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Abstract 

Background: Understanding the dynamics of airborne microbial communities and antibiotic resistance genes 
(ARGs) in space life support systems is important because potential pathogens and antibiotic resistance pose a health 
risk to crew that can lead to mission failure. There have been few reports on the distribution patterns of microbiomes 
and ARGs in space life support systems. In particular, there have been no detailed investigations of microbiomes 
and/or antibiotic resistance based on molecular methods in long-term confined bioregenerative life support sys-
tems (BLSSs). Therefore, in the present study, we collected air dust samples from two crew shifts, different areas, and 
different time points in the "Lunar Palace 365" experiment. We evaluated microbial diversity, species composition, 
functional potential, and antibiotic resistance by combining cultivation-independent analyses (amplicon, shot-gun 
sequencing, and qPCR).

Results: We found that the bacterial community diversity in the Lunar Palace1 (LP1) system was higher than that in 
a controlled environment but lower than that in an open environment. Personnel exchange led to significant differ-
ences in bacterial community diversity, and source tracking analysis revealed that most bacteria in the air derived 
from the cabin crew and plants, but no differences in microbial function or antibiotic resistance were observed. Thus, 
human presence had the strongest effect on the succession of microbial diversity in the BLSSs.

Conclusions: Our results highlight that microbial diversity in BLSSs is heavily influenced by changes in crew and 
is unique from other open and controlled environments. Our findings can be used to help develop safe, enclosed 
BLSS that meet the requirements of human survival and habitation in outer space. In addition, our results can further 
enhance our understanding of the indoor air microbial community and effectively maintain a safe working and living 
environment, including plant growth.
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Background
Numerous space programs are rapidly advancing toward 
crewed deep space exploration, including constructing 
and utilizing a crewed lunar base and human explora-
tion of Mars [1]. Among these programs, the United 
States will land at the Moon’s south pole before 2024 
and establish a sustainable environment there before 
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2028 [2]. Since 2015, the European Space Agency (ESA) 
has also vigorously advocated its concept of a "lunar vil-
lage", which is a large-scale cooperative project that will 
also lead to a permanent settlement on the Moon [3]. 
Although lunar exploration itself can greatly benefit 
various scientific and technological fields [4], the Moon 
is expected to become a testbed for crewed missions to 
Mars. Building a safe and closed habitat will be neces-
sary to exist off Earth for an extended time, one of the 
core components of which is a biological regeneration life 
support system (BLSS) [5, 6]. A BLSS is a small, balanced, 
and self-sufficient man-made ecosystem in which air, 
food, and water are recycled in a closed and isolated envi-
ronment [7]. Chinese Lunar Palace 1 (LP1) is a ground-
based BLSS testbed integrating efficient plant cultivation, 
animal protein production, urinary nitrogen recovery, 
and solid waste biotransformation [8]. LP1 can be used to 
prepare for various technical and scientific challenges in 
a closed and isolated extraterrestrial living space.

It is expected that microorganisms will inevitably coex-
ist with extraterrestrial crew members. Indeed, the num-
ber of microorganisms exceeds that of human cells in our 
body, and each person releases millions of microorgan-
isms per hour [9]. Any undertaking without microorgan-
isms is impractical, immoral, and undesirable because 
microorganisms are crucial to our health [10]. For 
example, immune regulation-inducing microorganisms 
(known as "old friends") that evolved with mammals may 
have positive health effects [11], while pathogens (such 
as Streptococcus pneumoniae) have adverse effects on 
human health [12]. Therefore, proper management of the 
microbial community is crucial to the success of extrater-
restrial missions.

The most obvious threat to crew health is pathogens. 
This risk is exacerbated by crew limitations and prox-
imity, limited treatment options, increased microbial 
transmission under microgravity [13], limited sanitary 
conditions, increased potential virulence, reduced sen-
sitivity of bacteria to antibiotics in space [14, 15], and 
reduced immunity of crew due to microgravity, radia-
tion, and pressure [16, 17]. In addition, the establishment 
of resilient microbial communities in their habitats may 
become complex due to the lack of environmental micro-
organisms competing for the same niche with human-
transmitted pathogens [18]. Although no life-threatening 
infections have been found during space flight so far, 
conditional pathogens, which are part of normal human-
related microbial diversity, have been found on the inter-
national space station (ISS) [19]. These pathogens may 
have caused dozens of minor, off-Earth medical condi-
tions, including urinary tract, upper respiratory tract, 
and subcutaneous skin infections [13, 17].

Importantly, bacteria can carry antibiotic resistance 
genes (ARGs). The World Health Organization [20] has 
stated that the abuse and misuse of antibiotics leads to 
antibiotic resistance of pathogenic bacteria, which is a 
new threat to modern public health [20]. ARGs can be 
transferred to pathogenic and nonpathogenic microor-
ganisms in the environment through horizontal gene 
transfer, mainly involving the integration of ARGs into 
pathogenic bacteria through mobile genetic elements 
(MGEs), such as integrons and transposons [21]. ARGs 
and MGEs are widely distributed in different environ-
ments, including restricted and open environments [22]. 
For example, some ARGs [e.g., tet(K) gene resistant to 
tetracycline] are significantly positively correlated with 
specific antibacterial chemicals (e.g., triclosan) in dust 
collected from multifunctional sports and educational 
facilities [23]. In addition, Gandara et  al. [24] have iso-
lated antibiotic-resistant Staphylococcus aureus from 
indoor and outdoor air and found that these airborne 
bacteria are more concentrated indoors than outdoors 
[24]. Although the drug resistance of host-related flora 
and the emergence of preferentially drug-resistant patho-
gens in building environments are attracting increasing 
attention, the distribution of ARGs indoors, especially in 
a restricted environment, remains poorly understood. In 
addition, it is unknown how the distribution of resistance 
genes will change as the occupants of an isolated envi-
ronment change.

Most of the information to date on the composition 
and dynamics of microbiota in a controlled environ-
ment has been acquired from ground simulation stud-
ies and space station-related studies, such as ISS [25], 
Mars 500 (520  days) [26], Concordia base in Antarctica 
(1  year) [27], inflatable lunar/Martian similar habitat 
(ILMAH) (30  days) [28], and the HI-SEAS IV mission 
(365 days) [9]. Previous studies have shown that, in these 
extreme environments, microorganisms mainly come 
from human skin. The microbial community of the ISS 
is highly similar to those existing in ground, confined 
indoor environments, though some studies have shown 
increased levels of ARGs and virulence gene factors, and 
the metagenomic sequences of human pathogens per-
sist over time [29, 30]. A comparative analysis between 
ISS and a similar environment on Earth showed that the 
microbial composition on the environmental surfaces of 
the ISS is different [25]. It is important to note that these 
environments are ecosystems in which only people and 
microorganisms participate; there have been no detailed 
investigations on microbiomes and/or antibiotic resist-
ance based on molecular methods in a BLSS, which is an 
isolated environment that integrates humans, plants, ani-
mals, and microorganisms.
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In 2018, based on the advanced ground-based BLSS, 
Lunar Palace 1, developed by a team led by Beihang Uni-
versity, China, the Lunar Palace 365 experiment was com-
pleted successfully. The mission lasted 370 days. During 
this time, there were two groups of crew members, four 
in each group, including two men and two women. Over 
the course of the experiment, two-shift changes were car-
ried out. The purpose of this study was to achieve long-
term survival in a closed BLSS environment. However, 
the experiment also provided an opportunity to study 
the microbial changes resulting from different groups 
of crew members during their residence in LP1. In this 
setting, air represents a vehicle for the movement of 
microbes from one habitat to another. While there have 
been several studies of the microbial communities pre-
sent on humans [31, 32] and plants [33, 34], few studies 
have attempted to characterize the airborne microflora in 
a BLSS. Here, we present the results of our study of the 
microbial air succession of Lunar Palace 365, which was 
carried out by monitoring the bacterial air flora in differ-
ent locations when different groups resided in the habi-
tat. In the closed indoor environment, air samples from 
designated locations were sampled at three stages during 
the shifts of the two groups of crew members. In addi-
tion to metagenomic sequencing of air sample flora, 16S 
rRNA amplicons were also sequenced from the air sam-
ples, and the absolute amounts of bacteria in air samples 
were determined by fluorescence quantitative PCR analy-
sis. Our research provides new insights for maintaining 
the health of residents in a BLSS and furthers the devel-
opment of future deep space habitation.

Methods
The Lunar Palace 1 habitat and Lunar Palace 365 project
In brief, LP1 is a ground-based BLSS, which functions as 
a biosphere to support crew members with basic living 
necessities. The biotechnology of the system regenerates 
oxygen, water, and food, allowing humans to survive in 
the confined space for long periods. The installation is 
located in Haidian, Beijing, China (116° 25′ 29″ E, 39° 
54′ 20″ N) and occupies a total area of 160  m2 and a total 
volume of 500  m3. LP1 now has two plant cabins (PC; 
each 10 × 6 × 3.5  m3), one comprehensive cabin (CC; 
14 × 3 × 2.5  m3) which contains 4 private bedrooms, a 
living room, a bathroom, an insect culturing room, and a 
solid waste treatment cabin (SC) [35].

This research was part of the Lunar Palace 365 pro-
ject which was carried out in the Lunar Palace 1 (LP1). 
The Lunar Palace 365 project was launched on May 10, 
2017, by the Institute of Environmental Biology and Life 
Support Technology, Beihang University. A total of eight 
volunteers were divided into two groups (G1 and G2; 2 
females and 2 males each) that spent a total of 370 days 

in the LP1. The project was divided into three phases: the 
first phase lasted for 60 days with the four crew members 
of G1 (May 10 to July 10, 2017), the second phase lasted 
for 200 days with the four crew members of G2 (July 10, 
2017, to January 26, 2018), and the third phase lasted for 
110 days with the four crew members of G1 (January 26 
to May 15, 2018) [36], the experimental design is shown 
in Fig. 1.

Sampling procedures and DNA extraction
We collected 34 air dust samples. Sampling was executed 
by the same crew member to guarantee a consistent 
uptake of microbial particles. The air samples were col-
lected by high-efficiency particulate absorbing (HEPA) 
filters (Xiaomi Air Purifier 2, 24  cm × 24  cm × 52  cm, 
Xiaomi Corporation, China) at three locations, includ-
ing the plant cabins (I and II), comprehensive cabin, and 
solid waste treatment cabin. To enable the sample bio-
mass to meet sequencing requirements, ambient air was 
sampled continuously over discrete 30-day periods onto a 
filter area of 450  cm2, maintaining a constant flow rate of 
310  m3/h; sampling was performed in October, Novem-
ber, December of 2017, and March, April, and May of 
2018, for a total of six sampling events. The purifier fil-
ter membrane was washed in phosphate-buffered saline 
(PBS; 1 × , CAS: SH30256.01, HyClone) under asep-
tic conditions, centrifuged, and the pellets were sent to 
Beijing QuantiHealth Technology Company Limited for 
DNA extraction using the DNeasy PowerSoil kit (QIA-
GEN) according to manufacturer’s instructions. The 
extracted DNA was examined by electrophoresis on a 1% 
agarose gel, and the DNA concentration and purity were 
determined with a NanoDrop 2000 UV–vis spectropho-
tometer (Thermo Scientific) and Qubit 3.0 fluorometer 
(Life technologies). The extracted DNA was divided into 
two parts, one for metagenomic analysis and the other 
for 16S amplicon analysis.

Shot‑gun metagenomics
After DNA extraction and preparation of the shot-gun 
library, all samples were sequenced using the Illumina 
sequencing HiSeq 2500 platform at Beijing QuantiHealth 
Technology Company for metagenome sequencing, 
yielding a total of 232.9G of raw sequencing data. The 
number of reads in the sample ranged from 30,394,642 to 
145,747,924 with an average of 49,039,282, and all sam-
ples entered the bioinformatic data analysis process.

The biological information analysis process of metage-
nome sequencing entailed quality control of all original 
metagenome sequencing data through fastqc (v0.11.8) 
[37] software. First, all original sequencing reads were 
trimmed with trimmomatic software (v0.39-1, param-
eters: SLIDINGWINDOW:4:20 MINLEN:50) [38], and 
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the reads with a quality value less than 20 and length less 
than 30 bp were filtered out. Clean reads were obtained 
by quality control. Finally, the filtered reads were com-
pared with the host genome to remove the contaminated 
host sequence [39] using bowtie2 (v2.3.5.1, parameters: 
–very-sensitive – dovetail) to obtain high-quality, clean 
data. High-quality reads were de novo assembled with 
megahit (v1.2.9) [40] to obtain contigs, and evaluated 

with quast (v5.0.2) [41]. Based on the spliced contigs, 
prokka (v1.13.3) [42] gene annotation was used. The 
annotated genes were constructed with CD-HIT (v4.8.1, 
parameters: -aS 0.9 -c 0.95 -G 0 -M 0 -T 9 -g 1) [43], 
and salmon [44] was used for gene quantification. The 
obtained nonredundant reference gene set was com-
pared using KEGG Orthology, Clusters of Orthologous 
Groups (COG), the ResFam resistance gene database, 
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and the virulence factor database (VFDB) by DIAMOND 
(v0.8.36, parameters: blastp -v -sensitive -k 10) [45].

16S rRNA gene amplicons and sequencing
Another DNA aliquot was sent to Beijing Biomarker 
Technologies Corporation for 16S amplicon sequencing. 
Bacterial diversity was assessed by analyzing the V3 + V4 
hypervariable region of the 16S rRNA gene amplicon 
sequences using two-step amplification. Amplification 
was performed with the following primer pair: forward 
primer, 338F, 5′-ACT CCT ACG GGA GGC AGC A-3′, and 
the reverse primer, 806R, 5′-GGA CTA CHVGGG TWT 
CTAAT -3′ [46]. The 50 μl PCR reaction contained 1.5 μl 
of each primer, 1 μl dNTP, 10 μl Buffer, 0.2 μl Q5 HighFi-
delity DNA polymerase, 10 μl high GC content enhancer 
and 40 ng DNA template from the samples. The bacterial 
PCR reaction program was as follows: 95  °C denatura-
tion for 3  min; 25 cycles of annealing at 50  °C for 45  s, 
extension at 68 °C for 90 s, extension at 68 °C for 7 min, 
and a final hold at 4 °C. The PCR products were collected 
and resolved on a 1.8% agarose gel, purified using a Min-
Elute® PCR purification kit (Promega [Beijing] Biotech 
Co., Ltd. Beijing, China) according to the manufacturer’s 
instructions, and quantified using QuantiFluorTM-ST 
(Promega [Beijing] Biotech Co., Ltd. Beijing, China). A 
library was constructed and sequenced, the final PCR 
product was purified, and the sequenced library was con-
structed after quantification and homogenization. Qual-
ity inspection was performed on the constructed library, 
and an Illumina HiSeq 2500 platform (Biomarker Tech-
nologies Co., Ltd., Beijing, China) was used to sequence 
the qualified library. Six biological replicates from each 
stage were sequenced. A total of 2,500,520 pairs of reads 
were obtained. After slicing and filtering the double-
ended reads, 2,180,172 clean tags were generated. Each 
sample produced at least 37,711 clean tags, with an aver-
age of 66,066 clean tags.

The bioinformatics analysis process of amplicon 
sequencing was according to the tutorial of EasyAmpli-
con v1.09 [47]. The specific steps mainly include using the 
–fastq_mergepairs, –fastx_filter and –derep_fulllength 
subcommands in vsearch v2.15 [48] to double merge, 
quality control and de-duplication sequences, respec-
tively. Then, the –cluster_OTU command of USEARCH 
v10.0 is used to cluster the nonredundant sequences into 
operational taxa (OTUs). Then, vsearch’s –uchime_ref 
command was used to compare the feature sequences to 
the RDP database for further removal of chimeras. The 
–usearch_global command of vsearch generates a feature 
table. The characteristic sequences (OTUs/ASVs) were 
assigned taxonomically based on usearch’s sintax algo-
rithm and RDP [49] training set v16. In the environment 
of the R language v4.0.2, the vegan v2.5-6 [50] package 

was used for diversity analysis, and ggplot2 v3.3.2 pack-
age was used for data visualization [51]. PICRUSt2 
(Phylogenetic Investigation of Communities by Recon-
struction of Unobserved States; https:// github. com/ gavin 
mdoug las/ q2- picru st2) and taxfun2 were used to predict 
potential phenotypes and functions.

Bacterial quantification
The overall microbial load of air samples was determined 
by qPCR of the 16S rRNA gene. Bacteria-directed prim-
ers targeting the 16S rRNA gene, 1369F and modified 
1492R [52] (Additional file 1: Table S1), were used for this 
analysis. Each 25 μl reaction consisted of 12.5 μl of 2 × iQ 
SYBR Green Supermix (Solarbio, Beijing), 1  μl each of 
forward and reverse oligonucleotide primers (10  μM 
each), and 1 μl of template DNA. qPCR runs were then 
carried out on a Bio-Rad CFX96 thermocycler with the 
following program: initial denaturation at 95 °C for 3 min, 
followed by 35 cycles of denaturation at 95  °C for 15  s, 
and combined annealing and extension at 55 °C for 35 s. 
Each sample was run in triplicate, the average and stand-
ard deviation were calculated based on these results. The 
number of gene copies in the samples was determined 
by running a standard curve, which was generated using 
serial dilutions  (108–102) of Bacillus pumilus SAFR-032 
16S rRNA gene [53]. The qPCR efficiency was ~ 98% for 
each run.

Comparison of airborne bacteria in the LP system 
and in other environments
The sequence dataset and sample metadata are either 
shared by the original author, downloaded from public 
databases (such as NCBI sequence read archive [SRA] 
or the European nucleoside Archive), or obtained from 
the QIIME online database and FigShare repository. The 
QIIME online database is now used by the Qiita data-
base (http:// qiita. ucsd. edu). The International Space Sta-
tion (ISS) airborne microbiological data set was obtained 
from the NCBI SRA repository (SRA #280254). The 
published Park ambient air microorganism project was 
obtained from the FigShare repository (https:// doi. org/ 
10. 6084/ m9. figsh are. 33623 44). The microbial data set 
of classroom and outdoor ambient air is from the Fig-
Share repository (http:// dx. doi. org/ 10. 6084/ m9. figsh are. 
157199). Plant indoor microbial data were obtained from 
the European nuclear Archive (PRJEB8807 [ERP009846]). 
Naturally ventilated indoor microorganisms were 
obtained from Qiita (Qiita study 1345). All studies were 
merged using BIOM table. QIIME and R were used 
for downstream data exploration and species diversity 
analysis.

Based on the sample species characteristic table and a 
previously described python script [54], SVM (support 

https://github.com/gavinmdouglas/q2-picrust2
https://github.com/gavinmdouglas/q2-picrust2
http://qiita.ucsd.edu
https://doi.org/10.6084/m9.figshare.3362344
https://doi.org/10.6084/m9.figshare.3362344
http://dx.doi.org/10.6084/m9.figshare.157199
http://dx.doi.org/10.6084/m9.figshare.157199
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vector machine) [55] analysis was carried out to predict 
the restricted environment. Next, we randomly divided 
the data into two parts (training set and test set), con-
ducted five cross-validations on the training set to adjust 
the SVM, and then analyzed the prediction error rate of 
the test set, using linear kernel prediction.

SourceTracker analysis
To identify the relative contribution of different hypo-
thetical sources to the bacterial community in the air of 
the LP system, two complementary methods were used, 
including fast expectation–maximization microbial 
source tracking (FEAST) [56] and indicator taxon analy-
sis [57]. Both methods involved selecting five hypotheti-
cal source environments, including soil, plants, human 
skin, human mouth, and human/livestock feces, as they 
are considered potentially important sources of indoor 
microorganisms [12]. FEAST is an efficient method 
based on expectation maximization. This method takes 
the microbial community, source, and a group of sepa-
rate potential source environments as inputs, and esti-
mates the proportion of communities contributed by 
each source environment, which can then be applied to 
different sequencing data types. In short, soil-derived 
taxa were from Zhang et al. [58], plant-derived taxa were 
from Yi et al. [59], and data from human-related sources 
were from Costello et al. [60] and Zhu et al. [61]. At the 
same time, to determine the potential bacterial popula-
tions indicating these specific source environments, the 
indicator taxa of bacterial taxa were analyzed using the 
vegan2.3-5, indicspecies1.7.6, and labdsv1.8-0 packages 
in R3.1.3. Taxa with indicator values greater than 0.6 and 
P < 0.01 were selected as indicator taxa because they were 
considered to be highly correlated with a specific source 
environment [62].

Identification of potential bacterial pathogens
The potential bacterial pathogens in the samples were 
determined according to the bacterial pathogen database 
reported previously [63], as per the classification table 
from the virulence factor database (http:// www. mgc. ac. 
cn/ VFs/), a bacterial pathogen database constructed from 
557 pathogenic species (Additional file 1: Table S2) [64]. 
The 16S rRNA gene sequences of bacterial pathogens can 
be obtained from the NCBI (http:// www. NCBI. NLM. 
NIH. gov/). The 16S rRNA gene sequence of each sample 
was compared with the 16S rRNA gene sequence of bac-
terial pathogens in the database, E-value < 1 ×  10−10. The 
BLAST hit results were screened, and the potential bac-
terial pathogens with sequence similarity threshold > 99% 
were screened.

Statistical analysis
For all statistical analyses, the significance level was set to 
P < 0.05 or the listed P value. R (4.0.2) was used for all sta-
tistical analysis and visualization (http:// www.R- proje ct. 
org/). We used PERMANOVA (permutational multivariate 
analysis of variance) [65] to test whether there were signifi-
cant differences in microbial community structure in the 
sample group in the PCoA. EdgeR [66] (P < 0.05, FDR < 0.2) 
was also used to identify significant differences in the rela-
tive abundance of different groups among groups. Benja-
mini Hochberg corrected P values were based on Wilcoxon 
rank test or Kruskal Wallis test (significance threshold 
P < 0.05). Linear Discriminant Analysis (LDA) Effect Size 
(LEfSe) was used to determine which microorganisms 
were in differing abundance between groups [67]. LEfSe 
analysis was performed using a non-parametric factorial 
Kruskal–Wallis (KW) sum-rank test with an alpha value 
of ≤ 0.05, followed by an (unpaired) Wilcoxon rank-sum 
with an alpha score of ≤ 0.05, and a one-against-all strategy 
for multi-class analysis. To obtain the best discrimination 
output of taxa at the different locations in LP1, we used dif-
ferent algorithms (randomforest and XGBoost [68]), with 
the default parameters of the randomforest and XGBoost 
algorithm (package ’randomforest’ and ’xgboost’). In R, the 
spearman rho value and the corresponding P value of the 
correlation analysis between microorganisms (genus level) 
and resistance genes were generated by the rcorr function. 
The adjust function was used to modify the P value using 
the Benjamin Hochberg method, and the Spearman corre-
lation matrix constructed by Gephi [69] was used to evalu-
ate the complexity of the interactions between microbiota 
and resistance genes.

Results
Bacterial population based on qPCR
The bacterial load was measured by qPCR with the bac-
terial 16S rRNA gene as the target. The copy number of 
the gene showed a similar trend between the two groups: 
the bacterial load in the plant cabin air was relatively low, 
that in the comprehensive cabin was medium, and the 
solid waste treatment cabin was relatively high; however, 
there was no statistically significant difference between 
these values (Fig. 2a). In general, there was no significant 
difference in bacterial load between the different crew 
groups (P = 0.74; Fig.  2b). In G1, the average bacterial 
load of 1.43 ×  107 16 s rRNA copies/m3 was higher than 
the average bacterial load of group G2 by 6.98 ×  106 cop-
ies/m3. Although the bacterial load fluctuated at different 
times (Fig. 2c), there was no increasing trend of bacterial 
load. In this study, the average number of bacteria in the 
air of the LP1 system was 1.05 ×  107 16S rRNA copies/
m3.

http://www.mgc.ac.cn/VFs/
http://www.mgc.ac.cn/VFs/
http://www.NCBI.NLM.NIH.gov/
http://www.NCBI.NLM.NIH.gov/
http://www.R-project.org/
http://www.R-project.org/
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Differences in the microbiome community between Lunar 
Palace I and other environments
We compared the composition and diversity analyses 
of the ambient air in LP1 and the closed environment 
(ISS) and the open environments (classroom, park, 
classroom outdoor, and indoor with plants), based 
on 16S rRNA amplicon dataset. In terms of α diver-
sity, whether examined using the Shannon index, Pie-
lou evenness index, richness index, or Gini-Simpson 
index, there was no significant difference in the air 
microbial diversity between LP1 and the indoor with 

plants; however, the diversity was significantly different 
between LP1 and classroom, park and outdoor envi-
ronments (Fig. 3a). In general, the diversity in LP1 was 
higher than that in the closed environment and lower 
than that in the open environments. As for β diversity, 
according to PCoA analysis based on Bray–Curtis dis-
tance, LP1 is quite different from the other environ-
ments. PC1 and PC2 account for 31.74% and 13.53% 
of the total variation, respectively. PERMANOVA 
test analysis revealed significant differences between 
the different environments (P = 0.001). In this type 
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of analysis, the closer the distance, the more similar 
the species composition structure. Therefore, sam-
ples with high similarity of community structure tend 
to cluster together. The β diversity of air microorgan-
isms in LP1 exhibits a uniqueness from both the closed 
environment and open environments (Fig.  3b). Using 
SVM analysis, we can predict from which unlabeled 
environment samples come with 84% accuracy, based 
only on microbiome composition (Additional file  2: 
Fig. S1a; F-1-score: ISS [0.50], LP [0.82], CO [0.79], 
Park [0.93), CR [0.85]), which further shows that air 
microorganisms in different environments have unique 
characteristics.

Through community composition analysis, Proteo-
bacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, 
and Firmicutes are the main bacterial phyla (Fig. 3c). In 
the indoor environment with plants, the relative abun-
dance of Proteobacteria in air microorganisms was high. 
At the genus classification level, Sphingomonas was the 
main genus in the open environment, Pseudomonas was 
relatively abundant amongst the air microorganisms in 
the LP and ISS environments, while Sphingomonas was 
significantly lower than that in the other environments 
(Additional file 2: Fig. S1b).
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Effects of different crews of the Lunar Palace 365 
experiment on the microbial community of LP1
To better understand the effects of different crew groups 
on the microbial community, we compared the changes 
in microbial communities during the 200-day mission of 
group G2 and the 100-day mission of group G1. There 
was a significant difference in species richness between 
G1 and G2 for air samples, according to the 16S rRNA 
amplification and sequencing (richness index: P = 0.0021; 
Fig.  4a). We also analyzed the species from G1 and G2 
by metagenome sequencing and found significant differ-
ences in α diversity (Shannon index: P = 0.0026; Addi-
tional file  2: Fig. S2). To further explore the impact of 
different crew compositions on the microbial commu-
nity, we performed principal coordinate analysis (PCoA), 
based on Bray–Curtis distance, and observed a greater 
difference between the G1 and G2 samples (Fig. 4b).

We performed lefse analysis between the different crew 
groups (Kruskal Wallis; P < 0.05, LDA score > 4.0; Fig. 4c), 
which revealed significant differences in the relative 
abundance between G1 and G2. A histogram of the LDA 
value distribution shows that Proteobacteria, Burkholde-
riales, and Betaproteobacteria were enriched in the G2 

group, while Nocardiaceae, Nocardia, Staphylococcaceae, 
Staphylococcus, Microbacterium, Actinomycetes, and Act-
inobacteria were enriched in the G1 group.

All samples were annotated with the RDP reference 
database. At the phylum classification level, four phyla 
(Proteobacteria, Firmicutes, Bacteroidetes, and Actino-
bacteria) were the main contributing bacteria (unclas-
sified readings of bacterial phyla were removed from 
the sequencing data). The microbial composition in the 
G1 crew group was mainly composed of Proteobacte-
ria (47.63%), Firmicutes (19.23%), Unassigned (0.81%), 
and Actinobacteria (19.12%), while the G2 group was 
mainly composed of Proteobacteria (59.99%), Bacte-
roidetes (18.69%), Unassigned (0.56%), and Firmicutes 
(16.48%; Additional file 1: Table S1, Fig. 4d). At the genus 
level, Pseudomonas (17.11%), Acinetobacter (9.74%), 
Exiguobacterium (3.22%), Sphingobacterium (3.88%), 
Arthrobacter (7.81%), Microbacterium (6.07%), and Chry-
seobacterium (2.00%) dominated the G1 crew group and 
Pseudomonas (19.85%), Acinetobacter (9.46%), and Exig-
uobacterium (7.61%) were prominent in the G2 crew 
group. (Additional file 1: Table S2, Additional file 2: Fig. 
S3).
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A total of 284 species-level taxa were identified in 
the LP1 ambient air microorganisms by metagenomic 
sequencing. As expected, most communities were 
assigned bacteria (the average relative abundance of the 
whole data set was 99.7%), followed by viruses (0.23%) 
and archaea (0.045%). The core microbial composition 
was consistent with the results of the 16S rRNA sequenc-
ing at both the phylum and genus classification levels 
(Additional file 1: Table S3, Additional file 2: Fig. S4).

Air microbial community by location in the Lunar Palace 
365 experiment
Samples from different locations in the same crew group 
displayed the small differences (ANOSIM G1: r = 0.013, 
P = 0.38; G2: r = 0.092, P = 0.14 Additional file 2: Fig. S5d, 
e) compared with the samples from the same location 
during different crew groups (ANOSIM CC: r = 0.224, 
P = 0.029; PC: r = 0. 40, P = 0. 006; SC: r = -0.059, 
P = 0.58, Additional file  2: Fig. S5a, b, c). There was a 
significant difference in the air microbial community 
between two crew groups in the CC and PC, but there 
was no significant difference in the SC, likely because CC 
and PC are areas with dense occupant activities.

To identify important bacterial classifications as bio-
marker taxa related to different positions in LP1, we 
performed a tenfold cross-validation with 5 replicates to 
assess the importance of bacterial classification. When 
47 important classes were used, the minimum cross-val-
idation error was obtained. However, when 12 categories 
were used, the number of categories of the cross-valida-
tion error curve stabilized (Fig. 5a). Therefore, we defined 
these 12 categories as biomarker taxa in the model. Fig-
ure  5a lists the 12 most common bacterial taxa at the 
different locations in LP1 in order of importance. Simi-
larly, based on the classification analysis using XGBoost, 
8 bacterial taxa were determined as biomarkers, with a 
large contribution (Fig. 5b). Most biomarker taxa, such as 
Nocardia and Rhodococcus, exhibit a high relative abun-
dance in the PC (Fig. 5c).

Functional analysis based on 16S rRNA gene 
and metagenomic information
In the BLSS, the functional stability of each biological 
chain undoubtedly plays an important role in the stability 
of the ecosystem as a whole. Since the metagenome anal-
ysis can only be carried out on the mixed sample subset 
(due to the low biomass and sampling constraints), we 
initially used PICRUSt2 and tax4fun2 analysis based on 
16S rRNA amplicon sequencing to predict the potential 
microbial metabolic capacity and functional redundancy. 
The PICRUSt2 results show that metabolism‐related 
pathways had the highest abundance at KEGG level 
1. At KEGG level 2, the highest relative abundance 

was carbohydrate metabolism (Fig.  6). Between two 
crew groups, the bacteria was predicted to have no sig-
nificantly differences capability of influencing genetic 
information processing, influencing environmental infor-
mation processing, and human disease. Meanwhile, the 
functional diversity between G1 and G2 remained bal-
anced without a significant difference based on level 3 
of KEGG pathway analyses (Additional file  2: Fig. S6a, 
P = 0.081). The tax4fun2 functional redundancy analysis 
shows that nearly 6553 functions displayed a higher func-
tional redundancy index in the G1 group, whereas only 
350 functions had higher redundancies in the G2 group. 
The Relative functional redundancy indices of most func-
tions were greatly reduced in the G2 group due to the 
decline of species diversity (Additional file  2: Fig. S6b, 
Fig. S2).

We performed metagenomic sequencing on the air 
samples to further verify whether there is a signifi-
cant difference in functional diversity after a crew shift 
change. The results of level 3 of KEGG pathway analyses 
show no significant difference between the two groups as 
a whole (P = 0.4972; Additional file  2: Fig. S6c), consist-
ent with 16 s rRNA amplicon prediction. The enrichment 
analysis results of KEGG show that the genes assigned 
to MCE-associated membrane protein, 4-phytase/acid 
phosphate, large subunit ribosomal protein L23AE, 
rhamnosyltransferase, and threonine synthase are abun-
dant between the two groups, while biofilm formation—
Pseudomonas aeruginosa, glycolysis/gluconeogenesis, 
starch and sucrose metabolism, Two-component system, 
Lipopolysaccharide biosynthesis was enriched and show 
differences between the two groups. This suggests that 
the microbial functions of the air dust samples are more 
concentrated in metabolism-related genes and functional 
pathways (Additional file  1: Tables S4 and S5), partially 
confirming the prediction result using PICRUSt2.

Characteristics of antibiotic resistance genes in the Lunar 
Palace 365 experiment
Based on the differences between the two crews, and our 
interest in functions related to virulence and resistance, 
we investigated the antibiotic resistance genes of the 
microbiota (“resistome”) in air dust during the G1 and 
G2 groups’ habitation in more detail. A total of 92 ARGs 
were observed in all 33 dust samples. The abundance 
and diversity of known resistance genes represent the 
resistome’s non-characterized fraction in a given envi-
ronment [70]. There was no significant difference in the 
number of ARGs detected (Fig. 7b) or the Shannon index 
among the different crews, with mean Shannon indices 
for G1 and G2 of 3.07 and 3.14, respectively (Fig.  7a). 
Among the different crew groups, the ARGs were mainly 
concentrated in four categories: (1) ABC transporter, (2) 
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RND Antibiotic efflux, (3) Gene modulating resistance, 
and (4) MFS transporter (Fig. 7c).

To study the relationship between ARG expression 
and bacterial groups and determine whether bacte-
rial genera help to explain the specific changes in 
ARG expression, we analyzed the Spearman correla-
tion coefficient through the co-occurrence network 
(ρ) and P values (Additional file 2: Fig. S7) to visualize 

the correlation between ARG types and major genera. 
The correlation analysis revealed a strong correlation 
between ARGs and bacterial combinations (ρ > 0.7) 
and (P < 0.01). Among these relationships, Arthrobac-
ter negatively correlated with MexE, and Psychrobacter 
negatively correlated with TetY, while the remaining 
were positively correlated.
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Potential bacterial pathogens in air samples 
from the Lunar Palace 365 experiment
Only six species of pathogenic bacteria were detected in 
all samples, including Acinetobacter baumannii, Bacillus 
anthraci, Bacteroides thetaiotaomicron, Enterococcus fae-
calis, Escherichia fergusonii, Rickettsia conori, based on 
the use of the 16S rRNA gene amplicon sequence BLAST 
against the bacterial pathogen 16S rRNA database [63]. 
Although 16S rRNA amplicon BLAST is an effective 
pathogen detection method, it still has the following 
limitations: Like all other PCR-based methods, inherent 

amplification bias in the PCR step cannot be excluded 
[71]. In addition, the relatively short sequence length 
(250  bp in this study) generally provides accurate taxo-
nomic resolution at the genus level [72], therefore cau-
tion must be taken regarding the 6 pathogens mentioned 
above. Therefore, the nonredundant reference gene set 
was compared to the virulence factor database (VFDB) 
through metagenomic analysis. The results show that 
the most abundant virulence factors in all samples were 
flmH(3-oxoacyl-ACP reductase, ptxR(transcriptional 
regulator PtxR, scrC(sensory box/GGDEF family protein 
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SrcC, sugC(ABC transporter-like protein), fbpC(ABC 
transporter, ATP-binding protein)( Additional file  1: 
Table S6). It must be noted that molecular assays, while a 
good approximation of the potential of virulence factors 
in an organism or microbial community, tend to overes-
timate this potential (since some virulence genes may not 
be expressed at all).

Oral microorganisms of crew members are the main source 
of the airborne microbial community
We used two methods to confirm that crew-related 
oral microorganisms are the main source of the micro-
bial community in the air. First, we examined the rela-
tive abundance of indicator microorganisms identified 
by Dunn et  al. [62] as being derived from human (skin, 
mouth, feces) and the environment (plant, soil). Among 
these organisms, the crew-related oral microorganisms 
were the main source of airborne microorganisms deter-
mined, while the plant rhizosphere microorganisms in 
the cabin were the second main source. The source of the 
most abundant organisms found on each air sample was 
the crew oral cavity (Fig. 8a). Next, we used FEAST anal-
ysis to determine whether crew oral microorganisms and 
plant rhizosphere microorganisms in the cabin are the 
most likely sources of the air microbial community. Most 
(> 80%) of the air microorganisms in the closed cabin 
came from human-related microbial groups, followed by 
plants (Fig. 8b).

Discussion
At present, national and international space agencies 
are planning future missions to other celestial bodies 
such as the Moon or Mars. However, an autonomous life 
support system must be established for long-term resi-
dence off-planet. With extraterrestrial habitation for an 
extended period of time, microorganisms are expected 
to continue to accumulate. If they cannot be eliminated, 
the accumulation of microorganisms can lead to disease, 
posing a threat to crew health. The application of proven 
microbial disinfection techniques in a closed environ-
ment may greatly reduce the microbial population, but 
genetic material with the potential for biological pollu-
tion will also accumulate over time. Additionally, human 
well-being is inseparable from its microbiota. Thus, the 
dynamics of microbial communities inside and around 
human beings is an essential consideration for human 
long-term space flight and extraterrestrial settlement 
(such as a future Mars outpost). Earth-based models are 
essential for such research, including monitoring iso-
lated inhabitants in a closed environment and the lon-
gitudinal microbial dynamics in the environment. Past 
work has examined many suitable model environments 
(not including the environment studied in the present 

work); however, there are essential differences in set-
ting and research design. For example, the Concordia 
research station in Antarctica consists of independent 
buildings that can accommodate 16–32 people during 
sampling and has conducted 365 days of microbial moni-
toring [27]. The inflatable moon/Mars simulated habitat 
(ILMAH) in the United States provided 300  m3 space 
for three residents and conducted a 30-day survey [28]. 
Another example is the Mars500 habitat in Moscow, 
Russia, which includes four modules with a total vol-
ume of 550  m3 and can accommodate six participants for 
520  days [26]. The most recent study was the HI-SEAS 
IV mission in Hawaii, a 1-year isolation study [9]. In our 
current study, air microorganisms in three critical sites in 
the LP1 system were characterized over two crew shifts, 
with sampling tasks lasting one year. This schedule ena-
bled the examination of the temporal and spatial distri-
bution of microbial populations.

The first question considered in our study is how the 
flora in the LP1 BLSS testbed compares with other 
closed, controlled, or open environments. DNA sequenc-
ing of 16S rRNA amplicons using primer set 338F and 
806R revealed that the microbiota in the LP1 BLSS is 
significantly different from other closed, controlled, or 
open environments. This primer set was designed for 
the V3-V4 hypervariable region for DNA amplification, 
so that the amplified products could more easily cover 
this region and thus better reflect the sample diversity 
of the bacterial species [73]. 338F and 806R elicit very 
low amplification of non-target DNA, and have been 
widely used for 16S rRNA metagenomic primers [74, 75]. 
The use of the 338F and 806R primer pair also has been 
shown to reveal a high amplification efficiency of 96.58% 
for detection in complex intestinal flora [76]. Although 
PCR amplification bias introduced by primer selection is 
inevitable, the primer pair of 338F and 806R is well suited 
for BLSS microbiome analysis.

We found that the LP1 system had higher bacterial 
alpha diversity and different community structure than 
other closed habitats, but lower microbial diversity than 
open environments. One possible explanation is that 
the increased alpha diversity may be related to a richer 
nutrient environment for bacteria. We speculate that, 
compared with other controlled environments, LP1 has 
a greater degree of biological processes, such as plant 
growth and biological treatment of solid waste, providing 
richer nutrient sources for different bacteria. In addition, 
the average amount of total bacteria in the air was sig-
nificantly lower than that recorded in other indoor envi-
ronments, such as a flight cabin. The measured values 
ranged from  106 to  107 16S rRNA gene copies/m3 [77]. At 
the same time, we found that the number of pathogenic 
bacteria in the air bacterial community in the LP1 system 
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contains only six species. While the effects of indoor 
plants on indoor bacterial pathogens are unclear, since 
the crew members were the major source of bacteria in 
the habitat, the relatively low number of pathogenic spe-
cies could be the result of the positive impact of indoor 
plants on human health [64]. Previous studies have 
shown the importance of occupants and home design 
(such as the introduction of indoor plants) in determin-
ing the structure of the indoor bacterial community. 
Introducing appropriate indoor plants is recommended 

as an effective method to improve air quality in differ-
ent indoor environments [78]. These phenomena may 
explain the relatively small number of potential bacterial 
pathogens and total bacteria detected, either through the 
plants themselves and/or plant-related microbiota. This 
may also be the reason for the presence of a large number 
of unique bacterial OTUs in LP1. Consistent with previ-
ous reports [79], most bacteria in LP1 belong to Proteo-
bacteria, Actinobacteria, Bacteroides, Cyanobacteria, and 
Firmicutes. Interestingly, compared with other closed 
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environments, the relative abundance of Proteobacteria 
in the airborne microorganisms is higher in indoor envi-
ronments with a large number of plants. At the genus 
level, Sphingomonas is the most abundant in the open 
environment. The relative abundance of Pseudomonas in 
air microorganisms in LP1 and the ISS environments is 
higher, and Sphingomonas is significantly lower than that 
in the open environment. Most species of Proteobacteria 
are common soil organisms and are usually endophytic 
and associated with plant rhizospheres [33]. The pres-
ence of these organisms is probably due to the large plant 
growth space in the LP1 system.

Several reports describe the microbial composition of 
simulated habitat environments used as substitutes for 
future human exploration using gene-targeted amplicon 
sequencing of the microbial population. One of these 
studies, ILMAH, detected a high abundance of Staphy-
lococcaceae, Corynebacteriaceae, Caulobacteraceae, 
Pleosporaceae, and Sporidiobolaceae [28]. A similar 
closed system study, Mars500, found a high abundance 
of Corynebacteriaceae, Burkholderiaceae, and Staphylo-
coccaceae [26]. The culturable microbial composition of 
a simulated underwater habitat was mainly composed of 
Bacillus (72%) and Staphylococcus (15%), indicating that 
the microbial composition in these simulated environ-
ments is also different from that in the LP1 environment.

Another initial objective of our study was to determine 
the effects of crew composition on bacterial communi-
ties and the dependence of the bacterial communities on 
sampling location. The flora of LP1 is strongly affected by 
having different residents. The diversity of the bacterial 
community decreased significantly from the G1 to the 
G2 group, indicating that the presence of passengers is an 
important determinant of the air microbial community 
in a BLSS. Previous studies have shown that in a closed 
physicochemical regenerative life support system (PCSS) 
habitat, the overall diversity of surface bacteria changes 
with the presence of humans [28]. Another study showed 
that the entry of personnel brought a large number of 
bacterial species into a closed BLSS living environment 
[80]. Our results confirm these findings and add new 
insights into how crew changes affect bacterial diversity. 
There are significant differences in the taxonomic com-
position of flora among healthy individuals, which is con-
gruent with the different bacterial communities between 
the G1 and G2 groups.

Early studies did not find that the change in the indoor 
bacterial community positively correlates with human 
presence [81]. These conflicting observations may be 
related to whether the space is an open or closed system. 
Previous studies have shown that bacterial communities 
in open and common indoor spaces are mainly affected 
by outdoor air bacteria [82]. In addition, in contrast to 

the ISS [83], the LP1 ambient air flora comes from crew 
oral and plant rhizosphere-related microorganisms 
rather than human skin. Various reports have shown 
that in a strictly controlled environment, the presence of 
humans is the most common source of microorganisms, 
and human transmission of microorganisms depends on 
their activities and time in closed habitats. Generally,  106 
to  107 microorganisms are turned over on the skin every 
day; sweating, coughing, or speaking will excrete  103 to 
 104 microorganisms, which once again is consistent with 
the assertion that human presence is the dominant con-
tributor to the microbial community on indoor surfaces 
[18]. Most notably, the impact of crew composition on 
the bacterial community was dependent on sample loca-
tion. There were significant differences in air bacterial 
communities in the CC and PC between G1 and G2, but 
there was no significant difference in SC.

Moreover, we found that the total number of bacteria 
in the PC was less than that in the CC and SC. Thus, the 
effect of the large plant growth area on the PC air bac-
terial community outweighed the contribution of the 
occupant change. The analysis of bacterial biomark-
ers at different positions in LP1 further confirmed this 
conclusion. Nocardia and Rhodococcus, as biomarkers 
distinguished the different sites, showed high relative 
abundance in the PC. Nocardia belongs to Actinomycetes 
and is abundant in plant endophytes. This genus has the 
potential to be a plant growth promoter and biological 
control agent [84], while most Rhodococcus species play 
important roles in promoting plant growth [85, 86].

Surprisingly, the microbial community in the samples 
contained a certain number of known ARGs, with diver-
sity and abundance that are much lower than in other 
indoor environments [64]. These results imply that air 
in a confined environment is a neglected route of trans-
mission and a reservoir of antibiotic resistance. This view 
is partially supported by some air-based studies, which 
propose that air transmission is an understudied path-
way for the transmission of antibiotic resistance in vari-
ous environments [87]. In our study, the reason behind 
the high diversity and richness of ARGs in the air may be 
the accumulation of antibiotic-resistant bacteria from the 
indoor environment. However, we do not have any infor-
mation related to antibiotics, such as the antibiotic treat-
ment history of the crew before sampling and the degree 
of medical environment exposure of the crew members 
prior to the experiment. Future studies should take these 
factors into account to better explain why confined room 
environments contain ARGs. The ARGs were mainly 
concentrated in four categories: (1) ABC transporter, (2) 
RND antibiotic efflux, (3) gene modulating resistance, 
and (4) MFS transporter, indicating the possibility of their 
transmission through the air and/or horizontal transfer. 
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In contrast to the bacterial community, crew composi-
tion is unlikely to drive the structure of ARGs in the envi-
ronment because no significant differences were detected 
in ARGs between the crew groups. Actinomycetes, Fir-
micutes, and Proteus contributed the most to the struc-
tural variation of related ARGs in the air. Actinomycetes 
are famous for producing antibiotics and are considered 
a common source of ARGs because they usually carry 
a variety of ARGs and have a variety of drug resistance 
mechanisms [88]. In addition, we observed that there was 
a negative correlation between Arthrobacter and MexE, 
and Psychrobacter and TetY, with the rest of the correla-
tions positive. Therefore, we can infer that the transfer of 
these bacterial phyla possibly plays a major role in form-
ing antibiotic-resistant structures in the air microbiome. 
The network analysis results further support this finding, 
which can be partially explained by the hypothesis that 
microorganisms shedding from the crew are the source 
of ARGs. Another possible explanation is that antibiotic 
selection pressure caused by human activity, such as anti-
biotic treatment of crew members, may directly affect the 
reservoir of resistance genes.

The current study has some limitations and provides 
meaningful information, albeit incomplete, for future 
attempts to maintain a safe microbial environment for 
human outposts on the Moon or Mars. The information 
on all the microbial sources is limited, and only a limited 
number of crew members were selected to monitor the 
transfer of potential microorganisms and ARGs into the 
environment. Additional human volunteers will help to 
conclude the contribution of personal health. Finally, the 
entire infrastructure and environment is a partial simula-
tion of a bona fide extraterrestrial crewed mission.

Conclusion
In conclusion, this study expounds the air microbiota 
and drug resistance in a long-term closed BLSS. The 
results highlight the specificity and distribution char-
acteristics of the air microbial community and resist-
ance genes in a BLSS across a change of crew members. 
Although we have begun to characterize the microbi-
ology, further work is needed to determine the viabil-
ity of the observed microbial community, because the 
detected functional and resistance genes are not nec-
essarily indicative of phenotypes in this environment. 
This information can provide further insights into the 
occupant health risks associated with the spread of 
potential pathogens and antibiotic resistance in con-
fined environments. Future work should also expand 
existing methods and findings, including microbiome 
and antibiotic resistance data from other closed and 
open environments, to comprehensively understand 
the differences between microbiota and antibiotic 

resistance caused by human factors. In addition, our 
results also expand our knowledge of indoor air micro-
bial communities, which is essential to maintain safe 
working and living environments effectively.
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