suggesting that microbial interactions 
have an important role in driving community turnover 
[31]. Despite the important insights these studies have 
provided, most of them share the limitation that they do 
not disentangle whether microbial associations may rep-
resent ecological interactions or environmental prefer-
ences [22].



Page 3 of 24Krabberød et al. Environmental Microbiome           (2022) 17:22 	

Even though association networks based on long-term 
species dynamics may allow a more accurate delineation 
of core marine microbiotas, few studies have identified 
them in this manner. Consequently, we have a limited 
understanding of the interconnected set of organisms 
that may be key for ocean ecosystem function. Here 
we infer and investigate the core microbiota occurring 
in the marine-coastal Blanes Bay Microbial Observa-
tory (Northwestern Mediterranean Sea, Fig.  1A) over 
10  years. We delineated the core microbiota stringently 
using species’ associations based on their relative abun-
dances. We also made an effort to disentangle environ-
mental effects in association networks by identifying and 
removing species associations that are a consequence 
of shared environmental preference and not interac-
tions between the species [32]. We analyzed bacteria and 
protists from the pico- (0.2–3  µm) and nanoplankton 
(3–20 µm) organismal size fractions, which show a strong 
seasonality in this location [33–35]. Taxa relative abun-
dances were estimated by sequencing the 16S and 18S 
rRNA-gene and delineating OTUs as Amplicon Sequence 
Variants (ASVs). Specifically, we ask: What taxa consti-
tute the interconnected core microbiota and what are the 
main patterns of this assemblage over 10 years? Does the 
core microbiota feature seasonal sub-groups of highly 
associated species? What degree of association do bac-
teria and microbial eukaryotes have and do they show 
comparable connectivity? Can we identify core OTUs 
with central positions in the network that could have 
important ecological roles?

Results
Composition and dynamics of the resident microbiota
Based on the data set containing 2926 OTUs, (1561 bac-
teria and 1365 microbial eukaryotes) we first defined the 

resident OTUs as the bacteria and microbial eukaryotes 
present in > 30% of the samples, which equals 36 out of 
120 months (not necessarily consecutive). This threshold 
was selected as it includes seasonal OTUs that would be 
present recurrently in at least one season. The residents 
consisted of 709 OTUs: 354 Bacteria (~ 54% relative read 
abundance) and 355 Eukaryotic OTUs (~ 46% relative 
read abundance) [Table  1, see methods for calculation 
of relative read abundance]. The most abundant resident 
bacteria OTUs belonged to Oxyphotobacteria (mostly 
Synechococcus; ~ 15% of total relative read abundance), 
Alphaproteobacteria (mostly SAR11 Clade Ia [~ 9%, 
and clade II [~ 4%]), and Gammaproteobacteria (mainly 
SAR86; ~ 2%). The most abundant resident protist OTUs 
belonged to Dinophyceae (predominantly an unclassified 
dinoflagellate lineage [~ 7%], Syndiniales Group I Clade 
1 [~ 7%] and Gyrodinium [~ 4%]), Chlorophyta (mostly 
Micromonas [~ 3%] and Bathycoccus [~ 2%]), Ochrophyta 
(predominantly Mediophyceae [~ 2%] and Chaetoceros 
[~ 1%]) and Cryptophyceae (mainly a Cryptomonadales 
lineage [~ 2%]) [Fig. 3, Additional file 1: Table S1].

The resident microbiota, including both protists and 
bacteria, showed seasonal variation over 10  years, with 
communities from the same season but different years 
tending to group (Fig. 1C, D). The structure of the resi-
dent microbiota correlated to specific environmental 
variables during winter (nutrients, Total photosynthetic 
nanoflagellates [PNF; 2-5  µm size], and small PNF 
[2  µm]), spring (Total Chlorophyll a [Chla]), summer 
(daylength, temperature, Secchi disk depth and, the cell 
abundances of Synechococcus, Heterotrophic prokaryotes 
[HP] and Heterotrophic nanoflagellates [HNF, 2-5  µm]) 
and autumn (salinity) [Fig.  1C]. The environmental 
variables most relevant for explaining the variance of 
the resident microbiota were determined by stepwise 

(See figure on next page.)
Fig. 1  The Blanes Bay Microbial Observatory and the variation of its resident microbiota and measured environmental variables over ten years. A 
Location of the Blanes Bay Microbial Observatory. B All possible correlations between the measured environmental variables including the richness 
and abundance of resident OTUs (NB: only 709 resident OTUs are considered, see Table 1). Only significant Pearson correlation coefficients are 
shown (p < 0.01). The p values were corrected for multiple inference (Holm’s method). C Unconstrained ordination (NMDS based on Bray Curtis 
dissimilarities) of communities including resident OTUs only, to which environmental variables were fitted. Only variables with a significant fit 
are shown (p < 0.05). Arrows indicate the direction of the gradient, and their length represents the strength of the correlation between resident 
OTUs and a particular environmental variable. The color of the samples (circles) indicates the season to which they belong. The bottom-left arrow 
indicates the direction of the seasonal change. PNF = photosynthetic nanoflagellates. D Constrained ordination (Distance-based redundancy 
analyses, dbRDA, using Bray Curtis dissimilarities) including only the most relevant variables after stepwise model selection using permutation 
tests. Each axis (i.e., dbRDA1 and dbRDA2) indicates the amount of variance it explains according to the associated eigenvalues (both dbRDA1 
and dbRDA2 are significant [p < 0.01]). The color of the samples (circles) indicates the season to which they belong. Arrows indicate the direction 
of the gradient, and their length represents the strength of the correlation between resident OTUs and a particular environmental variable. The 
bottom-left arrow indicates the direction of the seasonal change. E, F Resident OTUs displaying different niche preferences (blueish areas) in terms 
of the two most important abiotic variables: Temperature (E) and Daylength (F). The red dots indicate the randomization mean, and the orange 
curves represent the confidence limits. Black dots indicate individual OTUs for which temperature or daylength preferences are significantly 
(p < 0.05) higher or lower than a random distribution over 10 years. At least two assemblages with different niches become evident: one preferring 
higher temperature and longer days (summer/spring), and another one preferring lower temperature and shorter days (winter/autumn). Note that 
several OTUs associated with Spring or Autumn are not expected to be detected with this approach, as their preferred temperature or daylength 
may not differ significantly from the randomized mean
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Fig. 1  (See legend on previous page.)
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model selection and distance-based redundancy analy-
ses (dbRDA) [Fig.  1D], leading to a dbRDA constrained 
and unconstrained variation of 41% and 59% respectively 
(Fig.  1D). The selected variables were predominantly 
aligned with the axis summer (daylength, temperature, 

and the cell abundance of Synechococcus and HP)—win-
ter (SiO2, small PNF) [Fig. 1D]. This dbRDA axis had the 
highest eigenvalue, explaining ~ 55% of the constrained 
variation (Fig.  1D). Even though the measured environ-
mental variables did not explain the majority of the vari-
ation of the resident microbiota, they could account for 
a substantial fraction. This was further supported by 
Adonis analyses, which indicated that the measured envi-
ronmental variables could explain ~ 37% of the resident 
microbiota variance, with temperature and daylength 
having a predominant role by accounting for 30% of this 
variance (~ 15% each) [adjusted R2].

We then investigated whether temperature and day-
length could determine the main niches. We found 
that ~ 70% and ~ 68% of the OTUs in the resident micro-
biota had niche preferences associated with temperature 
or daylength respectively (Fig.  1E, F; Note that several 
OTUs preferring Spring or Autumn are not expected to 
be detected with this approach, as their preferred tem-
perature or daylength may not differ significantly from 
the randomized mean). In total, 371 OTUs from the resi-
dent microbiota had both a temperature and a daylength 
niche preference that departed significantly from the 
randomization mean (Fig.  1E, F). These 371 OTUs rep-
resented ~ 52% of all OTUs in the resident microbiota, 
corresponding to ~ 90% of the sequence abundance. In 
particular, 248 OTUs had a weighted mean for both tem-
perature and daylength below the randomization mean 
(corresponding to winter/autumn), while 116 OTUs had 
a weighted mean above the randomization mean for 
both variables (corresponding to summer/spring). Inter-
estingly, 7 OTUs displayed a weighted mean above and 
below the randomized mean for temperature and day-
length respectively (corresponding to autumn or spring).

Core network
To determine the core microbiota that incorporates pos-
sible interactions, we constructed an association network 
based on the resident OTUs and removed all OTUs that 
were not involved in strong and significant associations 
with any other OTUs. Specifically, we kept only the asso-
ciations (edges in the network) with Local Similarity 
score |LS| > 0.7, a Bonferroni adjusted p value < 0.001 and 
Spearman |r| > 0.7 as suggested in previous works [17, 
36]. In addition, we made an effort to remove OTU-OTU 
associations that seemed to be caused by environmental 
preferences of the OTUs rather than a possible ecologi-
cal interaction between them. For this we made use of 
the program EnDED [32] which marked 33% of the origi-
nal associations as being environmentally driven by the 
OTUs’ environmental preferences. These associations 
were also removed (see Methods for details). Although 
EnDED cannot identify all environmentally driven 

Table 1  Description of the datasets

* In italics the abundances relative to all OTUs are indicated. All other values in 
normal text indicate abundances relative to OTUs in the resident microbiota
a Number of OTUs in the full dataset that was left after quality control and 
rarefaction, which were present in at least 10% of the samples (i.e., 12 months, 
not necessarily consecutive)
b OTUs present in at least 30% of the samples (i.e., 36 months, not necessarily 
consecutive) [= Resident microbiota]
c OTUs included in the core network (core microbiota) with significant 
correlations (p < 0.001), local similarity scores > |0.7| and Spearman 
correlations > |0.7|, being present in at least 30% of the samples
d Includes non-photoautotrophic lifestyles (i.e., chemoautotrophs, 
photoheterotrophs, chemoheterotrophs, etc.)

OTUs OTUs (%) Sequence 
abundance 
(%)*

All OTUsa 2926 100 100

 Bacteria 1561 53.3 50.7

 Protists 1365 46.7 49.3

Resident microbiotab 709 100 100 (85)

 Bacteria 354 49.9 53.6

 Protists 355 50.1 46.4

Core microbiotac 259 100 64.5 (54)

 Bacteria 182 70.3 46.3

 Protists 77 29.7 18.2

 Picoplankton 109 42.1 32.4

 Nanoplankton 150 57.9 32.1

Protists

 Heterotroph 5 1.9 0.3

 Photoautotroph 37 14.3 11.8

 Parasite 21 8.1 3.5

 Mixotroph 3 1.2 0.7

 Symbiont 1 0.4 0.1

 Unknown 11 4.3 2.0

Bacteria

 Photoautotroph (cyanobacteria) 19 7.3 19.3

 Non-photoautotrophd 163 62.5 26.8

Seasonal preference core OTUs

 Winter 156 60.2 21.8

 Spring 24 9.3 16.4

 Summer 44 17.0 8.2

 Autumn 30 11.6 13.7

 No seasonality 5 1.9 4.5

Seasonal subnetworks

 Winter 156 60.2 21.8

 Spring 19 7.3 13.7

 Summer 41 15.8 6.6

 Autumn 26 10.0 12.9
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associations, it still can identify a large portion as shown 
from simulated data [32]. The core network consisted 
of 1411 significant and strong correlations (Fig. 2A) and 
was substantially smaller than the network based on the 
resident OTUs without stringent cut-offs (Additional 
file  2: Figure S1A, removed edges in Additional file  2: 
Figure S1B). The core network includes only the strong-
est microbial associations that are inferred during a dec-
ade and, according to our definition, determines the core 
microbiota. The associations in the core microbiota may 
represent proxies for species interactions since steps have 
been taken to remove associations that are driven by 
environmental factors.

In the core network, most associations were positive 
(~ 95%), pointing to the dominance of co-existence or 
symbiotic associations among strong potential inter-
actions (Table  2, Fig.  2A). The core network had “small 
world” properties [37], with a small average path length 
(i.e. number of nodes between any pair of nodes through 
the shortest path) and a relatively high clustering coeffi-
cient, showing that nodes tend to be connected to other 
nodes, forming tightly knit groups, more than what 
it would be expected by chance (Table  3). Since node 
degree was not correlated with OTU abundance (Addi-
tional file 3: Figure S2), the associations between OTUs 
are not caused by a high sequence abundance alone, as 
the most abundant OTUs did not tend to be the most 
connected.

The core network displayed a winter cluster, while 
no clear clusters could be defined for the other seasons 
(Fig.  2A). Of the 15 environmental variables analyzed, 
only 3 were found to be significantly correlated with core 
OTUs: daylength, showing strong correlations with 33 
OTUs, temperature, correlated with 14 OTUs, and Chlo-
rophyll a, correlated with 1 OTU (Fig. 2A). Therefore, the 
analysis of the core network also points to the impor-
tance of temperature and daylength in the decade-long 
seasonal dynamics of the studied microbial ecosystem. 
It is also coherent with the Adonis and ordination analy-
ses (Fig. 1C, D). However, the associations between these 
environmental parameters with taxa represented only 4% 
of all the associations (Fig. 2B).

Of the 709 OTUs from the resident microbiota (Fig. 3), 
only 259 OTUs (35%) were left in the core network (182 
bacteria (~ 70%) and 77 microbial eukaryotic OTUs 

(~ 30%); Table  1, Fig.  2). The monthly taxonomic com-
position of the resident microbiota differed from that of 
the core (Fig. 3). The core OTUs accounted for ~ 64% of 
the relative read abundance of the resident microbiota 
(Table 1). The core OTUs had annual variation in terms 
of richness and abundance over the 10  years for both 
the pico- and nanoplankton, with microbial eukaryotes 
decreasing markedly in OTU richness and relative read 
abundance in the warmer seasons, and increasing during 
colder periods (Fig. 3).

The most abundant bacteria (Fig.  3; Additional file  1: 
Table  S2) among the core OTUs were Oxyphotobacte-
ria (mostly Synechococcus), total abundance ~ 14% of the 
resident microbiota, followed by Alphaproteobacteria, 
with SAR11 clades Ia and II representing ~ 9% and ~ 2% 
respectively. The most abundant microbial eukaryotic 
groups were Micromonas, Bathycoccus, Dinophyceae, 
and Cryptomonadales (each ~ 2%) [Fig.  3; Additional 
file  1: Table  S3]. In terms of diversity and abundance, 
bacterial non-phototrophs (including chemoautotrophs, 
photoheterotrophs, and  chemoheterotrophs) were 
the most prevalent in the core microbiota, represent-
ing ~ 62% of the OTUs and a quarter of the total relative 
read abundance (Table 1). In turn, protistan heterotrophs 
represented a minor fraction of the diversity and relative 
abundance (Table  1). Bacterial photoautotrophs were 
relatively more abundant than their protistan counter-
parts but less diverse (Table  1). Protistan parasites rep-
resented ~ 8% of the OTUs and ~ 3% of the abundance, 
while the remaining protistan lifestyles had a minor rel-
evance in the core microbiota (Table  1). The classifica-
tion of lifestyles followed an approach similar to previous 
work [21, 26, 38]

Intra‑ and cross‑domain core associations
Bacteria tended to be associated with other bacteria 
(Tables  3, 4; Fig.  2B), with Bacteria-Bacteria associa-
tions making up ~ 54% of all associations, while Protist-
Protist associations accounted for 11% (Table  4). The 
connectivity of the bacterial subnetworks was higher 
(mean degree ~ 10) than the protist counterparts (mean 
degree ~ 6), regardless of whether these networks 
included exclusively bacteria, protists, or both (Table 3).

In particular, there was a substantial number of asso-
ciations between Alpha- and Gammaproteobacteria, 

Fig. 2  Core microbiota resulting from 10 years of monthly pico- and nanoplankton relative abundances. A Core network including bacteria and 
microbial eukaryotic OTUs that occur ≥ 30% of the time during the studied decade (i.e., resident microbiota), with highly significant and strong 
associations (adjusted p < 0.001, absolute Local Similarity score |LS| > 0.7, Spearman correlation |ρ| > 0.7), where detected environmentally-driven 
edges were removed. The color of the edges (links) indicates whether the association is positive (grey) or negative (red). The shape of nodes 
indicates bacteria (rhomboid) or microbial eukaryotes (circle), and the color of nodes represents species’ seasonal preferences, determined using the 
indicator value (indval, p < 0.05). Node size indicates OTU relative abundance. B Core network as a Circos plot, indicating the high-rank taxonomy of 
the core OTUs. Since 95% of the associations are positive (see Table 2), we do not indicate whether an edge is positive or negative

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Table 2  Core associations

See Fig. 2

Association #
(edges)

Co-occurrences
(positive)

Co-exclusions
(negative)

All 1411 1341 (95.0%) 70 (5.0%)

Within Picoplankton 378 353 (93.3%) 25 (6.6%)

Within Nanoplankton 791 748 (94.6%) 43 (5.4%)

Picoplankton-Nanoplankton 242 240 (99.2%) 2 (0.8%)

Table 3  Core network and sub-networks statistics

NB, Networks and sub-networks include OTUs and environmental factors. Di = Network diameter. De = Network density. Largest clique = size of the largest clique(s) in 
the network, and in brackets, the number of them. Mod = Network modularity inferred using edge betweenness

*Includes nodes and edges shared between pico- and nanoplankton
**  Includes nodes and edges shared between bacteria and protists. Random ER network: follows the Erdős-Rényi model. Random WS network: “Small world” random 
network (Watts-Strogatz model). Random BA network: Scale free-random network (Barabási-Albert model)
a All associations where picoplankton OTUs are involved (including nanoplankton)
b Associations between picoplankton OTU only
c All associations where nanoplankton OTUs are involved (including picoplankton)
d Associations between nanoplankton OTU only
e All associations where bacterial OTUs are involved (including protists)
f Associations between bacterial OTU only
g All associations where protist OTUs are involved (including bacteria)
h Associations between protist OTU only. * Includes nodes and edges shared between pico- and nanoplankton

Network Nodes (#OTUs) Edges Di. De. Average degree Average 
path length

Average 
clustering 
coefficient

Largest clique (#) Mod.

Core network 262 (259) 1411 11 0.04 10.7 3.45 0.52 13  (4) 0.19

Random ER network 262 1411 5 0.04 10.7 2.60 0.03 3 (199) 0.13

Random WS network 262 1411 5 0.04 10.7 2.93 0.33 6 (12) 0.60

Random BA network 262 1411 5 0.04 10.7 2.63 0.08 5 (6) 0.09

Picoplankton alla 161 (160)* 620* 10 0.05 7.7 3.13 0.55 10 (1) 0.22

Picoplankton onlyb 110 (109) 378 9 0.06 6.9 3.15 0.51 9 (4) 0.29

Nanoplankton allc 197 (194)* 1033* 10 0.05 10.5 3.18 0.57 13 (4) 0.15

Nanoplankton onlyd 153 (150) 791 10 0.07 10.3 3.21 0.56 13 (4) 0.17

Bacteria alle 233 (230)** 1236** 10 0.04 10.6 3.34 0.52 11 (3) 0.19

Bacteria onlyf 185 (182) 803 10 0.05 8.7 3.50 0.51 10 (1) 0.31

Protists allg 147 (145)** 608** 5 0.06 8.3 2.40 0.48 8 (2) 0.10

Protist onlyh 80 (77) 175 5 0.05 4.4 2.54 0.54 7 (1) 0.32

(See figure on next page.)
Fig. 3  The monthly variation in the resident and core microbiotas over 10 years. Upper panels: The resident microbiota is defined as those 
eukaryotes and bacteria that occur in at least 30% of the samples over 10 years. The relative OTU abundance (left panel) and number of OTUs (right 
panel) for different domains and taxonomic levels in the resident microbiota are shown. Note that the relative abundance of Bacteria vs. Eukaryotes 
does not necessarily reflect organismal abundances on the sampling site, but the amplicon relative abundance after PCR. Relative abundances 
were calculated for each year and aggregated over the corresponding months along the 10 years for the resident microbiota, then split into size 
fractions (NB: relative abundance for both domains and size fraction sums up to 1 for each month across ten years, see methods for details). Lower 
panels: Core microbiota over 10 years. The relative abundances of core OTUs reflect the remaining proportions after removing all the OTUs that were 
not strongly associated when building networks. Relative OTU abundance (left panel) and number of OTUs (right panel) for different domains and 
taxonomic levels among the core OTUs
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between Alphaproteobacteria and Acidiimicrobia as well 
as among Alphaproteobacteria OTUs (Fig.  2B). Eukary-
otic OTUs did not show a similar trend with associations 

between OTUs of the same taxonomic ranks (Fig. 2B). In 
terms of cross-domain associations, Alphaproteobacteria 
OTUs had several associations with most major protistan 

NanoplanktonPicoplanktonNanoplanktonPicoplankton

NanoplanktonPicoplanktonNanoplanktonPicoplankton

Telonemia
Stramenopiles:Heterotrophic
Radiolaria
Picozoa
Stramenopiles: Ochrophyta
Katablepharidophyta

Re
lat

ive
 O

TU
 ab

ud
an

ce
Re

lat
ive

 O
TU

 ab
ud

an
ce

0.2

0.4

0.1

0.2

0.3

0.1

0.2

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

sUTO f o r eb
muN

sUTO f o r eb
muN

50

150

250

50

100

30

90

Core microbiota (259 OTUs)

Resident microbiota (709 OTUs)

Domain
Bacteria
Eukaryota

ni a
moD

airet caB
set oyr akuE

ni a
moD

Bacterial Class
Acidimicrobiia
Actinobacteria
Alphaproteobacteria
Bacilli
Bacteroidia
Campylobacteria
Dadabacteriia
Dehalococcoidia
Deltaproteobacteria
Gammaproteobacteria
Nitrospinia
Oxyphotobacteria
Phycisphaerae
Planctomycetacia
Rhodothermia
Verrucomicrobiae

air et caB
Eukaryotic Phylum

set oyr akuE
Centroheliozoa
Cercozoa
Chlorophyta
Choanoflagellida
Ciliophora
Cryptophyta
Dinoflagellata

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

30

10

20

60

30

90

0.05

0.15

0.05

0.15

0.1

0.3

Months
Fig. 3  (See legend on previous page.)



Page 10 of 24Krabberød et al. Environmental Microbiome           (2022) 17:22 

groups (i.e., dinoflagellates, diatoms, cryptophytes, 
Mamiellophyceae, and Syndiniales) [Fig. 2B].

Core associations within the pico‑ and within the 
nanoplankton
While the pico- and nano-size fractions indicate differ-
ent lifestyles in bacteria (free-living or particle-attached), 
they indicate different cell sizes in protists, and this 
could be reflected in association networks. Nanoplank-
ton sub-networks were larger and more connected than 
picoplankton counterparts (Fig. 4, Table 3). This pattern 
was observed in both sub-networks considering asso-
ciations from the same or both size fractions (Table  3). 
Nanoplankton sub-networks had a higher average degree 
(~ 10) than picoplankton sub-networks (~ 7; Wilcoxon 
p < 0.05), while not differing much in other network sta-
tistics (Table 3). Most associations in the pico- and nano-
plankton were positive (> 93%), while the associations 
between OTUs from different size fractions represented 
only ~ 17% of the total, being ~ 99% positive (Table 2).

In the pico- or nanoplankton sub-networks that 
include OTUs from the same size fraction, the number of 
bacterial core OTUs was higher than the protistan coun-
terparts (103 bacterial vs. 47 protistan OTUs in the nano-
plankton, and 79 bacterial vs. 30 protistan OTUs in the 
picoplankton) (Fig. 4, Table 3). Still, core OTUs in both 
the pico- and nanoplankton had comparable sequence 
abundances: ~ 27% of the resident microbiota in each size 
fraction. Within the picoplankton, 64% of the associa-
tions were between bacteria, 8% between eukaryotes, and 
25% between eukaryotes and bacteria (Table 4). In turn, 
in the nanoplankton, 50% of the edges were between bac-
teria, 14% between eukaryotes, and 31% between eukary-
otes and bacteria (Table 4). Overall, the BBMO pico- and 
nanoplankton sub-networks differed in size, connectiv-
ity, and taxonomic composition, while they were similar 
in terms of positive connections and relative sequence 
abundance.

Network seasonality
The indicator value (IndVal) was used to infer the sea-
sonal preference of core OTUs. Most of the core OTUs 
(98%; 254 out of 259 OTUs) showed a clear preference 
for one of the four seasons, pointing to a marked season-
ality in the core microbiota (Figs.  2A, 4; Table  5; Addi-
tional file  1: Tables S4 and S5). Winter had the highest 
quantity of core OTUs and the highest network con-
nectivity (average degree ~ 13), compared to the other 
seasons (average degrees ~ 2 – ~ 6) [Figs. 2A & 4; Table 5; 
Additional file 4: Figure S3]. The average path length was 
larger in the core network compared to random networks 
of the same size (Table  3). Yet, all sub-networks associ-
ated with size fractions and seasons (Table 5) had shorter 
path lengths than the random networks (Table  3), indi-
cating that nodes tended to be connected within sea-
sons and size fractions. This was also supported by an 
increase in network density when comparing the core 
network (Table 3) and the core network subdivided into 
seasons (Table  5), against the core network subdivided 
into both seasons and size fractions (Table  5). The five 
OTUs that did not show any seasonal preference, among 
them SAR11 Clades Ia & II, showed high to moderate 
abundances but had a low number of associations to 
other OTUs (Additional file  1: Tables S4, S5, S6). Thus, 
network connectivity in the BBMO appears to be hetero-
geneous over time, peaking in winter and remaining low 
in the other seasons. Other network properties such as 
Local Similarity Scores, Edge Betweenness, Pearson Cor-
relation Coefficient, Betweenness Centrality, Closeness 
Centrality, Clustering Coefficient, also showed variability 
over the seasons (Additional file 5: Figure S4; Additional 
file  6: Figure S5; Additional file  7: Figure S6; Additional 

Table 4  Core associations within and between taxonomic 
domains and size fractions

a  “Bacteria–Bacteria” indicates associations between two bacterial OTUs. 
“Protist–Protist” are associations between two unicellular eukaryotes and 
“Bacteria–Protist” are associations between one eukaryote and one bacterial 
OTU. “Environmental factor–Protist” and “Environmental factor–Bacteria” are 
associations between an environmental factor and a eukaryotic or bacterial OTU

Network Association typea # Associations

Core network Total 1411

Bacteria–Bacteria 767 (54%)

Bacteria–Protist 433 (31%)

Protist–Protist 161 (11%)

Environmental factor–Bac-
teria

36 (3%)

Environmental factor–
Protist

14 (1%)

Picoplankton subnetwork Total 378

Bacteria–Bacteria 241 (64%)

Bacteria–Protist 94 (25%)

Protist–Protist 31 (8%)

Environmental factor–Bac-
teria

12 (3%

Environmental factor–
Protist

0 (0%)

Nanoplankton subnetwork Total 791

Bacteria–Bacteria 394 (50%)

Bacteria–Protist 246 (31%)

Protist–Protist 113 (14%)

Environmental factor–Bac-
teria

24 (3%)

Environmental factor–
Protist

14 (2%)
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Fig. 4  Pico- and nanoplankton core sub-networks. The shape of the nodes indicates bacteria (rhomboid) or microbial eukaryotes (circle), and 
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file  8: Figure S7; Additional file  9: Figure S8; Additional 
file 10: Figure S9).

Groups of highly associated OTUs
Within the core network, we identified groups of OTUs 
that were more connected to each other than to the rest 
of the network (called modules). These groups of OTUs 
may indicate recurring associations that are likely impor-
tant for the stability of ecosystem function. We identified 
12 modules in both the pico- and nanoplankton subnet-
works (Additional file  1: Table  S7). Modules tended to 
include OTUs from the same season (Additional file  1: 
Table  S8), with main modules (i.e., MCODE score > 4) 
including OTUs predominantly associated with winter, 
summer, or autumn (Fig. 5). Overall, winter modules pre-
vailed (5 out of 7) among the main modules (Fig. 5), while 
modules with scores ≤ 4 did not tend to be associated 
with a specific season (Additional file  1: Table  S8). Two 
main winter modules had members that were negatively 
correlated to temperature and daylength (Fig. 5; Modules 
1 and 4, nanoplankton).

The total relative sequence abundance of core OTUs 
included in modules was ~ 24% (proportional to the 
resident microbiota), while the total abundance of indi-
vidual modules ranged between ~ 6% and ~ 0.3% (Addi-
tional file 1: Table S7). In turn, the relative abundance of 
core OTUs included in modules ranged between 0.01% 
and ~ 2% (Additional file  1: Table  S8). In most mod-
ules, a few OTUs tended to dominate the abundance, 
although there were exceptions, such as module 4 of the 
picoplankton, where all SAR11 members featured abun-
dances > 1% (Additional file 1: Table S8). In addition, sev-
eral OTUs within modules had relatively low abundances 

(Additional file 1: Table S8), supporting modules as a real 
feature of the network and not just the agglomeration of 
abundant taxa.

Central OTUs
Biological networks typically contain nodes (i.e. OTUs) 
that hold more “central” positions in the network than 
others [22]. Even though the ecological role of these hub 
and connector OTUs is unclear, it is acknowledged that 
they could reflect taxa with important ecological func-
tions [22]. There is no universal definition for hub or con-
nector OTUs, yet, in this work, we have used stringent 
thresholds to determine them ad hoc (see Methods). 
We have identified 13 hub-OTUs that were associated 
with winter or spring (Table  6). Hubs did not include 
highly abundant OTUs, such as Synechococcus or SAR11 
(Table  6), but instead, they included several OTUs with 
moderate-low abundance (< 1%) and high degree (rang-
ing between 26 and 60) [Table  6]. For example, the 
Gammaproteobacteria OTU bn_000226 had a relative 
abundance of 0.04% and a degree of 60 (Table  6). Hubs 
included other moderately abundant OTUs, such as the 
eukaryotic picoalgae Bathycoccus, which was abundant in 
winter, as well as an unidentified dinoflagellate (Table 6).

We identified a total of 18 connector OTUs (featuring 
relatively low degree and high centrality), which were 
predominantly associated with summer (5 out of 18) 
or autumn (6 out of 18), contrasting with hub OTUs, 
which were associated mostly with winter and spring 
(Table 6). Connectors may be linked to the seasonal tran-
sition between main community states (Fig.  1C, D) and 
included several abundant OTUs belonging to Synechoc-
occus and SAR11 (Table 6). In particular, the SAR11 OTU 

Table 5  Subnetworks including core OTUs displaying seasonal preference

NB, Subnetworks include OTUs only. Di = Network diameter. De = Network density. Largest clique = size of the largest clique(s) in the network, and in brackets, the 
number of them. Mod = Network modularity inferred using edge betweenness

Sub-network Number 
of OTUs

Edges Di. De. Average degree Average 
path length

Average 
clustering 
coefficient

Largest clique (#) Mod.

All Winter 156 1175 7 0.10 15.1 2.62 0.54 13 (4) 0.19

Spring 19 16 4 0.09 1.7 1.56 0.44 4 (1) 0.75

Summer 41 56 7 0.07 2.7 2.90 0.49 6 (1) 0.53

Autumn 26 25 3 0.08 1.9 1.59 0.46 4 (2) 0.73

Pico Winter 63 286 6 0.15 9.1 2.35 0.53 9 (4) 0.10

Spring 8 5 3 0.18 1.2 1.50 0.00 2 (5) 0.56

Summer 25 36 5 0.12 2.9 2.20 0.41 6 (1) 0.23

Autumn 5 3 2 0.30 1.2 1.25 0.00 2 (3) 0.44

Nano Winter 92 658 6 0.16 14.3 2.40 0.61 13 (4) 0.04

Spring 11 11 4 0.20 2.0 1.59 0.57 4 (1) 0.56

Summer 13 17 3 0.22 2.6 1.70 0.65 4 (1) 0.50

Autumn 17 18 3 0.13 2.1 1.35 0.56 4 (2) 0.60
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bp_000007 displayed a relatively high abundance (1.4%), 
but a degree of 3 (relatively low) and a betweenness cen-
trality of 0.6 (relatively high). In contrast, two protist 
OTUs displayed low-moderate abundances (ep_00269, 

Chrysophyceae, abundance 0.04% and en_00161, Syn-
diniales, abundance 0.4%), low degree < 4, but a high 
betweenness centrality (> 0.8; Table 6).
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Fig. 5  Main modules in the core network. Modules with MCODE score > 4 are shown for picoplankton (upper panel) and nanoplankton (lower 
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Discussion
Identifying the most important microbes for the func-
tioning of the ocean ecosystem is a challenge, which can 
be addressed by delineating core microbiotas [4]. Recog-
nizing the most abundant and widespread microbes in 
the ocean is a step towards knowing the core microbiota. 
However, this does not take into account the importance 
that both microbial interactions and microbes with mod-
erate or low abundance may have for the functioning of 
ecosystems [4, 20, 39]. Considering potential interac-
tions when delineating core microbiotas may not only 
allow identifying moderate/low abundance taxa that may 

have important roles in the community but could also 
allow excluding taxa that are present in several locations 
but that may not have an important role for community 
function (e.g., dormant cells or cells being dispersed [8]). 
Here, we have delineated and analyzed the core micro-
biota of a coastal ecosystem-based on 10 years of occur-
rence data considering possible interactions.

To detect the core microbiota, we first identified the 
resident OTUs, that is, those that occur > 30% of the 
time (i.e., > 36 out of 120  months) over a decade. This 
threshold was selected as it allows for seasonal OTUs 
that would be present recurrently in at least one season. 

Table 6  Central OTUs

a Proportional to the resident microbiota

OTU Class Lowest rank taxonomy Relative
Abundance 
(%)a

Degree Betweenness
Centrality

Closeness
Centrality

Season

Hubs
en_00092 Mamiellophyceae Bathycoccus 0.51 42 0.04 0.42 Winter

en_00119 Dinophyceae – 0.41 50 0.03 0.42 Winter

bp_000037 Alphaproteobacteria Parvibaculales_OCS116 0.31 45 0.08 0.43 Winter

bp_000039 Gammaproteobacteria SUP05_cluster 0.28 29 0.12 0.41 Spring

bn_000039 Gammaproteobacteria SUP05_cluster 0.21 42 0.17 0.44 Spring

bn_000037 Alphaproteobacteria Parvibaculales_OCS116 0.20 40 0.05 0.42 Spring

bp_000059 Gammaproteobacteria SAR86 0.20 24 0.09 0.40 Spring

ep_00070 Cryptophyceae Cryptomonadales_X 0.13 40 0.04 0.42 Winter

bn_000059 Gammaproteobacteria SAR86 0.12 24 0.03 0.40 Spring

bn_000102 Alphaproteobacteria Nisaeaceae_OM75 0.09 26 0.03 0.38 Winter

bp_000193 Alphaproteobacteria – 0.06 37 0.03 0.40 Winter

bn_000170 Acidimicrobiia Sva0996_marine_group 0.06 59 0.06 0.44 Winter

bn_000226 Gammaproteobacteria HOC36 0.04 60 0.06 0.43 Winter

Connectors
bp_ 000001 Oxyphotobacteria Synechococcus (CC9902) 3.79 5 0.05 0.30 Autumn

bp_ 000002 Alphaproteobacteria SAR11 Clade_Ia 2.26 2 0.40 0.56 Spring

bp_ 000004 Alphaproteobacteria SAR11 Clade_Ia 2.02 3 0.15 0.63 NA

bp_ 000007 Alphaproteobacteria SAR11 Clade_Ia 1.38 3 0.60 0.71 NA

bp_ 000008 Alphaproteobacteria SAR11 Clade_Ia 1.15 3 0.15 0.63 NA

bn_ 000008 Alphaproteobacteria SAR11 Clade_Ia 0.68 5 0.03 0.27 Winter

en_ 00059 Chlorodendrophyceae Tetraselmis 0.66 4 0.05 0.26 Summer

bn_ 000020 Oxyphotobacteria – 0.56 3 0.60 0.67 Autumn

en_ 00161 Syndiniales Syndiniales-Group-I-Clade-4_X 0.42 4 0.80 0.75 Autumn

bn_ 000018 Oxyphotobacteria Prochlorococcus MIT9313 0.41 5 0.04 0.24 Winter

bn_ 000054 Alphaproteobacteria Puniceispirillales_SAR116 0.11 4 0.14 0.40 Autumn

bn_ 000062 Alphaproteobacteria Puniceispirillales_SAR116 0.08 3 0.55 0.50 Autumn

bn_ 000077 Rhodothermia Balneola 0.07 3 0.17 0.32 Summer

bn_ 000112 Gammaproteobacteria KI89A 0.06 4 0.53 0.48 Summer

bn_ 000156 Alphaproteobacteria Parvibaculales_PS1 0.05 4 0.14 0.40 Summer

bn_ 000281 Bacteroidia Sphingobacteriales_NS11-12 0.05 5 0.16 0.44 Autumn

bn_ 000221 Alphaproteobacteria Puniceispirillales_SAR116 0.04 5 0.05 0.30 Winter

ep_ 00269 Chrysophyceae Clade-I_X 0.04 2 1.00 1.00 Summer
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Analysis of the resident OTU dynamics indicated a clear 
seasonality (Fig.  1 C, D), and that the measured envi-
ronmental factors could explain ~ 37% of the resident 
microbiota variance. The main environmental drivers 
were temperature and daylength, which is consistent 
with previous works from the same time-series (BBMO) 
[33, 40, 41]. Even though comparisons to other studies 
need to be done with care as they probably use different 
techniques or analytical approaches, the main patterns 
are likely comparable. The values indicating the relative 
importance of temperature and daylength for commu-
nity dynamics at BBMO were lower than what has been 
reported for bacteria in the English Channel, where day-
length explains ~ 65% of community variance [17]. In 
turn, the amount of community variance explained by 
environmental variables at BBMO was slightly higher 
than what has been reported for entire communities at 
the San Pedro Ocean Time-series (SPOT; California, 
31%) [42] and substantially higher than analogous reports 
for the Service d’Observation du Laboratoire Arago 
(SOLA) station in the Mediterranean Sea, ~ 130 km from 
BBMO (7–12%) [43]. Daylength may be more impor-
tant in the English Channel as it has a more pronounced 
annual variation than at BBMO, whereas the measured 
differences could reflect a higher coupling of the resident 
OTUs with environmental variation in BBMO than in 
SOLA or SPOT. SOLA is characterized by the occasional 
winter storms that bring nutrients from the sediments to 
the water column as well as by the freshwater inputs from 
nearby rivers during flash floods [44], and this could par-
tially explain the differences with BBMO. The importance 
of daylength and temperature for community dynam-
ics was reflected by niche analyses, which identified two 
main niches associated with summer and winter at the 
BBMO, to which ~ 50% of the resident OTUs were associ-
ated (Fig. 1E, F). Other resident OTUs likely have spring 
and fall niches as indicated by Fig. 1C, D, yet these niches 
cannot be detected with the used null model analysis, 
as their preferred temperatures or daylengths will not 
depart significantly from the randomized mean.

Based on the resident OTUs, we built networks to 
define the core microbiota. We identified a total of 259 
core OTUs (182 bacteria and 77 protists) that repre-
sented ~ 36% of the OTUs and 64% of the abundance of 
the resident microbiota and that showed seasonal varia-
tion. The core microbiota displayed similar community 
patterns to the resident microbiota as well as similar 
associations with environmental heterogeneity (Addi-
tional file 11: Figure S10), indicating that the variation of 
both microbiotas is highly correlated. The fact that the 
core microbiota is substantially smaller than the resi-
dent counterpart and the total OTU dataset (~ 9% of the 
OTUs, but 54% of their abundance; Table 1) is consistent 

with a predominance of weak interactions in ecological 
networks [45–47]. Weak interactions were not consid-
ered in our core definition due to limitations to detect 
them when using correlation analyses based on meta-
barcoding data—it is highly challenging to disentangle 
important from unimportant weak associations. We 
could only find supporting evidence from the literature 
(PIDA database) [21] for 85 associations of the core (6%), 
indicating that most of them still need to be validated 
with direct observation or experimentally. This is not 
surprising, as the most studied hosts in PIDA are pro-
tists from the microplankton (> 20  µm cell size), which 
are mostly absent from our pico- and nanoplankton 
networks. Also, PIDA does not cover Bacteria-Bacteria 
associations. Nevertheless, the detected core OTUs from 
BBMO represent a fraction of the core microbiota at this 
site, since larger microbial size fractions were not sam-
pled. Including these larger size fractions would expand 
the composition of the core and could unveil additional 
patterns. For example, in a global ocean network includ-
ing size fractions of > 20 µm in cell size, protists or small 
multicellular eukaryotes dominated the interactome [26]. 
As mentioned, our definition of core microbiota does not 
consider weak interactions, although these are crucial for 
community stability and persistence [45, 46, 48–50].

One type of weak interaction is predator–prey rela-
tions where the predator can switch between a primary 
prey and a secondary source of resources, resulting in 
oscillatory consumer-resource interactions that show 
up as weak interaction in association networks. In the 
same manner, symbionts and parasites able to switch 
host would also appear as weak associations in networks. 
Networks with at least some weak interactions are less 
susceptible to destabilizing cascading effects in case of 
resource depletion or if one of the interactors is elimi-
nated from the community [45, 49]. Future studies should 
determine how to incorporate key weak interactions in 
the core microbiota when using metabarcoding data.

Alpha-/Gammaproteobacteria, Bateroidia, Acidimicro-
biia were the main bacterial groups in the core, includ-
ing also common marine taxa, such as Synechococcus 
or SAR11. The main protists in the core included Synd-
iniales (parasites), Dinoflagellates, Mammiellales (Mic-
romonas and Bathycoccus), and diatoms. These taxa are 
likely the most important in sustaining ecosystem func-
tion at BBMO, and probably have similar importance in 
other coastal areas. Other studies have reported impor-
tant roles in marine association networks for SAR11 and 
Synechococcus [30, 51]. Syndiniales, Haptophytes, and 
Dinoflagellates dominated networks in terms of number 
of nodes and edges at SPOT, while Mamiellales (Mic-
romonas & Bathycoccus) and diatoms also had relevant 
roles [42]. Syndiniales, Dinoflagellates, and Diatoms were 
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also predominant in global ocean networks, which is 
coherent with our results [26].

Bacteria-Bacteria associations were the most abundant 
(54%) in the core BBMO microbiota, followed by Bacte-
ria-Protists (31%) and Protist-Protist (11%) associations. 
Associations tended to occur among bacteria or pro-
tists, rather than between them, in the English Channel 
time-series [17]. However, the study used microscopy to 
determine protist community composition, while it used 
16S-rRNA gene data for analyzing bacterial communi-
ties and this might explain the limited number of con-
nections between protists and bacteria, as these datasets 
are different and have different degrees of taxonomic 
resolution. Most associations occurred among protists 
in a global-ocean network that included a broad range 
of microbial size-fractions [26]. This suggests that time-
series analyses including larger size-fractions may deter-
mine a higher proportion of associations among protists, 
which may turn out to be prevalent.

The core network had “small world”, scale-free, prop-
erties (that is, high clustering coefficient and relatively 
short path lengths) [37] when compared to randomized 
networks (Table  3) or particular subnetworks from size 
fractions or specific seasons (Table  5). The small-world 
topology is characteristic of many different types of 
networks [52], including marine microbial temporal or 
spatial networks [23, 26, 29, 30]. Some of our network 
statistics were similar to those obtained at SPOT [23, 29], 
in particular the averages of degree, clustering coefficient, 
and path length (Table 3). Furthermore, the BBMO net-
work had an average path length similar to a global ocean 
network [26] and also, similarly to this network, the node 
degree of the BBMO core members was independent of 
their relative abundances, showing that the associations 
between core OTUs were not merely a consequence of 
their abundances.

The BBMO core network had a clustering coeffi-
cient that was substantially larger than that of Erdős–
Rényi and scale-free random networks of the same size 
(Table 3), which agrees with what was observed at SPOT 
[23, 29]. The large proportion of positive associations in 
BBMO networks (~ 95%) was in agreement with results 
from other temporal [23, 42] or large-scale spatial [26] 
microbiota analyses, where positive associations were 
also predominant (~ 70–98%), although these values 
include taxa that are not necessarily part of the core. 
This suggests that interactions such as syntrophy or sym-
biotic associations are more important than competi-
tion in marine microbial systems and that these types of 
associations may underpin marine ecosystem function. 
These findings are also coherent with a recent large-scale 
literature survey that found that ~ 47% of the validated 
associations between protists and bacteria are symbiotic 

[21]. Nevertheless, it is also possible that common sam-
pling strategies and methodological approaches do not 
detect a substantial fraction of negative associations. For 
example, while positive correlations in taxa abundance 
pointing to positive interactions may be easier to detect, 
negative associations may be missed due to plummeting 
species abundances that would prevent establishing sig-
nificant correlations, or to a delay between the increase 
and decrease in abundance of interacting taxa that are 
not synchronized with sampling time. The sampling fre-
quency of once per month can bias our results towards 
associations that are persistent or slowly unfolding like 
obligatory symbiosis, and away from rapid and transient 
associations. This might also explain why our networks 
have more positive than negative associations since some 
of these are thought to have a more immediate effect, for 
instance cross-feeding and the effect of toxins and oxy-
gen-depletion [25]. Future studies adapting the sampling 
scheme to the timing of interactions (e.g., daily or weekly 
sampling) and the use of other approaches apart from 
taxa abundances, such as analyses of single-cell genomic 
data to determine protistan predation, or controlled 
experiments, will likely generate new insights on negative 
microbial interactions.

The relatively high clustering coefficient of the core 
network (compared to random networks) and the short 
path length indicate that most OTUs are connected 
through < 3 intermediary OTUs. It has been shown that a 
large proportion of strong positive associations, as in the 
BBMO core network, may destabilize communities due to 
positive feedbacks between species [53]. When a species 
decreases in abundance as a response to environmental 
variation, it may pull others with it, generating a cascade 
effect propagated by the many positive associations in 
the network. Accordingly, the change of abundance in 
specific OTUs in one section of the network could affect 
OTUs in other network sections not necessarily affected 
directly by the environmental variation. This cascade 
effect may help to explain a paradox: environmental vari-
ables affect the structure of marine microbial commu-
nities and consequently association networks. Yet, our 
and others’ results [17, 18, 23, 26, 29–31] have reported 
a limited number of associations between environmen-
tal variables and network nodes (OTUs). Environmental 
heterogeneity might affect network structure by acting 
on a small subset of nodes (OTUs), which would then 
influence other nodes through cascading interactions 
facilitated by the highly interconnected nature of the net-
works as well as positive feedbacks promoted by the high 
proportion of positive associations [53].

If OTUs susceptible to environmental variation are also 
highly connected, then their effect on the entire network 
structure may be larger. In line with this, we found that 
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the connectivity of OTUs associated with environmental 
variables at BBMO (49 OTUs out of 259; Additional file 1: 
Table S9) had a mean degree of ~ 25 (SD ~ 14), while for 
all the 259 OTUs of the core network, the mean degree 
was ~ 11 (SD ~ 13). The seasonal dynamics of the BBMO 
microbiota may partially be driven by a subset of OTUs 
that vary with environmental factors (e.g., temperature, 
daylength). These may exert a destabilizing influence over 
the entire community over time, promoting the annual 
turnover of communities and networks.

Most core OTUs (98%) showed a clear preference 
for one season. Interestingly, the distribution of core 
OTUs among the seasons was uneven, with 61% of 
these OTUs showing a winter preference. Network con-
nectivity at BBMO was correspondingly heterogeneous 
between seasons, peaking in winter and remaining low 
in the other seasons. Specifically, the winter subnet-
work included ~ 92% of the seasonal edges. This indi-
cates that winter associations are not only specific (i.e., 
they do not tend to change partners), but they also have 
a relatively high recurrence (otherwise, winter networks 
would be smaller). A higher similarity between winter-
autumn communities when compared to other seasons 
was indicated by our ordination analyses of the resident 
OTUs (Fig. 1), and is in line with results from studies of 
the entire protist community at BBMO [33] or the whole 
community at SPOT [23].

The structure of communities is determined by the 
interplay of selection, dispersal, speciation, and eco-
logical drift [54]. Our results suggest that selection, a 
deterministic process, is stronger in periods of lower 
temperatures and shorter days (winter and autumn), 
leading to sub-communities that tend to be more simi-
lar between each other than to communities from peri-
ods of higher temperatures and longer days (spring and 
summer) [betadisper, ANOVA & Tukey’s HSD p < 0.05]. 
Given that we have taken steps to remove edges associ-
ated with the measured environmental variables, we 
do not expect that the identified edges between winter 
OTUs represent selection associated with these vari-
ables (e.g., low temperature). Consequently, winter edges 
may represent associations linked to unmeasured vari-
ables or ecological interactions that may be more likely 
to develop during winter due to stronger environmental 
selection. Due to weaker selection in summer and spring, 
species occurrence would display less recurrent (or more 
random) patterns, preventing specific associations to be 
formed. This also suggests that ecological redundancy 
changes over time and is lower in winter-autumn com-
pared to the other seasons (even though the number of 
OTUs is larger in winter). A reduction in redundancy 
may also promote many strong ecological interactions in 
winter.

The existence of subsets of species that interact more 
often between themselves than with other species (mod-
ules), is characteristic of biological networks and can 
contribute to overall network stability [55, 56]. Modules 
can represent divergent selection, niches, the clustering 
of evolutionary closely related species, or co-evolution-
ary units [57, 58]. Modules in the core BBMO network 
(total 12) included positive associations between diverse 
taxa, and could represent divergent selection, driven by 
unmeasured environmental variables, or examples of 
syntrophic or symbiotic interactions between microbes 
from different taxonomic groups.

Most BBMO modules included diverse lifestyles (het-
erotrophs, mixotrophs, phototrophs, parasites), similar 
to what has been observed at SPOT [42]. Yet, several 
modules appeared to be predominantly heterotrophic or 
autotrophic (Additional file 1: Table  S8). Some modules 
included OTUs from the same species, such as Module 
4 of the picoplankton, which included several SAR11 
Clade I OTUs, and Module 7 of the nanoplankton, which 
included several Synechococcus OTUs. The presence of 
different OTUs from the same species in these modules 
could represent undetected sequencing or amplification 
errors that passed our stringent quality controls. Alterna-
tively, these modules could reflect similar niches, associ-
ated with unmeasured variables, or the dependence on 
metabolites produced by other organisms (auxotrophy). 
There is evidence of auxotrophy for both SAR11 (e.g. 
thiamin, glycine) [59–61] and Synechococcus (e.g. cobala-
min) [62]. Recently it has been observed in co-culture 
experiments that Prochlorococcus may fulfill some meta-
bolic requirements of SAR11, promoting the growth of 
the latter in a commensal relationship [63]. In our analy-
ses of the BBMO core microbiota, we did not find strong 
associations between SAR11 and Prochlorococcus or 
the more abundant relative, Synechococcus. Yet, SAR11 
formed strong associations with a plethora of taxa with 
which could potentially have commensal relationships.

The overall importance of the observed modules 
was indicated by the total abundance of their constitu-
ent OTUs (24% of the reads compared to the resident 
microbiota). Most of the modules at BBMO were asso-
ciated with a single season, suggesting that they reflect 
seasonal niches. Since these modules were inferred 
over 10  years, they represent recurrent network fea-
tures. Chafee et al. [64] also identified season-specific 
modules in a 2-year time series in the North Sea (Hel-
goland), including samples taken weekly or bi-weekly. 
These modules were much larger than ours, and they 
may also include environmentally-driven edges. Nev-
ertheless, the Helgoland modules seem to be driven by 
eutrophic (spring & summer) vs. oligotrophic (autumn 
& winter) conditions in this location. In contrast, the 



Page 18 of 24Krabberød et al. Environmental Microbiome           (2022) 17:22 

BBMO modules, displayed weaker correlations with 
nutrients and seem to be influenced by temperature 
and daylength (Fig.  5). Differences in the sampling 
scheme between Helgoland and BBMO ((bi)weekly 
vs. monthly) as well as between both locations (differ-
ent seas and latitudes, affecting temperature and day-
length) may explain these differences.

Keystone species have a high influence on ecosys-
tems relative to their abundance [65]. Network analy-
ses may help to identify them [24, 66], yet, there is no 
clear consensus of what network features are the best 
unequivocal indicator of keystone species [67–69]. 
Therefore, we focused on identifying central OTUs 
(hubs or connectors) that may be important for eco-
system function [22, 24] and could represent keystone 
species. We identified 13 hubs in the BBMO core 
network with moderate-low abundances (< 1%) and 
high degree (26–60) that were associated with win-
ter or spring. These moderate-low abundance OTUs 
may affect nutrient cycling directly [70] or indirectly, 
by affecting other OTUs with higher abundance. The 
putative stronger selection exerted by low tempera-
tures and short daylengths during winter and early 
spring, as compared to summer and autumn, may lead 
to a higher species recurrence [33], larger networks, 
and possibly, more hubs. An OTU of the abundant 
picoalgae Bathycoccus (en_00092) was identified as a 
winter hub, which is consistent with reported Bathy-
coccus abundance peaks in late winter (February–
March) in both BBMO [71] and the nearby station 
SOLA [43]. This Bathycoccus hub may be associated 
with diverse taxa, such as prokaryotes that may benefit 
from algal exudates [72] or even via mixotrophy [73]. 
In agreement with this, out of the 42 associations of 
this hub OTU, 25 were with bacteria and the rest with 
protists.

In contrast to hubs, connector OTUs were predomi-
nantly associated with warmer waters, that is, summer 
and early autumn, and may represent transitions in 
community states. This was consistent with the associa-
tions observed in an abundant Synechococcus connector 
OTU (bp_000001, Table 6). This OTU was predominant 
in summer-autumn, in agreement with previous BBMO 
reports [35, 74], but it was associated with other OTUs 
from spring (negative association with bp_000017), 
winter (negative association with bp_000039), sum-
mer (positive association with bp_000087, bp_000012) 
and autumn (positive association with bp_000022), 
thus holding a central position in the network. Another 
abundant spring connector OTU (SAR11 Clade Ia, 
bp_000002), featured only two connections to spring 
(positive association with bp_000007) and summer 
(positive association with bp_000046) OTUs.

Conclusion
Our decade-long analysis of the dynamics of a micro-
biota populating a time-series in the Mediterranean Sea 
allowed us to determine the interconnected core micro-
biota, which likely includes several microbes that are 
important for the functioning of this coastal ecosystem. 
We found a relatively small core microbiota that dis-
played seasonal variation, with a heterogeneous distri-
bution of associations over different seasons, indicating 
different degrees of recurrence and selection strength 
over the year. Future analyses of other core marine micro-
biotas will determine how universal are the patterns 
found in BBMO. These studies will be crucial to deter-
mine the potential long-term effects of climate change on 
the architecture of the interaction networks that under-
pin the functioning of the ocean ecosystem.

Methods
Study site and sampling
Surface water (~ 1  m depth) was sampled monthly 
from January 2004 to December 2013 at the Blanes Bay 
Microbial Observatory (BBMO; http://​bbmo.​icm.​csic.​
es) in the Northwestern Mediterranean Sea (41º40’N, 
2º48’E) [Fig.  1A]. The BBMO is an oligotrophic coastal 
site ~ 1  km offshore with ~ 20  m depth and with limited 
riverine or human influence [35]. Seawater was pre-fil-
tered with a 200  µm nylon mesh and then transported 
to the laboratory in 20 L plastic carboys and processed 
within 2  h. Microbial plankton from about 6 L of the 
pre-filtered seawater was separated into two size frac-
tions: picoplankton (0.2–3  µm) and nanoplankton frac-
tion (3–20  µm). To achieve this, the seawater was first 
filtered through a 20  µm nylon mesh using a peristaltic 
pump. Then, the nanoplankton (3–20 µm) was captured 
on a 3 µm pore-size polycarbonate filter. Subsequently, a 
0.2 µm pore-size Sterivex unit (Millipore, Durapore) was 
used to capture the picoplankton (0.2–3  µm). Sterivex 
units and 3  µm filters were stored at -80 ºC until fur-
ther processed. The sequential filtering process aimed 
to capture free-living bacteria and picoeukaryotes in the 
0.2–3 µm size fraction (picoplankton), and particle/pro-
tist-attached bacteria or nanoeukaryotes in the 3–20 µm 
fraction (nanoplankton). The 3 µm filter was replaced if 
clogging was detected; DNA from all 3  µm filters from 
the same sample was extracted together.

A total of 15 contextual abiotic and biotic variables 
were considered for each sampling point: Daylength 
(hours of light), Temperature (°C), Turbidity (estimated 
as Secchi disk depth [m]), Salinity, Total Chlorophyll 
a [Chla] (μg/l), PO4

3− (μM), NH4
+ (μM), NO2

− (μM), 
NO3

− (μM), SiO2 (μM), abundances of Heterotrophic 
prokaryotes [HP] (cells/ml), Synechococcus (cells/ml), 

http://bbmo.icm.csic.es
http://bbmo.icm.csic.es
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Total photosynthetic nanoflagellates [PNF; 2-5  µm size] 
(cells/ml), small PNF (2 µm; cells/ml) and, Heterotrophic 
nanoflagellates [HNF] (cells/ml) [Fig. 1B]. Water temper-
ature and salinity were sampled in situ with a SAIV A/S 
SD204 CTD. Inorganic nutrients (NO3

−, NO2
−, NH4

+, 
PO4

3−, SiO2) were measured using an Alliance Evolu-
tion II autoanalyzer [75]. Cell counts were done by flow 
cytometry (heterotrophic prokaryotes, Synechococcus) or 
epifluorescence microscopy (PNF, small PNF, and HNF). 
See Gasol et  al. [35] for specific details on how other 
variables were measured. Environmental variables were 
z-score standardized before running statistical analysis.

DNA extraction, sequencing, and metabarcoding
DNA was extracted from the filters using a standard phe-
nol–chloroform protocol [76], purified in Amicon Units 
(Millipore), and quantified and qualitatively checked with 
a NanoDrop 1000 Spectrophotometer (Thermo Fisher 
Scientific). Eukaryotic PCR amplicons were generated 
for the V4 region of the 18S rDNA (~ 380 bp), using the 
primer pair TAReukFWD1 and TAReukREV3 [77]. The 
primers Bakt_341F [78] and Bakt_806RB [79] were used 
to amplify the V4 region of the 16S rDNA. PCR ampli-
fication and amplicon sequencing were carried out at 
the Research and Testing Laboratory (http://​rtlge​nom-
ics.​com/) on the Illumina MiSeq platform (2 × 250  bp 
paired-end sequencing). DNA sequences are publicly 
available at the European Nucleotide Archive (http://​
www.​ebi.​ac.​uk/​ena; accession numbers PRJEB23788 for 
18S rRNA genes & PRJEB38773 for 16S rRNA genes). 
Metadata, ASV tables, and network files are available at: 
https://​github.​com/​ramal​ok/​BBMO.​krabb​erod.​etal.

A total of 29,952,108 and 16,940,406 paired-end Illu-
mina reads were produced for microbial eukaryotes and 
prokaryotes respectively. Adapters and primers were 
removed with Cutadapt v1.16 [80]. DADA2 v1.10.1 [81] 
was used for quality control, trimming, and inference 
of Operational Taxonomic Units (OTUs) as Amplicon 
Sequence Variants (ASVs). For both microbial eukary-
otes and prokaryotes, the Maximum number of expected 
errors (MaxEE) was set to 2 and 4 for the forward and 
reverse reads respectively. No ambiguous bases (Ns) were 
allowed. Microbial eukaryotic sequences were trimmed 
to 220 bp (forward) and 190 bp (reverse), while prokar-
yotic sequences were trimmed to 225  bp (both forward 
and reverse reads). A total of 28,876 and 19,604 OTUs 
were inferred for microbial eukaryotes and prokaryotes 
respectively.

OTUs were assigned taxonomy using the naïve Bayes-
ian classifier method [82] together with the SILVA ver-
sion 132 [83] database as implemented in DADA2. 
Eukaryotic OTUs were also searched against the Pro-
tist Ribosomal Reference database (PR2, version 4.10.0; 

[84]) using BLAST [85]. When the taxonomic assign-
ments for the eukaryotes disagreed between SILVA and 
PR2, the conflict was resolved manually by inspecting a 
pairwise alignment of the OTU and the closest hits from 
the two databases. OTUs assigned to Metazoa, Strepto-
phyta, nucleomorph, chloroplast, and mitochondria were 
removed before further analysis. Archaea were removed 
from downstream analyses as the used primers are not 
optimal for recovering this domain [86].

Each sample (corresponding to a specific gene, size 
fraction, and timepoint) was subsampled with the rrar-
efy function from the R package Vegan v2.5 [87] to 4907 
reads, corresponding to the number of reads in the sam-
ple with the lowest sequencing depth, to normalize for 
different sequencing depth between samples. OTUs pre-
sent in < 10% of the samples were removed. After quality 
control and rarefaction, the number of OTUs was 2926 
(1561 bacteria, and 1365 microeukaryotes; Table 1).

Due to a suboptimal sequencing of the amplicons, we 
did not use nanoplankton samples of bacteria and pro-
tists from the period May 2010 to July 2012 (27 sam-
ples) as well as March 2004 and February 2005 (total 
29 nanoplankton samples). OTU read abundances for 
samples with missing values were estimated using sea-
sonally aware missing value imputation by weighted 
moving average for time series as implemented in the 
R package imputeTS v2.7 [88]. The imputed values did 
not introduce biases in the community patterns. Resi-
dent and core OTUs originating from both pico- and 
nanoplankton samples, with or without imputed values 
did not display differences (ANOSIM, p > 0.05). In addi-
tion, the betadispersion of these two groups (imputed 
vs. non-imputed) did not display significant differences 
(permutest p > 0.05) (Additional file  12: Figure S11). We 
also tested the imputed vs. the non-imputed nanoplank-
ton abundances from the resident and core microbiotas 
and we did not find significant differences between these 
groups (ANOSIM, p > 0.05).

It is expected that some OTUs appear in different size 
fractions depending on whether they are attached to 
larger particles or not (mostly bacteria) or depending 
on cell size (mostly protists). Yet, cell/particle dislodging 
or filter clogging during the sequential filtration process 
may affect the taxonomic diversity observed in the differ-
ent size fractions, with nanoplankton DNA leaking into 
the picoplankton fraction, or picoplankton DNA getting 
stuck in the nanoplankton fraction. This can also lead to 
the same OTUs appearing in different size fractions. To 
minimize the effects of cell/particle dislodging or filter 
clogging on the diversity recovered from the different size 
fractions, we calculated the sequence-abundance ratio for 
OTUs appearing in both pico- and nano-plankton frac-
tions. When the ratio exceeded 2:1, we removed the OTU 

http://rtlgenomics.com/
http://rtlgenomics.com/
http://www.ebi.ac.uk/ena
http://www.ebi.ac.uk/ena
https://github.com/ramalok/BBMO.krabberod.etal
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from the size fraction with the lowest number of reads. 
This removal could theoretically bias the results towards 
non-physical associations, for instance by removing bac-
teria that could be free living but also attached to pro-
tists. However, preventing bias due to leakage of DNA 
or clogged filters was considered more important. After 
subsampling and filtering, the OTU tables were joined 
for each time point, and since the samples had been sub-
sampled to the same sequencing depth, we calculated 
the relative read abundance for the OTUs for each year 
and aggregated over the corresponding months along the 
10 years for the resident microbiota. This means that the 
relative abundance for both domains and size fractions 
sums up to 1 for each month across ten years.

Resident microbiota
We defined ad hoc the resident microbiota as the set of 
OTUs present in > 30% of the samples over 10 years (that 
is, present in > 36  months, not necessarily consecutive). 
This value was chosen as it allows for seasonal OTUs, 
which may only be present 3–4  months each year, and 
still be considered as part of the resident microbiota. As 
expected, the occurrence of most resident OTUs was 
above 36  months (Additional file  13: Figure S12). Only 
two OTUs (bn_000846 and bn_000692) out of 709 pre-
sent in 25 and 27  months respectively were kept in the 
resident microbiota given that their presence or absence 
appeared to be influenced by the missing value imputa-
tion approach as implemented in imputeTS (Additional 
file  13: Figure S12). The residents included 355 eukary-
otic and 354 bacterial OTUs (Table  1) and excluded a 
substantial amount of rare OTUs, which can cause spu-
rious correlations during network construction due to 
sparsity [i.e. too many zeros] [22]. The relative abundance 
of the taxonomic groups included in the resident micro-
biota was fairly stable from year to year (Fig. 3).

Environmental variation and resident OTUs
All possible correlations among the measured environ-
mental variables and resident OTU richness and abun-
dance were computed in R (v4.0.0) and plotted with the 
package corrplot v0.89. Only significant Pearson cor-
relation coefficients were considered (p < 0.01), and the 
p values were corrected for multiple inference (Holm’s 
method) using the function rcorr.adjust from the R pack-
age RcmdrMisc v2.7–1. Unconstrained ordination analy-
ses were carried out using NMDS based on Bray Curtis 
dissimilarities between samples including resident or 
core OTUs only. Environmental variables were fitted to 
the NMDS using the function envfit from the R package 
Vegan v2.5 [87]. Only variables displaying a significant 
correlation (p < 0.05) were considered. Constrained ordi-
nation was performed using distance-based redundancy 

analyses (dbRDA) in Vegan v2.5, considering Bray Curtis 
dissimilarities between samples including resident OTUs 
only. The most relevant variables for constrained ordina-
tion were selected by stepwise model selection using 200 
permutations, as implemented in ordistep (Vegan v2.5). 
dbRDA axes 1 to 7 were significant (p < 0.001), with axes 
1 and 2 explaining ca. 80% of the variance (Additional 
file 14: Figure S13). Ordinations were plotted using the R 
package ggplot2 v3.3.4 and ggord v1.0.0. The amount of 
community variance explained by the different environ-
mental variables was calculated with Adonis (Vegan v2.5) 
using 999 permutations, with environmental variables 
added sequentially. Adjusted R2 values were calculated 
with the Vegan v2.5 function varpart. Resident OTUs 
displaying niche preference in terms of Temperature and 
Daylength, the most important environmental variables, 
were determined using the function niche.val from the R 
package EcolUtils with 1000 permutations.

Delineation of seasons
Seasons were defined following Gasol et  al. [35] with a 
small modification: months with water temperature (at 
the sampling time) > 17 °C and daylength > 14 h d−1 were 
considered to be summer. Months with water tempera-
ture < 17 °C and < 11 h d−1 of daylength were considered 
to be winter. Months with water temperature > 17 °C and 
daylength < 14  h d−1 were considered as autumn, while 
months with water temperature < 17  °C and > 11  h d−1 
of daylength were considered to be spring. The indica-
tor value [89] was calculated using the R package labdsv 
v2.0 [90] to infer OTU seasonal preference. The function 
betadisper (Vegan v2.5) was used to compare the variance 
of community composition within each season.

Core microbiota delineated using networks
The OTU table together with the 15 environmental vari-
ables was used to construct association networks using 
extended Local Similarity Analysis (eLSA) [91–93]. eLSA 
assumes that raw data are normally distributed but this 
may not be the case, and a F-transform normalization is 
applied to accommodate nonlinear associations before 
LS score calculations [93]. Thus, associations determined 
with this approach may represent average linear asso-
ciations, neglecting extreme non-linear dynamics. eLSA 
was run on the OTU table with subsampled reads and 
a z-score transformation using the median and median 
absolute deviation. p value estimations were run under 
a mixed model that performs a random permutation test 
of a co-occurrence only if the theoretical p values for the 
comparison are < 0.05. Bonferroni correction was calcu-
lated for all edges based on the p values using the p.adjust 
package in R.
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To detect environmentally-driven associations between 
OTUs induced by the measured environmental vari-
ables we used the program EnDED (beta version) [32]. 
Environmentally-driven associations indicate similar or 
different environmental preferences between OTUs and 
not ecological interactions. In short, EnDED evaluates 
associations between two OTUs that are both connected 
to the same environmental variable based on a combi-
nation of four methods: Sign Pattern, Overlap, Interac-
tion Information, and Data Processing Inequality. These 
methods use the sign (positive or negative) and the dura-
tion of the association, the relative abundance of OTUs 
as well as environmental parameters to determine if an 
association is environmentally-driven. If the four meth-
ods agreed that an association was environmentally-
driven, then it was removed from the network. The initial 
number of edges was 199,937, of which 180,345 were 
OTU-OTU edges that were at least in one triplet with an 
environmental parameter. In total 65,280 (~ 33%) edges 
in the network were identified as indirect by EnDED and 
removed. Afterward, only edges representing the strong-
est associations (that is, absolute local similarity score 
|LS| > 0.7, Spearman correlation |ρ| > 0.7, and Bonferroni 
adjusted p < 0.001) were retained for downstream analy-
sis and are hereafter referred to as “core associations”. 
The cut-off of 0.7 for considering a Local Similarity score 
as high was based on Gilbert et al. [17]. Low adjusted p 
value thresholds were used following suggestions from 
previous work [36] to minimize the probability of edges 
generated by chance. Those OTUs participating in core 
associations were defined as core OTUs, although their 
involvement in ecological interactions needs further 
experimental validation. Both core associations and core 
OTUs constitute the “core network”, which also rep-
resents the core microbiota (both “core network” and 
“core microbiota” are used indistinctively). We generated 
randomized networks of the same size as the core net-
work using the Erdős–Rényi [94], Watts-Strogatz (“small 
world”) [37], and Barabasi-Albert (scale-free) [95] models 
in the R package igraph v1.2.5 [96].

For the core network, we calculated: (1) Density: quan-
tifies the proportion of actual network connections out 
of the total number of possible connections, (2) Tran-
sitivity or Clustering coefficient: measures the probabil-
ity that nodes connected to a node are also connected, 
forming tight clusters, (3) Average path length: mean 
number of steps (edges) along the shortest paths for all 
possible pairs of nodes in the network (a low average 
path length indicates that most species in the network 
are connected through a few intermediate species), (4) 
Degree: number of associations per node, 5) Betweenness 
centrality: measures how often an OTU (node) appears 

on the shortest paths between other OTUs in the net-
work, (6) Closeness centrality: indicates how close a node 
is to all other nodes in a network, (7) Cliques: refers to 
sets of interconnected nodes where all possible connec-
tions are realized, (8) Modularity: measures the division 
of a given network into modules (that is, groups of OTUs 
that are highly interconnected between themselves).

The Degree, Betweenness centrality, and Closeness 
centrality were used to identify central OTUs using ad 
hoc definitions. “Hub” OTUs were those with a score 
above the average for the three statistics and were nor-
mally among the top 25% in each score [22, 69, 97]. Spe-
cifically, hub OTUs featured a degree > 24, Betweenness 
centrality > 0.03, and Closeness centrality > 0.3. Similarly, 
“connector” OTUs were defined as those featuring a rela-
tively low degree and high centrality and could be seen 
as elements that connect different regions of a network 
or modules [57]. Connector OTUs featured a degree < 5, 
Betweenness centrality > 0.03 and Closeness central-
ity > 0.2. Network statistics were calculated with igraph in 
R [96], Gephi [98], and Cytoscape v3.6.1 [99]. Visualiza-
tions were made in Cytoscape v3.6.1. Modules in the core 
network were identified with MCODE [100].
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in the core network.
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ficient in the core network.
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values in the core network.
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Additional file 9: Figure S8. Distribution of the Closeness centrality 
values in the core network.

Additional file 10: Figure S9. Distribution of the Clustering coefficient 
values in the core network.

Additional file 11: Figure S10. Panels A and B: NMDS based on Bray 
Curtis dissimilarities of communities including resident (Panel A) and 
core (Panel B) OTUs, to which environmental variables were fitted. Only 
variables with a significant fit are shown (p < 0.05). Arrows indicate the 
direction of the gradient, and their length represents the strength of the 
correlation between OTUs and an environmental variable. The color of 
the samples (circles) indicates the season to which they belong. Panel 
C: Relationship between Bray Curtis distances of the resident and core 
microbiotas. Results of the Mantel test (coefficient and significance 
indicated in the figure) indicate that both distance matrices are highly and 
significantly correlated.

Additional file 12: Figure S11. Betadispersion analyses based on Bray–
Curtis dissimilarities for resident (upper panel) and core (lower panel) 
OTUs originating from both pico- and nanoplankton samples, with or 
without imputed values as implemented in imputeTS. These two groups 
(imputed vs. non-imputed) did not display significant differences (permut-
est p > 0.05) in their betadispersion. The red triangles indicate samples 
without imputed values, while black circles indicate those including 
imputed values. Samples including resident or core OTUs with or without 
imputed values are also shown in the boxplots on the right.

Additional file 13: Figure S12. Occurrence of resident OTUs in number 
of months as a function of their total abundance in number of reads. The 
red line indicates the 36-month occurrence threshold for resident OTUs. 
Only two OTUs (bn_000846 and bn_000692) out of 709 present in 25 and 
27 months respectively were kept in the resident microbiota given that 
their presence or absence appeared to be influenced by the missing value 
imputation approach as implemented in imputeTS.

Additional file 14: Figure S13. Significant dbRDA axes (p < 0.01) and the 
amount of variance explained by each. Note that the first two dbRDA axes 
explain ca. 80% of the variance.
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