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METHODOLOGY

Accurate prediction 
of metagenome‑assembled genome 
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model built on alignment‑free intra‑bin 
statistics
Gleb Goussarov1,2, Jürgen Claesen1,3, Mohamed Mysara1, Ilse Cleenwerck2, Natalie Leys1, 
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Abstract 

Background:  Although the total number of microbial taxa on Earth is under debate, it is clear that only a small frac-
tion of these has been cultivated and validly named. Evidently, the inability to culture most bacteria outside of very 
specific conditions severely limits their characterization and further studies. In the last decade, a major part of the 
solution to this problem has been the use of metagenome sequencing, whereby the DNA of an entire microbial com-
munity is sequenced, followed by the in silico reconstruction of genomes of its novel component species. The large 
discrepancy between the number of sequenced type strain genomes (around 12,000) and total microbial diversity 
(106–1012 species) directs these efforts to de novo assembly and binning. Unfortunately, these steps are error-prone 
and as such, the results have to be intensely scrutinized to avoid publishing incomplete and low-quality genomes.

Results:  We developed MAGISTA (metagenome-assembled genome intra-bin statistics assessment), a novel 
approach to assess metagenome-assembled genome quality that tackles some of the often-neglected drawbacks of 
current reference gene-based methods. MAGISTA is based on alignment-free distance distributions between con-
tig fragments within metagenomic bins, rather than a set of reference genes. For proper training, a highly complex 
genomic DNA mock community was needed and constructed by pooling genomic DNA of 227 bacterial strains, 
specifically selected to obtain a wide variety representing the major phylogenetic lineages of cultivable bacteria.

Conclusions:  MAGISTA achieved a 20% reduction in root-mean-square error in comparison to the marker gene 
approach when tested on publicly available mock metagenomes. Furthermore, our highly complex genomic DNA 
mock community is a very valuable tool for benchmarking (new) metagenome analysis methods.
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Background
In recent years, the importance of metagenome research 
has come to light, as it has the ability to assess a bacte-
rial gene pool and uncover novel bacterial genomes that 
cannot be grasped by current laboratory culturing tech-
niques [1, 2] or that originate from poorly understood 
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environments, as shown in the Tara Oceans [3] and Tara 
Pacific [4] studies on marine environments. Such data is 
critical to expand our understanding of microbial diver-
sity on Earth, which is estimated to range from 106 [5] to 
1012 [6] species, of which only a small fraction (approxi-
mately 20,000) has been validly named, with roughly 60% 
having a genome-sequenced type strain [7]. The abil-
ity to sequence all microbial genomes within an envi-
ronmental sample, which is provided by metagenome 
sequencing, is therefore key to a better understanding of 
microbiomes. As metagenome sequencing data consists 
of DNA sequence fragments from multiple species and 
strains, often numbering in the thousands and from dif-
ferent domains of life, the main challenge in this type of 
analysis is to properly determine the true origin of each 
DNA sequence fragment. A reference-based approach, 
implemented by a variety of tools [8], can be used for 
well-known environments, such as the human microbi-
ome. However, even if the high computational costs—
in both memory and time—associated with alignment 
are ignored, the quality of the resulting metagenome-
assembled genomes (MAGs) heavily depends on the 
quality of the reference, which includes the accuracy of 
genome sequence and its annotation in publicly available 
sequence databases. The alternative to reference-based 
approaches is de novo reconstruction of MAGs, which 
typically requires reads to be assembled into contigs, 
then grouped together into single-taxon bins and fur-
ther refined. Examples of present tools for each step are 
SPAdes [9] and Megahit [10] for assembly, MetaBAT [11] 
and GroopM [12] for binning, and MetaWrap [13] and 
DAS Tool [14] for bin refinement. More extensive lists of 
binners and bin refiners can be found in [15, 16]. Since 
reference-free binning approaches rely on heuristics to 
group contigs into MAGs, they are prone to error and 
their results should be carefully scrutinized.

Furthermore, in the absence of a reference, assess-
ing the quality of a MAG is a non-trivial task. Presently, 
the preferred approach is through detection of known 
single-copy marker genes (SCMGs). For this purpose, a 
commonly used tool is CheckM [17], which relies on 43 
conserved SCMGs. Other tools, such as BUSCO [18], 
EvalCon [19] and Anvi’o [20], rely on the same princi-
ple, though implementation details—like the exact set 
of SCMGs and similarity thresholds—differ. However, 
there are at least two potential issues related to the use 
of SCMGs. The first is that this approach is limited by its 
reference when using clade-specific marker genes, which 
may be of poor quality, too distant or not available for 
certain MAGs. The second is that it only covers a lim-
ited fraction of assembled MAGs, which is particularly 
small when only relying on universal SCMGs. As a result, 
SCMGs may be missing in the MAG in a way that is not 

proportional to the actual fraction of the genome that is 
absent. Meanwhile, the non-analysed fraction is ignored 
even though it could provide additional information. One 
recent tool, GUNC [21], has been developed to address 
this issue. For this tool, a reference-based approach built 
on high-quality genomes is used as baseline for estimat-
ing the taxonomy of contigs, with a model that estimates 
contamination parameters built on top of it.

Although GUNC claims to address the shortcoming 
of CheckM, it is still ultimately a gene-centric approach 
with an explicit set of reference genomes. To over-
come the shortcomings of gene-centric reference-based 
approaches as well as the overestimation of MAG quality 
by SCMG-based approaches, we present an alternative 
de novo-based approach that utilizes information from 
the whole bin. In order to properly assess our method, as 
well as illustrate the drawbacks of reference-based tools, 
we constructed a highly complex DNA mock, consisting 
of 227 bacterial strains of multiple phyla and with vary-
ing levels of similarity. This high complexity serves as a 
substitute for real metagenomic data, while still provid-
ing a ground truth. Although real metagenomes are esti-
mated to contain up to thousands of genomes, which is 
considerably more than the 227 strains used here, the 
presented mock is considerably more complex than other 
gDNA mocks and bypasses potential issues of read sets 
generated in silico. Indeed, simulation tools are still una-
ble to fully capture the full extent of errors that occur in 
real sequencing data [22] and efforts to improve them are 
ongoing, even for well-established technologies such as 
Illumina [23].

Methods
Datasets
The input data for the training datasets was generated by 
pooling even amounts (by mass) of genomic DNA from 
227 bacterial strains (Additional file 1: Table S1), cover-
ing the major phylogenetic lineages [24]. Sequencing 
was performed on the Illumina Novaseq 6000  platform 
using 2 × 150  bp paired-end sequencing by Baseclear, 
using their in-house pipeline (Leiden, The Netherlands). 
Selected bacterial strains were cultured and genomic 
DNA was extracted as outlined in [25]. Briefly, either 
a modification of the procedure of Pitcher et  al. [26], 
Gevers et al. [27] and Wilson [28] or a Maxwell® 16 Tis-
sue DNA Purification Kit were used, after a prior enzy-
matic lysis step in case of gram-positive strains. DNA 
integrity and purity were evaluated on a 1.0% (w/v) aga-
rose gel and by spectrophotometric measurements at 
234, 260 and 280 nm, respectively. Prior to pooling, DNA 
concentration was determined with the QuantiFluor® 
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ONE dsDNA System (Promega Corporation, Madison, 
WI, USA).

The test datasets were constructed from five publicly 
available short read subsets (Table  1). Four of these 
consist of reads from genomic DNA mock communities 
of relatively low complexity [29–32]. The Quince data-
set contains simulated reads from complete genomes 
[33] and is considerably more complex as it contains 
twice as many genomes as the other test subsets com-
bined. In order to provide a comprehensive overview, 
we evaluated the performance of CheckM and MAG-
ISTA on the individual test datasets as well as the com-
bined test dataset consisting of all five subsets.

The read libraries from all datasets were assembled 
using SPAdes 3.14 [9] with the –meta flag and subse-
quently binned using either CONCOCT [34], MaxBin 
[35] or MetaBAT2 [11]. For CONCOCT and Meta-
BAT2, binning was based on composition only and on 
composition and coverage (Table  1). Information on 
the coverage was generated by realigning the reads to 
contigs with Bowtie2 [36] and summarized to contigs 
with the ‘jgi_summarize_bam_contig_depths’ pro-
gram of MetaBAT2. Binning was performed with and 
without coverage information because we expected 
mostly equal coverage for our datasets, and using cov-
erage information may therefore result in over-splitting 

of genomes into multiple bins (Additional File 2: 
Table S2).

Predictor variables
In order to assess bin quality, we identified several ref-
erence-independent descriptive variables for each bin to 
be used as predictor variables. To obtain these data, we 
first split each contig within each bin into fragments of 
fixed length and then computed all-against-all distances 
between fragments within a bin using four different 
methods, i.e. PaSiT4, MMZ3, MMZ4 and Freq4. PaSiT4 
is a parameter-dependent method based on tetranucleo-
tide Karlin signatures that was originally optimized for 
inter-genome distances [25]. Here, it was implemented 
with a threshold (0.05) optimized for the selected frag-
ment length following the same procedure as described 
in [25]. The MMZ3 and MMZ4 methods refer to z-scores 
derived from a second-order Markov model using tri- 
and tetranucleotides, respectively, and is similar to the 
approach used in TETRA [37]. Finally, Freq4 refers to 
normalized correlation coefficients of tetranucleotide 
frequency profiles. For each method, a specific fragment 
length was selected in order to produce distinct signa-
ture distributions for distinct organisms (see “Results 
and discussion”, Table  2). We considered fragments 
with length 1, 5, 10, 20, 30, 40, 50, 75 and 100  kb. The 
final fragment length for each method was selected 

Table 1  Datasets used in this study

a Letter code after underscore refers to binning method (upper case) and parameters (lower case)
b Number of strains in the mock
c gDNA: genomic DNA, (un)evenly specifies the distribution of the individual inputs
d SRR (Sequence Read Archive accession number), ERR (European Nucleotide Archive accession number)
e SPAdes version 3.14, For MEGAHIT, assemblies were provided with the publication
f Comp, composition; cov, coverage

Dataset Namea Complexityb Input materialc Sequencing 
output

Read sourced Assembly toole Binning 
method

Binning 
parametersf

Training HC227_Cc 227 gDNA
evenly

2 × 150 bp PE
total: 60 Gb

ERS5705986 SPAdes CONCOCT comp

HC227_Ccc comp + cov

HC227_Xcc MaxBin comp + cov

HC227_Mc MetaBAT2 comp

HC227_Mcc comp + cov

Test BMock12_Mc 12 gDNA
unevenly

2 × 150 bp PE
total: 64 Gb

SRR8073716 SPAdes MetaBAT2 comp

BMock12_Mcc comp + cov

Rinke_Mc 54 gDNA
evenly

2 × 150 bp PE
Total: 13 Gb

Rinke et al. [31]b SPAdes MetaBAT2 comp

Rinke_Mcc comp + cov

MBARC-26_Mc 26 gDNA
unevenly

2 × 150 bp PE
total: 51.9 Gb

SRR3656745 SPAdes MetaBAT2 comp

MBARC-26_Mcc comp + cov

ZymoCS_Mc 10 gDNA
evenly

2 × 150 bp PE
total: 3 Gb

ERR2984773 SPAdes MetaBAT2 comp

ZymoCS_Mcc comp + cov

Quince_Mc 210 Simulated reads 
unevenly

2 × 150 bp PE
total: 180 Gb

Quince et al. 
[33]b

MEGAHIT MetaBAT2 comp

Quince_Mcc comp + cov
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through an optimization process that was done on four 
5-genome sets from different phyla (Additional file  2: 
Table  S3). Each set was designed such that at least two 
genomes were from the same family and two genomes 
were from the same order but from different families. 
These genomes were artificially split into fragments of 
the desired length and the target signature was computed 
for each fragment. For each set of five genomes, all frag-
ments were mixed and principal component analysis 
(PCA) was performed based on their signatures. For each 
genome, this procedure generated a distinct distribu-
tion along the principal components associated with all 
five genomes. Quadratic discriminant analysis [38], per-
formed using “qda” from the R [39] package MASS [40], 
was used to generate a classifier aimed at distinguish-
ing the two genomes with the most overlap within each 
set. This classifier was limited to using only two princi-
pal components. A graphical overview of this approach 
is presented in Fig. 1. The accuracy of this classifier was 
used as an indicator of the usability of each combination 

of fragment length and signature for a given set. These 
accuracies were averaged across all sets and the resulting 
value was used to select the final combinations of method 
and fragment length, taking into account the need to 
cover both short and long fragments.

After the fragment length was selected for each method 
(Table 2), the distribution of distances using the average, 
standard deviation, skewness, kurtosis and median, as 
well as the 2.5, 5, 10, 90, 95 and 97.5% percentiles were 
calculated. In addition, GC content distributions of 1 kb 
fragments were also calculated to ensure information 
availability regardless of contig length. Finally, the bin 
fraction used and the number of comparisons performed 
for each method were included, along with the bin size, 
totalling to 66 predictor variables. These variables consti-
tute the input for the model used to estimate bin quality.

Choice of model type and input
The 66 predictor variables were log-transformed and 
PCA was performed on the result for the training set. For 
a test set, the same log-transformation was applied and 
the results were then projected onto the principal com-
ponents derived from the training dataset. The Metage-
nome-assembled genome intra-bin statistics assessment 
(MAGISTA) tool is based on a random forest model 
[41] that predicts bin statistics, such as completeness 
and purity (see next section), from the original untrans-
formed and projected variables. If some of the variables 
could not be computed due to the absence of sufficiently 
long fragments, an alternate model that follows the same 
principle but does not depend on these missing variables 
was used instead. This approach enabled us to include 
all bins containing at least one contig longer than 2  kb 
or multiple contigs longer than 1 kb in the estimation of 
bin statistics, which are the minimum required in order 
to get at least three fragments from which to compute 
signatures.

The entire procedure, starting from the predictor vari-
ables, was implemented in R (v 4.0.3). Random forests 
were trained using the “RandomForest” function from 

Table 2  Average accuracy of a quadratic discriminant model between the two most difficult to separate genomes within a set of five 
genomes

Selected combinations are in bold

Method Size (kb)

1 5 10 20 30 40 50 75 100

PaSiT4 0.61 0.62 0.65 0.71 0.74 0.79 0.86 0.88 0.92

MMZ3 0.65 0.78 0.84 0.90 0.92 0.94 0.95 0.97 0.99

MMZ4 0.60 0.76 0.86 0.92 0.93 0.95 0.97 0.95 0.96

Freq4 0.71 0.85 0.90 0.94 0.95 0.95 0.95 0.96 0.97

Fig. 1  Graphical summary of the pre-processing steps used to 
evaluate the usability of a specified combination of fragment length 
and signature choice for a given set of five genomes. Genomes are 
split into fragments of a specified length and with specified overlap. 
For each fragment, each signature calculated using the target 
method is viewed as an observation and PCA is performed to reduce 
to two dimensions. Finally, QDA is performed between the two 
closest clusters made up of observations from the same genome and 
the accuracy of this classifier is produced
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the package “RandomForest” [42] with default parame-
ters. PCA, including log transform, was performed using 
an adapted version of “mpm” from the package “mpm” 
[43]. Linear regression was performed using the “lm” 
function from the base R library.

Bin quality assessment (target variables)
The target variables assess the quality of a bin, which is 
typically done by completeness and purity metrics, from 
which an F1 score can be computed. These metrics can 
be computed accurately if the actual reference is known, 
as is the case with mock metagenomes, i.e. all members 
are known. We implemented the procedure described 
in [44] to generate “gold standard” binning results. More 
concretely, we used MetaQUAST [45] with unique map-
ping enabled to link each contig to individual references, 
followed by the AMBER tool [15] that identified the best 
matching genome for each bin and computed the number 
of base pairs (bps) associated with that genome. Based on 
this value, we computed bin completeness, the fraction of 
a reference genome present in a bin, and bin purity, the 
fraction of the bin represented by that genome.

F1 scores were computed using the bin completeness as 
a measure for recall and the bin purity as a measure of 
precision:

In CheckM, contamination in the validation set was 
defined as the completeness of the (single) contaminating 
genome.

However, because CheckM contamination is based on 
marker-gene redundancy, it is possible for the predicted 
value to be (considerably) above 100%. In an effort to 
make graphs more readable, we derived a “Purity” value 
for CheckM using the following formula that can be 
directly converted to and from the CheckM contamina-
tion value:

Bin completeness =
Matching bps

Genome size

Bin purity =
Matching bps

Bin size

F1 = 2×
Recall× Precision

Recall+ Precision

CheckM contamination ∼
Mismatched bps

Mismatched genome size

CheckM "Purity" = 100×
100

100+ CheckM contamination

This conversion provided a good estimation of the 
actual purity of bins for HC227 in cases where CheckM 
contamination was greater than 5%.

Method evaluation
We evaluated the performance of the different methods 
using two parameters: percentage of explained variance 
( R2

y∼x ) and root-mean-square error (RMSE) with regards 
to the actual values.

The following formula was used to compute the R2
y∼x 

value:

where xi is the observed (real) value, yi is the value pre-
dicted by the model and x is the average of all observed 
values. Note that R2

y∼x can become negative when the 
model-prediction is significantly worse than fixing yi to 
the average value.

Results
Generation of a high‑complexity genomic DNA mock 
community
In order to define a method for assessing the quality of 
MAGs, it is necessary to define a training dataset to gen-
erate the model. To accomplish this, we created a com-
plex mock community, HC227, consisting of genomic 
DNA from 227 bacterial strains belonging to 8 phyla 
(Actinobacteria, Bacteroidetes, Deinococcus-Thermus, 
Firmicutes, Fusobacteria, Planctomycetes, Proteobacteria 
and Verrucomicrobia), 18 classes, 47 orders, 85 families, 
175 genera and 197 species. The genomes within HC227 
cover a large range of sizes (from 1.6 to 11.8 Mb) and % 

R2
y∼x = 1−

∑
(

yi − xi
)2

∑

(xi − x)2
,

Fig. 2  Bacterial strains from the HC227 mock community cover a 
large range of genome sizes and % GC. Colours indicate the class of 
each member
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GC (from 26.3 to 73.4%) as well as genome sequence sim-
ilarity/diversity (Fig. 2; Additional file 3).

In addition to the HC227 mock, publicly available 
sequencing data from other well characterised mocks 
were used for testing. These mocks contained strains that 
were closely related to those in HC227 as well as strains 
that belonged to phyla not represented in HC227. A 
graphical summary of the relations between these mocks 
and HC227 is presented in Fig. 3.

Single‑copy marker genes for bin quality assessment
Although detection of single-copy marker genes 
(SCMGs) is the most common strategy to assess bin 
quality, we found that CheckM (v1.1.2; with its stand-
ard 43-SCMG set) overestimated bin quality. In the case 
of completeness, CheckM prediction generally slightly 
over-estimated the actual value, and had a relatively high 
RMSE of 15.19 (Fig.  4a). For purity, which we derived 
from the predicted contamination using the equa-
tion described in “Methods”, this trend was even more 
pronounced, with many contaminated bins being pre-
dicted as near uncontaminated (Fig.  4b). We later also 
confirmed that these observations were not exclusive 
to HC227 (see data on test sets below). These observa-
tions encouraged us to develop an alternative approach. 
Recently, another tool called GUNC [21] was developed, 
claiming to address the inability of SCMGs to predict 
contamination properly (Additional file 4). However, we 
found that while it certainly alleviated this problem, this 
did not lead to an overall improvement in performance 
and its output also lacks any variable resembling an esti-
mation of completeness (the most relevant variable is 
probably “reference representation”, shown in Additional 
file 4).

Alignment‑free intra‑bin statistics
We used alignment-free intra-bin statistics to develop a 
program that predicts the two most commonly used bin 
metrics, namely completeness and purity.

Step 1: optimizing fragment lengths for computing distances
Prior to assessing bin quality using distributions of dis-
tances, we first established the optimal fragment sizes for 
computing these distances. We considered fragments of 
1, 5, 10, 20, 30, 40, 50, 75 and 100 kb. These lengths are 
a trade-off between using a larger fraction of any given 
bin (shorter fragments) and producing more meaningful 
inter-fragment distances (larger fragments). The short-
est fragments considered were 1-kb fragments, as both 
CONCOCT and MetaBAT ignore shorter fragments by 
default. Long fragment length limited the analysis to only 
a small fraction of the available data. As such, selecting a 
longer fragment sometimes prevents bin analysis because 

of the absence of suitably long contigs. The data shown 
in Fig.  5, which was generated from the training data-
set by using the sum of the length of contigs longer than 
the specified value divided by the total length of all con-
tigs, corroborates the limitation to fragments of at most 
100 kb.

However, even with longer fragment lengths, we found 
that Karlin signatures could not be used to fully separate 
some species from each other using quadratic discrimi-
nant analysis with a fragment length that preserved the 
majority of the metagenome (Table  2). Finally, for each 
method we selected a length that offered consistent accu-
racy, ensured that different methods covered a variety of 
lengths and did not rely on the presence of excessively 
long contigs. As a result, sufficiently long contigs pro-
duced fragments analysed by all methods, whereas short 
contigs produced fragments analysed by at least one 
method.

Step 2: calculating bin statistics
In order to ensure that the final model would be able to 
deal with any bin, it was necessary to train it using a data-
set that covers a wide variety of inputs. As mentioned in 
the introduction, generating such a dataset by simulation 
does not represent realistic results accurately, so we used 
the results of binning software, providing a set of real-
istic bins of varied quality. For the training dataset, the 
completeness and purity values of most bins were above 
90%. The training dataset was large enough to cover the 
2D space formed by all possible combinations of com-
pleteness and purity relatively well when combining bins 
produced by CONCOCT, MetaBAT and MaxBin with 
different settings (Fig. 6).

Step 3: model construction
Distribution parameters for intra-bin distances for all 
combinations of fragment length and distance computa-
tion method selected at the end of Step 1 were used as 
input to create models for predicting completeness and 
purity. For some bins, sufficiently long contigs were not 
available, and the parameters of distributions associ-
ated with longer fragment lengths could therefore not be 
computed. These bins were marked as having incomplete 
input data (henceforth referred to as “incomplete bins”), 
which the subsequently created model has to account 
for. The core of the predictive model relies on random 
forests, with additional pre-and post-processing steps. 
For pre-processing, the log-transformed distribution 
parameters were used to perform principal component 
analysis and the resulting bin coordinates were added as 
additional input variables for the random forest. As for 
the post-processing step, it consisted of a linear regres-
sion model derived from a cross-validation analysis 
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Fig. 3  Comparison of the composition of the training (HC227) and test mocks (others). Species (red) and genera (grey) present in HC277 and 
the test mocks are connected. Each distinct phylum is represented by a separate colour, as are distinct taxonomic classes and orders. Phyla that 
are present in HC227 are marked with an asterisk in the legend and Phyla belonging to Archaea are indicated by a dark-grey band. Additional 
information is also provided for each strain in each mock, including its number (outside), genome size (dark grey) and GC content (light grey)
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of the random forest output for the training dataset. 
Incomplete bins were removed from the initial train-
ing set and the model generated with this data was used 

whenever a complete bin was provided as part of the test-
ing procedure. For incomplete bins, the same procedure 
was repeated without the missing predictors. As such, 
a separate random forest was generated for each of the 
selected fragment lengths (1, 5, 10 and 50 kb), resulting 
in four potential models. By using this approach, every 
bin in the training set could be used and the quality of 
every bin in the test set could be scored. The training 
set included bins generated by four binning approaches 
designed to cover the full range of possible completeness 
and purity, with 842 bins in total. It contained 675 bins 
that produced all fragment lengths, 801 bins that pro-
duced at least some fragments of 10 kb, and 817 bins that 
produced some fragments of at least 5 kb. We refer to our 
procedure as metagenome-assembled genome intra-bin 
statistics assessment, or MAGISTA. Next to MAGISTA, 
which relied exclusively on the distance distribution 
parameters, a model was generated that also included 
the numeric outputs of CheckM, coined Metagenome-
assembled genome intra-bin statistics including CheckM 
(MAGISTIC). All distribution parameters and align-
ment-based statistics for each bin in the training and 
test datasets are provided in Additional file 1 (Tables S4 
and S5), along with the relative importance of each input 
parameter (Additional file 1: Table S6).

Evaluation of the models
Although we also performed cross-validation (Addi-
tional file  5), using publicly available sequencing data 
from other well-characterised mocks was deemed 
to be a more representative evaluation test. Here, we 
report the performance of CheckM, MAGISTA and 
MAGISTIC on the test datasets. We use the fraction 
of explained variance ( R2

y∼x ) and the root-mean-square 
error (RMSE) (Fig. 7; Table 3) as quantitative measures 

Fig. 4  Closest analogues for completeness (a) and purity (b) obtained from the output of CheckM as a function of the actual values in the training 
dataset bins. Data points are coloured according to the binner used. The blue line is the best linear fit

Fig. 5  Fraction of the HC227 assembly that can potentially be 
covered by the analysis for specified fragment lengths

Fig. 6  Completeness and purity of bins generated using CONCOCT, 
MaxBin and MetaBAT2 based on composition (c) and on composition 
and coverage (cc)
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Fig. 7  Performance of CheckM (a and b), MAGISTA (c and d) and MAGISTIC (e and f) on all test datasets for completeness (a, c and e) and purity (b, 
d and f). The black and blue lines indicate the ideal performance and best linear fit, respectively. Data points are coloured in accordance with their 
taxonomic relation to the most related genome in the training/reference set of the method whose performance is shown

Table 3  Performance of all models on the test dataset (all) and subsets containing real and simulated reads

Bin statistic Model R2y∼x
RMSE

Real Simulated All Real Simulated All

Completeness CheckM 0.744 0.612 0.685 17.28 22.54 20.05

MAGISTA 0.814 0.730 0.777 14.73 18.81 16.87

MAGISTIC 0.905 0.836 0.873 10.52 14.68 12.75

Purity CheckM 0.722 -0.261 0.143 7.74 30.61 22.21

MAGISTA 0.204 0.240 0.365 13.10 23.76 19.12

MAGISTIC 0.672 0.234 0.449 8.41 23.85 17.80

F1 CheckM 0.778 0.536 0.666 14.85 23.46 19.58

MAGISTA 0.787 0.725 0.766 14.57 18.04 16.38

MAGISTIC 0.884 0.775 0.834 10.75 16.32 13.79
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for performance. For completeness prediction, MAG-
ISTA outperformed CheckM as it achieved a bet-
ter RMSE (16.87 versus 20.05) and had a higher R2

y∼x 
value (0.777 versus 0.685) (Fig. 7a and c; Table 3). For 
purity prediction, MAGISTA performed better than 
the purity value that we derived from CheckM, with 
an RMSE of 19.12 versus 22.21, and an R2

y∼x value of 
0.365 vs 0.143 (Fig.  7b and d; Table  3). However, we 
note that the purity value derived from CheckM is not 
entirely representative of what CheckM is designed to 
measure. Nevertheless, it is clear from these results 
that neither MAGISTA nor CheckM achieved suffi-
cient accuracy to be considered as reliable. MAGISTIC 
produced better results than MAGISTA (Fig.  7 and 
Table 3).

As the test dataset can be subdivided into bins pro-
duced from real and simulated reads (Table 1), the per-
formance of the different models was also calculated 
for these two subsets (Table 3) as well as the individual 
test datasets (Additional file  2: Table  S7). The “real” 
part consisted of relatively low-complexity metage-
nomes obtained by mixing DNA of pure cultures, 
whereas the “simulated” part consisted of the high-
complexity simulated metagenome used by Quince 
et al. [33]. The results showed that CheckM performed 
well for the “real” subset (albeit worse than MAG-
ISTA and MAGISTIC), but poorly for the “simulated” 
part. MAGISTA and MAGISTIC have a more stable 
performance. For the sake of completeness, Table  3 
also includes F1 scores, which offer a way to compare 
models using a single value, altough completeness and 
purity are more relevant to most research questions. 
Finally, since MAGISTA makes predictions based on 
the entire genome, it is conceivable that it would be 
more affected by mobile genetic elements and hori-
zontal gene transfer events than SCMG-based sys-
tems. We evaluated this with a case study comparing 
the presence or absence of broad-host-range plasmids, 
i.e. RK2 (IncP group), R388 (IncW group) and pIPO2 
(PromA group), in the proteobacterial bins of our test 
dataset. The latter indicated that MAGISTA and, to 
a lesser extent, MAGISTIC predictions were indeed 
affected more than CheckM predictions, although the 
effect was marginal with a 1.05 ± 0.35 and 0.48 ± 0.21 
median difference for completeness prediction by 
MAGISTA and MAGISTIC, respectively (Additional 
file 2: Table S8).

Discussion
Metagenomic profiling via assembly and binning, par-
ticularly of highly complex samples, relies on perfor-
mant computational approaches, as was illustrated in 
the Critical Assessment of Metagenome Interpretation 

study [44]. However, the optimisation and assessment of 
these approaches is often done on mock metagenomes of 
limited complexity or on simulated metagenomes when 
higher complexity is needed. Ideally, testing should be 
done with real metagenomes that capture the real bias 
and nature of the microbiome [46, 47], yet the absolute 
truth in such samples is unknown. A valid approximation 
is the use of highly-complex DNA mocks, which are gen-
erated by pooling DNA of numerous strains. However, 
such high-complexity DNA mocks did not exist. There-
fore, we started by first generating such a complex mock 
community that provides a novel and challenging data-
set to test metagenomics tools. We elected to use even 
amounts of DNA for each of the 227 strains. This was 
done in part to increase the difficulty of binning the mock 
correctly, thereby simulating the more ambiguous parts 
of metagenomes with which modern tools still struggle. 
In addition, it ensured that each genome would have a 
high likelihood of being completely represented and that 
the quality of bins would not be linked to their phylogeny.

Assessing the quality of bins is an essential step in data 
curation and construction of high-quality metagenome 
assembled genomes. Currently, the most common strat-
egy to assess quality is through the detection of single-
copy marker genes (SCMGs), with CheckM being a 
commonly used tool. The use of SCMGs can yield good 
results for MAGs derived from known species, where the 
bin is expected to cover most of the genome. However, 
when de novo binning is required, for example when 
analysing poorly studied environments, only 40 [18] to 
approximately 100 [48] universal SCMGs can be used, 
which is a fraction of the thousands of genes that bacteria 
commonly have. In addition, we observed that CheckM 
(v1.1.2) with its standard 43-SCMG set tended to over-
estimate both bin purity and completeness, suggesting 
issues inherent to the method, and motivating the devel-
opment and implementation of an alternative approach 
using alignment-free intra-bin statistics.

Figure  4 is a good illustration of the risk associated 
with relying too heavily on the output of “generic” bin 
evaluation methods, such as CheckM and GUNC that 
rely on existing annotated genes, and illustrates the need 
for complementary methods such as MAGISTA. It also 
highlights that the construction of high-quality MAGs 
currently still requires tailored analysis.

MAGISTA is completely independent of existing gene 
annotation. Instead, distribution parameters for intra-
bin distances for all selected combinations of fragment 
length and distance computation method were used as 
input to create models for predicting completeness and 
purity. Random forests, which perform well for noisy 
data and require very little tuning [38], were selected as 
the basis of the predictive models. Next to MAGISTA, 
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which relied exclusively on the distance distribution 
parameters, a model was generated that also included the 
numeric outputs of CheckM (MAGISTIC).

Both MAGISTA and MAGISTIC outperformed 
CheckM when it comes to predicting the completeness of 
bins. Considering the large number of genomes involved 
in the construction of the CheckM reference, it is dif-
ficult to predict how strong its performance degrades 
when it is exposed to novel taxa, although for the test 
datasets performance dropped with an increasing num-
ber of novel taxa. MAGISTA and MAGISTIC used intra-
bin distances and as such uncoupled the genetic makeup 
of a bin from the parameters used to estimate its qual-
ity, thereby creating a method that could perform well 
regardless of whether the target bin contained known 
genomes. Nevertheless, we found that the performance 
of MAGISTA was affected by the relation of the target 
bin to the training dataset, as bins associated with dis-
tant taxa tended to have underestimated completeness 
(Fig. 7, Additional file 6). To alleviate this issue, the pub-
lished models could also be trained by including, next to 
HC227, the test datasets as well as a selection of complete 
genomes, but we would lack test datasets for estimating 
the performance of such a model. As for purity, although 
MAGISTIC is an improvement over CheckM, we do not 
recommend either MAGISTIC, MAGISTA or CheckM.

Next to dividing the test dataset according to the 
relatedness of bins to the training set, an intersting case 
study is to separate the results produced from real and 
simulated reads. Therefore, the performance of the dif-
ferent models was also calculated for these two subsets 
(Table  3). The results showed a discrepancy in  CheckM 
performance, with better results   for the real, low-com-
plexity datasets than for the higher-complexity datasets. 
In contrast, our tools had a more consistent perfor-
mance.  The presence of genomes whose species were 
not in the reference set for CheckM may also explain 
the drop in performance for the high-complexity mocks, 
such as the simulated Quince mock and HC277, as these 
contain more species that are less closely related to the 
reference set than the low-complexity mocks. MAGISTA 
and MAGISTIC have a more stable performance and are 
thus preferred for more complex cases. The better per-
formance of our methods can be attributed to the com-
plexity, i.e. number and variety of strains, of the DNA 
mock community we constructed and used in training. 
This could also indicate that de novo metagenomic analy-
sis tools that are validated using mock communities with 
a limited number of members are likely to underperform 
in real situations.

Conclusion
In this work, we created a novel approach that can be 
used to predict the quality of metagenome-assembled 
genomes. This method, MAGISTA, is an equally good 
alternative to SCMG-based methods for low-complexity 
metagenomes. For high-complexity metagenomes, it 
provides a significant improvement over SCMG-based 
methods, although complexity may not have been the 
primary factor contributing to this discrepancy. In addi-
tion to MAGISTA, we generated an even more accurate 
prediction with MAGISTIC by incorporating CheckM 
results. Noteworthy, the error on purity predictions 
for both SCMG-based and the MAGISTA method is 
still very high and as such purity predictions should be 
treated with caution.

Our highly complex genomic DNA mock commu-
nity accurately captured the complexities and unideal 
properties of real data, which is not the case for simu-
lated metagenome datasets, and is a very valuable tool 
for benchmarking (new) metagenome analysis methods, 
including assembly, binning and taxonomic assignment.
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bins with a taxonomic distance to the reference or training dataset above 
the target distance.
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